数学建模:课程安排优化问题

合集下载

数学建模竞赛用到优化的赛题

数学建模竞赛用到优化的赛题

数学建模竞赛中,优化问题是一个重要的赛题类型。

优化问题是指在一定的约束条件下,通过寻找最优解,使得目标函数达到最大值或最小值的问题。

在实际生活中,优化问题广泛应用于各个领域,如生产、运输、金融等。

在数学建模竞赛中,优化问题的赛题设计通常要求参赛队伍运用数学知识和建模技巧,对现实生活中的问题进行建模,并寻求最优解。

这类赛题的特点是问题背景真实、数据丰富,参赛队伍需要充分挖掘数据中的有用信息,建立合适的数学模型,并通过优化求解得到符合实际意义的解。

为了更好地解决优化问题,参赛队伍需要掌握以下几个关键步骤:1. 问题分析:在解决优化问题时,首先要明确问题的背景和目标,分析问题中的约束条件,确定目标函数。

这是解决优化问题的基础。

2. 建立模型:根据问题分析的结果,建立合适的数学模型。

常见的优化模型有线性规划、非线性规划、整数规划、动态规划等。

选择合适的模型有助于更高效地求解问题。

3. 求解算法:优化问题的求解方法有很多,如单纯形法、遗传算法、粒子群优化算法、模拟退火算法等。

选择合适的求解算法可以提高求解效率和精度。

4. 模型验证与优化:在得到优化解后,需要对模型进行验证,分析模型的可行性和有效性。

如有必要,可以对模型进行优化,以提高模型的性能。

5. 撰写论文:在完成优化问题的建模和求解后,需要将整个过程和结果撰写成论文。

论文应包括问题分析、模型建立、求解方法、结果分析等内容,并注重论文的结构和语言表达。

总之,在数学建模竞赛中,优化问题是一个具有挑战性的赛题类型。

通过解决优化问题,参赛队伍可以锻炼自己的数学建模能力、实践能力和团队协作能力,为未来的学术研究和职业发展打下坚实基础。

数学建模优化问题的求解方法

数学建模优化问题的求解方法

数学建模优化问题的求解方法
数学建模优化问题的求解方法有很多。

下面列举几种常见的方法:
1. 数学规划方法:包括线性规划、整数规划、非线性规划、动态规划等。

这些方法通过数学模型和约束条件来描述问题,并通过寻找最优解来优化问题。

2. 图论方法:将问题抽象成图或网络,并利用图论算法来求解最优解。

常见的算法有最短路径算法、最小生成树算法、最大流算法等。

3. 近似算法:对于复杂的优化问题,往往很难找到精确的最优解。

近似算法通过寻找接近最优解的解来近似优化问题。

常见的近似算法有贪心算法、近邻算法、模拟退火算法等。

4. 遗传算法:模拟生物进化的过程,通过选择、交叉和变异等操作来搜索问题的解空间,并逐步优化解。

遗传算法适用于复杂问题和无法直接求解的问题。

5. 物理方法:将优化问题转化为物理模型,利用物理规律求解。

比如蚁群算法模拟蚂蚁找食物的行为,粒子群算法模拟鸟群觅食的行为等。

以上只是数学建模优化问题求解方法的几种常见方法,实际问题求解时要根据问题的特点选择适合的方法,并结合领域知识和实际情况进行调整和优化。

新课程背景下高中数学建模教学的现状、问题及对策

新课程背景下高中数学建模教学的现状、问题及对策

新课程背景下高中数学建模教学的现状、问题及对策摘要:高中数学新课程将建模思想作为学科核心素养之一,主要原因是建模是学生学好、学深数学知识的关键素质,是数学思维性的集中体现,为此需要教师加强开展建模教学。

本文首先阐述了高中数学建模教学的现状,接着总结出教师在建模教学中存在意识不高、指导不够、评价不科学等问题,最后论述了教师要在教学过程中重视渗透建模教学、教会学生掌握建模步骤、实施过程性评价,以此强化建模教学,培养学生建模意识与素质,从而助力学生深度学习数学知识,有效实现新课标关于建模教学的要求。

关键词:高中数学;建模教学;有效策略根据高中数学新课程关于建模教学的描述,建模主要指的是教师教会学生利用模型去探究、理解数学知识,借助模型去分析、解决数学问题,高中数学模型具有工具性、思维性特点,需要学生建立应用的意识与能力。

数学建模具有很强的理论性和技巧性,需要教师实施针对性的教学,为此,探究高中教师数学建模教学的现状、分析其中的不足、寻找有效对策非常有必要。

一、高中数学建模教学的现状当前,广大教师能根据高中数学新课程的要求,以及数学高考新考核标准的指引,转变应试教育理念与方法,关注学生学科核心素养的培养,其中就包括数学建模。

包括刚大学毕业在内的高中数学教师,他们具有先进的教育理念,也具有很强的教学能力,能够适应教学新需要、新要求,这也说明了当前开展数学建模教学的师资力量很充裕。

在新版高中数学教材中,也包含很多的数学建模内容,以适应新课标和新高考的要求,有些建模教学内容比较隐晦,还需要教师多发掘。

高中学校也能根据新课标的要求,组织教师参加新课标内容培训,关注教师对新课标落实情况,对教师的建模教学也会有具体的教学安排,包括听课、说课、集中备课等。

学生对新课程内容总体持支持态度,尤其是教师贯彻新课标要求,将学生从题海战术中解法出来之后,学生会积极参与到教师组织的包括数学建模在内的新课程教学活动中。

由此可见,当前高中数学建模教学有师资力量,有学生基础,学校也比较重视,具备开展高质量建模教学的条件。

数学模型与优化课程设计

数学模型与优化课程设计

数学模型与优化课程设计一、课程目标知识目标:1. 让学生掌握数学模型的基本构建方法和应用,理解数学模型在解决实际问题中的重要性。

2. 使学生掌握线性规划、整数规划等优化方法的基本原理和求解步骤,具备运用这些方法解决实际问题的能力。

3. 帮助学生理解数学与现实生活的联系,提高运用数学知识分析和解决问题的能力。

技能目标:1. 培养学生运用数学软件或工具构建数学模型,解决实际问题的能力。

2. 培养学生运用优化方法对数学模型进行求解,提高问题求解的效率。

3. 培养学生独立思考和团队协作的能力,提高学生在实际问题中运用数学知识进行创新的能力。

情感态度价值观目标:1. 培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。

2. 培养学生严谨、务实的科学态度,提高学生面对问题时敢于挑战、勇于探索的精神。

3. 培养学生具备良好的合作精神,学会尊重他人意见,形成积极向上的人际关系。

课程性质分析:本课程为数学模型与优化课程,旨在教授学生运用数学知识和方法解决实际问题。

课程内容与实际生活紧密联系,注重培养学生的实践能力和创新精神。

学生特点分析:学生处于高年级阶段,已具备一定的数学基础和问题解决能力。

在此阶段,学生具有较强的求知欲和自主学习能力,同时具有一定的团队合作意识。

教学要求:1. 结合课本内容,注重理论与实践相结合,提高学生的实际操作能力。

2. 注重启发式教学,引导学生主动思考、探索问题,培养学生的创新意识。

3. 注重教学过程中的师生互动,激发学生的学习兴趣,提高教学效果。

二、教学内容本课程教学内容主要包括以下几部分:1. 数学模型基本概念与构建方法- 理解数学模型的定义及分类- 掌握数学模型构建的基本步骤和方法- 分析实际问题时,能够运用所学知识建立数学模型2. 线性规划- 线性规划的基本概念与理论- 线性规划模型的建立与求解方法- 应用线性规划解决实际问题3. 整数规划- 整数规划的基本概念与特点- 整数规划模型的建立与求解方法- 应用整数规划解决实际问题4. 非线性规划简介- 非线性规划的基本概念与理论- 非线性规划模型的建立与求解方法- 非线性规划在实际问题中的应用案例5. 模型优化方法- 优化方法的基本原理与分类- 常见优化算法及其应用- 优化方法在实际问题中的应用案例教学内容安排与进度:第一周:数学模型基本概念与构建方法第二周:线性规划基本理论与求解方法第三周:线性规划应用案例分析第四周:整数规划基本理论与求解方法第五周:整数规划应用案例分析第六周:非线性规划简介第七周:优化方法及其在实际问题中的应用本教学内容与课本章节紧密关联,注重理论与实践相结合,旨在提高学生运用数学知识解决实际问题的能力。

数学中的数学建模与优化问题

数学中的数学建模与优化问题

数学中的数学建模与优化问题数学建模和优化是数学领域中的两个重要概念,它们在解决实际问题中起着关键作用。

本文将探讨数学建模和优化的定义、原理及其在实际中的应用。

一、数学建模数学建模是指将实际问题转化为数学问题,并通过建立数学模型来描述和分析问题。

数学建模的核心是找到问题的本质,抽象出关键因素,并建立合适的数学模型。

通过建模,我们可以利用数学工具和方法来解决问题,预测未来的趋势,制定决策。

在数学建模中,常用的数学工具包括微积分、线性代数、统计学等。

数学建模的过程通常包括问题分析、模型假设、模型建立、模型求解和模型验证等步骤。

通过这些步骤,我们可以得到符合实际情况的数学模型,并进行预测和优化。

二、数学优化数学优化是指在给定的约束条件下,寻找使目标函数达到最大或最小值的一组变量取值。

数学优化在解决实际问题中,通常涉及到决策、资源分配、路径规划等方面。

通过优化,我们可以在有限资源下找到最优解,提高效率和经济性。

数学优化的常用方法包括线性规划、非线性规划、整数规划等。

这些方法通过数学理论和算法,求解最优解或次优解。

在实际应用中,我们可以通过优化来改进生产制造、物流配送、交通规划等领域,提高整体效益。

三、数学建模与优化的应用数学建模和优化在各个领域都有广泛的应用。

以下是数学建模和优化在几个领域的具体应用示例:1. 交通规划:通过数学建模和优化,可以确定最短路径、优化交通信号配时、减少拥堵等,提高城市交通效率。

2. 生产制造:通过数学建模和优化,可以优化工厂生产线布局、减少生产成本、提高生产效率,增加企业竞争力。

3. 资源分配:通过数学建模和优化,可以优化资源的分配,合理规划资源的使用,提高资源利用率和经济效益。

4. 环境保护:通过数学建模和优化,可以优化污染治理方案,减少环境污染,保护生态环境。

5. 金融投资:通过数学建模和优化,可以帮助投资者制定投资组合、分散风险、最大化收益。

通过数学建模和优化,我们可以更好地理解和解决实际问题,提高决策的科学性和准确性。

数学建模:课程安排优化问题

数学建模:课程安排优化问题

2012年数学建模竞赛参赛队员题目 A题:课程安排优化问题关键词排课问题,优化矩阵,有效矩阵摘要每学期的开学初,总有许多老师对阳光校区的课程安排很有意见,本文选取武汉纺织大学机械设计系的师生情况、课程、教室间数为研究对象,以课程与上课时间之间的关系矩阵为目标矩阵,通过用各影响矩阵优化目标矩阵的方法,对机械设计系的课表进行了重排。

在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。

运用我们建立的数学模型,对武汉纺织大学机械设计系的课表进行重排,将所得新课表与现有的课表进行比较,显然新排的课表更加合理化、人性化。

根据新课表中每节课对应的相关因素(课程名称、教室、老师、班级)进行分析整合,可衍生出新的安排表(如通过对不同时间段上课老师人数的研究安排校车的接送)。

我们以学校、教师和学生对所排课表满意度作为衡量标准,以···大学机械设计系的课表为例,可得学校、教师和学生对我们所排课表的满意度主因素分别为校车接送次数、在阳光校区逗留时间、专业课排在早上,可见对本模型使三方的满意度基本均衡且都超过80%,即做到了三者兼顾的满意最大化。

最后,根据我们建立的模型,分析了模型的优缺点。

一、问题重述我校现有三个校区,有在校学生近25000人,其中阳光校区在校学生人数最多。

阳光校区现有四栋教学楼,分别是3号、6号、7号和8号楼,四栋教学楼之间有较大的距离,如从3号楼到8号楼步行需要约10分钟。

我校的学生作息时间安排中,一天共有13节课,划分为5个时间段,分别是1-2节、3-5节、6-8节、9-10节、11-13节。

按学校的规定同一门课程一天中最多可集中上3节课,一周不得超过6节。

同一年级的相同课程可以合班上课,合班一般由各个院系或公共课教学部门给出具体安排。

每学期临近结束时,学校教务处根据各个专业的培养计划向各院系下达下一学期的教学任务,由各个专业将教学任务分解到具体的任课教师,然后由教务处排出下一学期的课程表。

数学建模中的优化问题求解

数学建模中的优化问题求解在数学建模中,优化问题求解是一个重要的研究领域。

优化问题指的是在给定的约束条件下,寻找使目标函数取得最优值的变量取值。

这一领域涉及到数学、计算机科学、运筹学等多个学科,并在实际应用中起到重要的作用。

首先,我们先来了解什么是数学建模。

数学建模是通过运用数学方法和技巧来解决实际问题的过程。

它的目标是将实际问题转化为数学模型,并通过模型进行分析和求解。

在数学建模中,优化问题是常见的一类问题。

优化问题求解的核心是寻找目标函数的最小值或最大值。

在实际应用中,我们需要考虑不同的约束条件,例如资源限制、时间限制等。

这些约束条件会影响到最优解的取值范围和可能性。

为了解决优化问题,数学建模中常用的方法包括线性规划、非线性规划、整数规划等。

线性规划是在给定的线性约束条件下求解线性目标函数的最优解。

非线性规划则是在一般的约束条件下求解非线性目标函数的最优解。

整数规划是对变量取离散值的情况下的优化问题求解。

在实际应用中,优化问题求解可以应用于各个领域。

例如,在交通规划中,我们可以利用优化方法对交通网络进行优化,提高交通效率。

在生产调度中,我们可以通过优化问题求解来优化生产资源的分配,降低成本。

在金融领域,我们可以利用优化问题求解对投资组合进行优化,降低风险。

除了传统的优化方法,近年来还涌现出了一些基于人工智能的优化算法。

例如,遗传算法、粒子群算法等。

这些算法模拟了自然界中的进化、群体行为等现象,可以在复杂的优化问题中寻找较好的解。

总之,优化问题求解在数学建模中起到了重要的作用。

通过寻找变量取值的最优解,我们可以在实际问题中达到最佳的效果。

不仅仅在理论研究中,优化问题求解也在各个领域得到了广泛的应用。

随着科技的发展,我们相信优化问题求解的方法和技术将会不断地完善和发展,为实际问题的解决提供更加有效的手段。

如何应用数学建模优化问题

如何应用数学建模优化问题数学建模是一种将实际问题转化为数学模型,并通过数学方法来解决问题的过程。

在许多领域中,数学建模都被广泛应用于优化问题的求解。

本文将探讨如何应用数学建模来优化问题,并介绍一些常见的数学优化方法。

一、问题建模在进行数学优化之前,我们首先需要将实际问题转化为数学模型。

这个过程包括以下几个步骤:1. 确定优化目标:明确你想要优化的目标是什么。

比如,你可能要最小化成本、最大化利润,或者使某个指标达到最佳状态等。

2. 确定决策变量:决策变量是影响优化结果的变量。

根据实际问题,选择适当的决策变量。

例如,如果你想要优化某个产品的生产计划,决策变量可以是生产数量、生产时间等。

3. 建立约束条件:约束条件是限制决策变量取值的条件。

根据实际问题,确定约束条件并将其转化为数学形式。

例如,如果你想要优化配送路线,可能会有时间限制、容量限制等。

二、数学优化方法在问题建模完成后,我们可以使用不同的数学优化方法来求解优化问题。

下面介绍几种常见的优化方法:1. 线性规划:线性规划是在给定线性约束条件下求解线性目标函数的优化问题。

使用线性规划可以解决许多实际问题,例如资源分配、生产计划等。

2. 整数规划:整数规划是线性规划的一种扩展形式,其决策变量需要取整数值。

整数规划适用于那些要求决策变量为整数的问题,如生产装配线优化、旅行商问题等。

3. 非线性规划:非线性规划是在给定非线性约束条件下求解非线性目标函数的优化问题。

非线性规划广泛应用于诸如工程优化、金融投资等领域。

4. 动态规划:动态规划是解决具有重叠子问题特性的优化问题的一种方法。

通过将问题划分为一系列子问题,并将子问题的解缓存起来,可以有效地解决很多动态规划问题。

5. 遗传算法:遗传算法是一种模拟自然选择和遗传机制的优化算法。

通过不断地进化和选择,遗传算法可以搜索到优化问题的全局最优解。

三、应用案例下面通过一个应用案例来说明如何应用数学建模优化问题。

假设你是一家互联网电商平台的运营经理,你想要优化产品的价格策略以最大化销售额。

数学建模中的优化调度问题

数学建模中的优化调度问题在数学建模中,优化调度问题是一个重要的研究领域。

优化调度问题可以通过数学模型和算法来解决,以提高资源利用率、降低成本、提高效率等目标。

本文将介绍数学建模中的优化调度问题,并讨论一些常见的调度算法和应用案例。

一、优化调度问题的定义与形式化描述优化调度问题通常是指在有限的资源和约束条件下,如何合理安排任务和资源的分配,以达到最佳的结果。

优化调度问题可以用数学模型来描述,常见的形式化描述包括:1. 作业调度问题:如何合理安排作业的执行顺序和时间,以最小化总执行时间或最大化作业的完成数量。

2. 机器调度问题:如何安排机器的任务分配和工作时间,以最小化总工作时间或最大化机器的利用率。

3. 运输调度问题:如何合理安排货物的运输路线和车辆的调度,以最小化运输成本或最大化运输效率。

二、常见的调度算法优化调度问题可以借助多种算法来求解,以下是一些常见的调度算法:1. 贪心算法:贪心算法通过每一步的局部最优选择来构建整体最优解。

例如,在作业调度问题中,可以按照作业的执行时间或紧急程度进行排序,然后按顺序进行调度。

2. 动态规划:动态规划通过将问题分解为子问题并记录子问题的最优解,再根据子问题的最优解来求解整体问题的最优解。

例如,在机器调度问题中,可以使用动态规划来确定每个任务在不同机器上的最优执行顺序。

3. 遗传算法:遗传算法是一种模拟进化过程的优化算法,通过模拟自然界的进化过程来寻找问题的最优解。

例如,在运输调度问题中,可以使用遗传算法来优化货物的运输路径和车辆的调度计划。

三、优化调度问题的应用案例优化调度问题广泛应用于生产制造、交通运输、资源分配等领域。

以下是一些优化调度问题的应用案例:1. 生产制造:在工厂生产过程中,如何合理安排设备的使用和任务的执行,以最大化生产效率或最小化成本。

2. 铁路调度:如何安排列车的行动计划和车次的分配,以最大化铁路运输能力和减少列车的延误。

3. 资源分配:如何合理分配有限的资源,如人力、设备和原材料,以最大程度地满足需求和降低成本。

研究生数学建模优化问题

研究生数学建模优化问题
研究生数学建模优化问题可以涉及各种不同的学科和领域。

以下是一些常见的研究生数学建模优化问题的例子:
1. 生产优化问题:如何最大化生产效率,同时最小化生产成本和资源使用。

这包括生产线排程问题、物流和供应链管理等。

2. 资源分配问题:如何最优地分配有限的资源,以满足不同需求。

例如,如何在一所学校中分配教师、教室和学生资源,以实现最佳的学习效果。

3. 运输路径问题:如何找到最短路径或最优路径来满足特定的要求。

这包括最短路径问题、旅行商问题等。

4. 网络优化问题:如何设计最优的网络结构,以实现最大的性能和容量。

例如,如何在一个电信网络中设计最佳的数据传输路由。

5. 风险管理问题:如何评估和管理风险,以保护资产和最小化损失。

这包括投资组合优化、保险精算等问题。

6. 环境优化问题:如何最小化对环境的影响,同时最大化资源保护和可持续发展。

例如,如何设计最优的城市公共交通系统,以减少交通拥堵和空气污染。

以上只是一些研究生数学建模优化问题的例子,实际上,优化问题几乎可以应用于任何领域。

研究生在解决这些问题时,通常需要使用数学模型和优化算法,以寻找最优的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模:课程安排优化问题2012年数学建模竞赛参赛队员题目 A题:课程安排优化问题关键词排课问题,优化矩阵,有效矩阵摘要每学期的开学初,总有许多老师对阳光校区的课程安排很有意见,本文选取武汉纺织大学机械设计系的师生情况、课程、教室间数为研究对象,以课程与上课时间之间的关系矩阵为目标矩阵,通过用各影响矩阵优化目标矩阵的方法,对机械设计系的课表进行了重排。

在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。

运用我们建立的数学模型,对武汉纺织大学机械设计系的课表进行重排,将所得新课表与现有的课表进行比较,显然新排的课表更加合理化、人性化。

根据新课表中每节课对应的相关因素(课程名称、教室、老师、班级)进行分析整合,可衍生出新的安排表(如通过对不同时间段上课老师人数的研究安排校车的接送)。

我们以学校、教师和学生对所排课表满意度作为衡量标准,以···大学机械设计系的课表为例,可得学校、教师和学生对我们所排课表的满意度主因素分别为校车接送次数、在阳光校区逗留时间、专业课排在早上,可见对本模型使三方的满意度基本均衡且都超过80%,即做到了三者兼顾的满意最大化。

最后,根据我们建立的模型,分析了模型的优缺点。

一、问题重述我校现有三个校区,有在校学生近25000人,其中阳光校区在校学生人数最多。

阳光校区现有四栋教学楼,分别是3号、6号、7号和8号楼,四栋教学楼之间有较大的距离,如从3号楼到8号楼步行需要约10分钟。

我校的学生作息时间安排中,一天共有13节课,划分为5个时间段,分别是1-2节、3-5节、6-8节、9-10节、11-13节。

按学校的规定同一门课程一天中最多可集中上3节课,一周不得超过6节。

同一年级的相同课程可以合班上课,合班一般由各个院系或公共课教学部门给出具体安排。

每学期临近结束时,学校教务处根据各个专业的培养计划向各院系下达下一学期的教学任务,由各个专业将教学任务分解到具体的任课教师,然后由教务处排出下一学期的课程表。

每学期我校的课程表排出并开始运行后都会受到师生的抱怨。

有学生说自己的课程分布不均衡,某天要上10节课,而某天又一节课都没有;有的学生抱怨一天中要在不同的教学楼之间反复奔波;有的教师抱怨自己的课程安排太分散,从南湖跑到阳光路上要花近两个小时,却只上两节课,这样太浪费时间。

由此可见,我校的课程安排尚存在一些不太合理的地方,有进一步优化的必要。

针对这一问题,请完成以下任务:一.了解我校师生对课程安排的需求;二.了解我校课程安排的相关规定;三.收集与课程安排相关的数据;四.建立我校课程安排的优化模型,分析模型的优缺点。

二、问题分析首先,解决班级、课程与教师之间的多对多关系,例如当出现多个班级上同一门课而该由多个教师任教时,课程是否合上,由哪几个班级合上、哪位教师任教的问题。

解决上应满足可手动调整的要求。

然后,取出全部班级,求出班级所上课程的优先级总和,按优先级高低排定班级顺序,按此顺序且遵照排课规则为每一个班级的每一门课程安排上课时间与地点。

首先,要进行预排课处理。

预排课处理的目的是要解决两个基本问题: 1) 班级与课程之间的多对多关系,即合班上课的问题; 2) 课程与教师之间的多对多关系,即为每门课程安排任课教师。

在预排课处理完成后,以班级作为外部大循环、以课程作为内部小循环进行正式的排课处理,即先取一个班级,为该班级所上课程按优先级由高到低排定顺序,再按优先级由高到低取一门课程,为该课程安排时间与场地,依此类推,直到全部班级的全部课程排完。

排课处理的目的是要解决两个基本问题: 1) 课程与时间、场地之间的一对一关系; 2) 班级与时间、场地之间的一对一关系; 3) 教师与时间、场地之间的一对一关系。

三、模型假设1、假设每周以5天位单位编排,每天最多只能编排4节课(一节课为两小节或三小节),同类课程尽可能不安排在同一时间。

2、假设晚上不上课,学生自习。

3、假设安排的教室和上课的时间都是不能改变的。

4、假设一门课程在一周内的安排,尽量分散开。

5、假设每门课程只由一位教师上完,每位教师可以上两门课程。

6、假设一周多学时的课程尽量安排在同一间教室。

7、假设课表内容由上课时间、教师、教室、课程组成。

四、符号说明符号说明h:表示班级数;l:表示教室数;x:表示单用教室;y :表示公用教室;m :表示课堂数; a :表示专业课门数;b :表示公共课门数;c :表示选修课门数;n :表示有代课老师数;p :专业课老师数; q :公共课老师数;r :选修课老师数;iG :表示课堂序号,1,,i m =;uv J :表示上课时间序号,1,,;1,,20u h v ==;kT :表示老师序号; iW :教室序号;A : 表示老师和课堂之间的关系矩阵;B :表示课堂和上课时间之间的关系矩阵;C :表示老师和上课时间之间的关系矩阵;D :表示上课时间和教室之间的关系矩阵;E :表示老师和教室之间的关系矩阵;1p :学校满意度 2p :老师满意度 3p :学生满意度五、模型的建立与求解问题一:学生希望自己的课程分布更均衡些,而且不希望一天中要在不同的教学楼之间反复奔波;教师希望自己的课程安排集中点,从南湖跑到阳光路上要花近两个小时,尽量多上几节课,提高教学效率。

问题二:我校课程安排的相关规定:按学校的规定同一门课程一天中最多可集中上3节课,一周不得超过6节。

同一年级的相同课程可以合班上课,合班一般由各个院系或公共课教学部门给出具体安排。

每学期临近结束时,学校教务处根据各个专业的培养计划向各院系下达下一学期的教学任务,由各个专业将教学任务分解到具体的任课教师,然后由教务处排出下一学期的课程表。

问题三:假设我校机械专业有h 个班,n 位代课老师,每个班每周m 堂课(一堂课为两小节),l间教室。

1.建立老师与课程之间的有效矩阵A1.1将一周内的所有课按专业课(a 门),公共课(b 门),选修课(c 门)依次排序,记为i G (1,1,2,21,3,31,3,31,32,i a a a a a a a b a b a b =+++++++321,,32a b a b c ++++)其中32m a b c =++,则1,,i m =.依此顺序对h 个班的课进行排序可得此专业课堂序号为i G ,1,,,1,,2,,i m m m hm =+,1.2将n 位代课老师按专业课(p 位),公共课(q 位)选修课(r 位)依次排序,记为k T (1,,,1,,,,1,,k p p p q p q p q r =++++++),其中p q r n ++=,则1k n =, 1.3以老师序号k T 为行,以课堂序号i G 为列,做老师与课堂之间的关系矩阵,1,,;1,,n hm kiA a k n i hm ⨯⎛⎫ ⎪=== ⎪ ⎪⎝⎭.其中1k 0k i ik a ⎧=⎨⎩老师上i 课老师不上课则所得的矩阵n hmkiA a ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭为老师与课堂之间的有效矩阵。

2.建立课程与时间之间的有效矩阵B2.1给一周内的所有上课时间赋值 (表一)通过上表可得课时向量(1,2,,20)v =,依此可得h 个班的课时向量排序为(1,,20,21,,40,,20(1)1,,20)uv J h h =-+.(1,,;1,,20)u h v ==2.2以课堂序号i G 为行,以课时序号uv J 为列,做课堂与上课时间之间的关系矩阵20,1,,;1,,20hm h ijB b i hm j h ⨯⎛⎫ ⎪=== ⎪ ⎪⎝⎭.其中1i ij j b j ⎧=⎨⎩时间上i 课时间不上课2.3以满足学生要求尽量把课程安排在每天你的最优时段列目标函数:min ij b J 再以下列要求作约束条件;(1) 一个班在一个时间对应一堂课,则有:2011hij j b ==∑(2) 本专业仅有l 个教室,则有:2011hm hij i j b hl ==≤∑∑(3) 每班所有的20堂课必须在20个课时内上完,则有:20220201111(1)11,,,m hmhhm hijijiji j i m j i h m j bm bm bm ===+==-+====∑∑∑∑∑∑(4) 专业课放在最优时间,则有:(1)1030201011121(1)120(1)1,,,h m aa m a h ijijij i J i m J i h m J h b J J b J J b J J-++-===+==-+=-+≤≤≤∑∑∑∑∑∑依此建立一个优化类的数学模型,可得课堂与上课时间之间的效矩阵20hm hijB b ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭。

3,老师与时间之间的有效矩阵从1中老师与课程间的有效矩阵n hm A ⨯中任选一个,从2中课程与上课时间之间的有效矩阵20hm h B ⨯任选一个,两矩阵做乘积可得;2020n h n hm hm h C A B ⨯⨯⨯=⨯,显然20n h C ⨯表示老师与课程和时间之间的关系矩阵。

若所得矩阵201,,;1,,20n hkjC c k n j h ⨯⎛⎫ ⎪=== ⎪ ⎪⎝⎭,其中12hm k 0k kj j c j ⎧=⎨⎩,老师在时间上课满意指数老师在时间不上课,满足:1)老师逗留是假尽可能的少 即:201{21,23,25,27,29,31,,39,,20(1)1,20(1)3,,20(1)9}hkj j c j h h h ==-+-+-+∑;2)所有非0的ij c 为相同的常数。

则以此矩阵为修正矩阵对B 矩阵中相关元素作修改,根据B 矩阵排出课表,此时课表中每一项中包括科目、代课老师。

4.建立上课时间与教室的有效矩阵D已知l 间教室中有单用教室(x 间),公用教室(y 间)对教室按由小到大依次排序,即为i W (1,1,i x x x y =++)其中l x y =+,则1,,i l =.以课时序号uv J 为行,以教室i W 为列,做上课时间与教室之间的关系矩阵201,,20;1,,h l ijD d i h j l ⨯⎛⎫ ⎪=== ⎪ ⎪⎝⎭,其中1ij i d i ⎧=⎨⎩时间在j 教室上课时间不在j 教室上课,(1) 小教室上专业课,则:103020101121120(1)113,3,,3x x h xij ij iji j i j h j d a d a da -====-+=≥≥≥∑∑∑∑∑∑(2) 大教室上非专业课,一次两个班,则:2011(3)2hliji j x h m a d==+-=∑∑ 5.从3中所得老师与时间的有效矩阵20n h kjC c ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭中任取一个,从4中所得的关系矩阵20h lijD d ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭中任取一个,两个矩阵做乘积可得:2020n l n h h l E C D ⨯⨯⨯=⨯,显然n l E ⨯表示老师和教室之间的关系矩阵。

相关文档
最新文档