【解析】天津市静海一中2019-2020学年高一上学期期末考试数学试题

合集下载

天津市静海一中2019-2020学年高一上学期期末数学试卷 (有解析)

天津市静海一中2019-2020学年高一上学期期末数学试卷 (有解析)

天津市静海一中2019-2020学年高一上学期期末数学试卷一、选择题(本大题共8小题,共32.0分)1.已知集合A={x|1≤x≤5},B={x|3≤x≤6},则A∩B=()A. [1,3]B. [3,5]C. [5,6]D. [1,6]2.若关于x的不等式x2−ax−a⩽−3的解集不是空集,则实数a的取值范围是()A. B.C. [−6,2]D.3.设a,b∈R,函数f(x)=ax+b(0≤x≤1),则f(x)>0恒成立是a+2b>0成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.设a=log2π,b=log12π,c=π−2则()A. a>b>cB. b>a>cC. a>c>bD. c>b>a5.将函数f(x)=√3sinωx+cosωx(ω>0)的图像向左平移π4个单位后与原函数的图像重合,则实数ω的值可能是()A. 6B. 10C. 12D. 166.设函数f(x)为奇函数且在(−∞,0)内是减函数,f(−5)=0,则x·f(x)>0的解集为()A. (−5,0)∪(0,5)B.C. D.7.若正数a,b满足2a+1b =1,则2a+b的最小值为()A. 8B. 9C. 4√2D. 8√28.方程|x2−2|−ln|x|=0的根的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,共20.0分)9.求值:tan300°+sin420°=______ .10.已知是奇函数,f(g(−2))=__________.11.若方程xe−x−a+1=0有两个不相等的实数根,则a的取值范围是______ .12.已知sinα−cosα=12,则的值为________.13.已知sinθ+cosθ=713,θ∈(0,π),则tanθ=________.三、解答题(本大题共5小题,共68.0分)14.已知函数f(x)=x2−5x+a.(1)当a=−4时,求不等式f(x)≥2的解集;(2)对任意x∈R,若f(x)≥−2恒成立,求实数a的取值范围.15.已知f(α)=sin(π−α)cos(2π−α)sin(−α+3π2 )sin(π2+α)sin(−π−α).(1)化简f(α);(2)若α是第三象限角,且cos(α+π3)=35,求f(α)的值.16.已知函数.(1)求f(x)的最小正周期和单调减区间;(2)当x∈[−π4,π4]时,求f(x)的最大值与最小值.17.已知α∈(π2,π),sinα=√55,求cos(5π6−2α)的值.18.已知二次函数f(x)满足f(x+1)−f(x)=2x(x∈R),且f(0)=1.(1)求f(x)的解析式;(2)若函数g(x)=f(x)−2tx在区间[−1,5]上是单调函数,求实数t的取值范围;(3)若关于x的方程f(x)=x+m在区间(−1,2)上有唯一实数根,求实数m的取值范围.(注:相等的实数根算一个).-------- 答案与解析 --------1.答案:B解析:解:∵A ={x|1≤x ≤5},B ={x|3≤x ≤6}; ∴A ∩B =[3,5]. 故选:B .进行交集的运算即可.考查描述法、区间的定义,以及交集的运算.2.答案:D解析:此题考查了一元二次不等式与对应方程根的关系应用,是基础题目,由已知得方程x 2−ax −a =−3有实数根,利用判别式大于等于0,由此求出a 的取值范围. 解:关于x 的不等式x 2−ax −a ⩽−3的解集不是空集, 对应方程x 2−ax −a +3=0有实数根, 即Δ=a 2+4(a −3)≥0, 解得a ≥2或a ≤−6;所以a 的取值范围是(−∞,−6]∪[2,+∞). 故选D .3.答案:A解析:本题主要考查充分条件和必要条件的判断,属于基础题. 分别验证充分性以及必要性即可求解. 解:充分性:因为f(x)>0恒成立, 所以{f(0)=b >0f(1)=a +b >0,则a +2b >0,即充分性成立;必要性:令a =−3,b =2,则a +2b >0成立,但是,f(1)=a +b >0不成立,即f(x)>0不恒成立,则必要性不成立. 故选A .4.答案:C解析:∵a =log 2π>1,b =log 12π<0,c =1π2<1,∴b <c <a . 5.答案:D解析:本题主要考察了函数y =Asin(ωx +φ)的图象与性质,考查函数图象的变换,属于中档题. 函数图象向左平移个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果. 解:函数,将函数的图象向左平移π4个单位后因为函数的图象向左平移π4个单位后与原函数的图象重合, 所以,即ω=8k, k ∈Z ,故选D .6.答案:A解析:本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于基础题. 由函数的单调性和奇偶性可得{x >0f(x)>0=f(5)或{x <0f(x)<0=f(−5),解不等式组可得答案.解:∵f(x)为奇函数,且在(−∞,0)内是减函数,f(−5)=0, ∴f(−5)=−f(5)=0,在(0,+∞)内是减函数 ∴x f(x)>0则{x >0f(x)>0=f(5)或{x <0f(x)<0=f(−5) 根据在(−∞,0)内是减函数,在(0,+∞)内是减函数 解得:x ∈(−5,0)∪(0,5). 故选A .7.答案:B 解析:本题考查利用基本不等式求最值,属于中档题.∵2a+1b =1,∴a=b−12b,代入2a+b然后求解即可.解:∵2a+1b =1,∴a=b−12b,∴1a=2bb−1,∴2a +b=4bb−1+b=4(b−1)+4b−1+b=4+4b−1+b=5+4b−1+b−1≥5+2√4b−1×(b−1)=9.(当且仅当4b−1=b−1时即b=3,a=13时取等号).则2a+b的最小值为9.故选B.8.答案:D解析:【分析】本题考查根的存在性及根的个数判断,利用数形结合,作出两个函数的图象,判断交点个数即可.解:由|x2−2|−ln|x|=0得|x2−2|=ln|x|分别作出函数y=|x2−2|与y=ln|x|的图象,由于图象有四个交点,所以原方程有四个根.故选D.9.答案:−√32解析:解:tan300°+sin420°=tan(360°−60°)+sin(360°+60°) =−tan60°+sin60°=−√3+√32=−√32. 故答案为:−√32直接利用诱导公式化简求值即可.本题考查诱导公式的应用,特殊角的三角函数值的求法,考查计算能力.10.答案:1解析:本题主要考查了函数的奇偶性,属于基础题.根据函数是奇函数的特性可求出g(x),进一步可得出答案. 解:∵函数是奇函数,∴当x <0时,−x >0,g(x)=−f(−x)=3−(12)x,∴f(g(−2))=f(3−22)=f(−1)=3−21=1, 故答案为1.11.答案:(1,1+1e )解析:方程xe −x −a +1=0有两个不相等的实数根可化为e x =xa−1有两个不相等的实数根,再化为函数y =e x 与y =xa−1的交点个数问题,从而作函数的图象,结合导数求解.本题考查了方程的根与函数的图象的交点的关系应用,同时考查了切线的斜率与导数的几何意义的应用,属于中档题.解:∵方程xe −x −a +1=0有两个不相等的实数根, ∴方程xe −x =a −1有两个不相等的实数根,而当a −1=0时,方程xe −x =a −1只有一个根0,故不成立; 故a −1≠0;故e x =xa−1有两个不相等的实数根, 作函数y =e x 与y =xa−1的图象如下,设切点为A(x,e x);;则e x=e xx故x=1;即切线的斜率k=e;1>e;a−1解得1<a<1+1;e).故答案为(1,1+1e12.答案:−√22解析:本题考查三角函数的化简求值,考查学生的计算能力,比较基础.利用二倍角的余弦公式及两角差的余弦公式化简求解即可.解:则.故答案为−√2.213.答案:−43解析:本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题.把已知等式两边平方,可得2sinθcosθ=−2425,求出sinθ−cosθ的值,解得sinθ,cosθ,则tanθ可求.解:由sinθ+cosθ=15,两边平方得:sin 2θ+cos 2θ+2sinθcosθ=125, 则2sinθcosθ=−2425,∵θ∈(0,π),∴sinθ>0,cosθ<0,则sinθ−cosθ=√(sinθ2=√1−2sinθcosθ=75, ∴sinθ=45,cosθ=−35, 则tanθ=sinθcosθ=−43.故答案为−43.14.答案:解:(1)当a =−4时,不等式f(x)≥2化为x 2−5x −6≥0,因式分解为(x −6)(x +1)≥0,解得x ≥6或x ≤−1. ∴不等式f(x)≥2的解集为{x|x ≥6或x ≤−1}; (2)对任意x ∈R ,f(x)≥−2恒成立,等价于:对任意x ∈R ,a ≥−x 2+5x −2恒成立, 设g(x)=−x 2+5x −2,x ∈R , 所以:对任意x ∈R ,f(x)≥−2恒成立, 等价于:a ≥g(x)max ,x ∈R , 所以g(x)=−x 2+5x −2=−(x −52)2+174≤174,当且仅当x =52时取等号, ∴g(x)max =174,∴a ≥174.∴实数a 的取值范围是[174,+∞).解析:本题考查了一元二次不等式的解法,不等式的恒成立问题,二次函数,属于中档题. (1)利用一元二次不等式的解法即可得出;(2)对任意x ∈R ,f(x)≥−2恒成立,等价于:a ≥g(x)max ,x ∈R ,即可得出结果.15.答案:解:(1)f(α)=sin(π−α)cos(2π−α)sin(−α+3π2)sin(π2+α)sin(−π−α)=sinα⋅cosα⋅(−cosα)cosα⋅sinα=−cosα.(2)若α是第三象限角,且cos(α+π3)=35>0, ∴α+π3为第四象限角,∴sin(α+π3)=−√1−cos 2(α+π3)=−45,∴f(α)=−cosα=−cos[(α+π3)−π3]=−cos(α+π3)cos π3−sin(α+π3)sin π3=4√3−310.解析:(1)利用诱导公式化简所给的式子,可得结果.(2)利用同角三角函数的基本关系,两角差的余弦公式,求得f(α)的值.本题主要考查同角三角函数的基本关系的应用,诱导公式的应用,两角和与差的三角函数公式,属于基础题.16.答案:解:(1)函数f(x)=√3cos(2x −π3)−2sinxcosx=√3(12cos2x +√32sin2x)−sin2x=√32cos2x +12sin2x =sin(2x +π3),∴最小正周期,由2kπ+π2≤2x +π3≤2kπ+3π2,,得kπ+π12≤x ≤kπ+7π12,,所以函数f(x)的单调递减区间是[kπ+π12,kπ+7π12],;(2)由(1)可知f(x)=sin(2x +π3), 由x ∈[−π4,π4]时,得2x +π3∈[−π6,5π6],∴当2x +π3=π2,即x =π12时,f(x)取得最大值,即f(π12)=1;∴当2x +π3=−π6,即x =−π4时,f(x)取得最小值,即f(−π4)=−12,故f(x)的最大值为1,最小值为−12.解析:本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属于中档题.(1)利用两角和与差,二倍角辅助角公式化简,可得函数f(x)的最小正周期,结合三角函数的性质即可求函数f(x)的单调递减区间;(2)当x ∈[−π4,π4]时,求解内层函数的范围,结合三角函数的性质即可求函数f(x)的最大值和最小值.17.答案:解:∵α∈(π2,π),sinα=√55,∴cosα=−(√55)=−2√55, 由二倍角是可得sin2α=2sinαcosα=−45,cos2α=2cos 2α−1=35, ∴cos(5π6−2α)=cos 5π6cos2α+sin 5π6sin2α=−√32×35+12×(−45)=−3√3+410解析:由同角三角函数的基本关系和二倍角公式可得sin2α和cos2α,代入两角差的余弦公式可得. 本题考查两角和与差的三角函数公式,涉及二倍角公式和同角三角函数的基本关系,属基础题. 18.答案:解:(1)设f(x)=ax 2+bx +c(a ≠0),代入f(x +1)−f(x)=2x 得2ax +a +b =2x 对于x ∈R 恒成立,所以{2a =2a +b =0, 又由f(0)=1得c =1,解得a =1,b =−1,c =1,所以f(x)=x 2−x +1;(2)因为g(x)=f(x)−2tx =x 2−(2t +1)x +1的图象关于直线x =t +12 对称,又函数g(x)在[−1,5]上是单调函数,所以t +12≤−1或t +12≥5,解得t ≤−32或t ≥92,故实数t 的取值范围是(−∞,−32]∪[92,+∞);(3)由方程f(x)+m =0得x 2−2x +1−m =0,令ℎ(x)=x 2+2x −1+m,x ∈(−1,2),即要求函数ℎ(x)在(−1,2)上有唯一的零点, ①ℎ(−1)=0,则m =4,代入原方程得x =−1或3,不合题意;②若ℎ(2)=0,则m =1,代入原方程得x =0或2,满足题意,故m =1成立; ③若△=0,则m =0,代入原方程得x =1,满足题意,故m =0成立;④若m ≠4且m ≠1且m ≠0时,由{ℎ(−1)=4−m >0ℎ(2)=1−m <0得1<m <4, 综上,实数m 的取值范围是{0}∪[1,4).解析:本是考查二次函数的解析式的求解及单调性,同时考查二次方程根的分布.(1)设f(x)的解析式,由已知求出待定系数即可求解;(2)由二次函数对称轴与单调性的关系即可求解;(3)讨论区间端点和对称轴处为方程的根,然后由二次方程根的分布求解即可.。

2019-2020学年天津市静海一中高一上学期期末考试数学试题

2019-2020学年天津市静海一中高一上学期期末考试数学试题

静海一中2019-2020第一学期高一期末学生学业能力调研数学试卷★祝考试顺利★ 注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷 基础题(共105分)一、选择题: (每小题5分,共40分)1.设集合{|1213}A x x =-≤+≤,2{|log }B x y x ==,则(A B = )A .[0,1]B .[1-,0]C .[1-,0)D .(0,1]2.已知关于x 的不等式22(4)(2)10a x a x -+--≥的解集为空集,则实数a 的取值范围是()A .[2-,6]5B .[2-,6)5C .6(5-,2]D .(-∞,2][2,)+∞3.已知:1:12p a -<<,:[1q x ∀∈-,1],220x ax --<,则p 是q 成立的( )A .充分但不必要条件B .必要但不充分条件C .充分必要条件D .既不是充分条件也不是必要条件 4.已知2233311(),(),32a b c log π===,则a ,b ,c 的大小关系为( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>5.函数()4sin()(0)3f x x πωω=+>的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( ) A .4x π=B .3x π=C .56x π=D .1912x π=6.若函数()f x 为奇函数,且在(0,)+∞内是增函数,又f (2)0=,则()()0f x f x x--<的解集为( ) A .(2-,0)(0⋃,2) B .(-∞,2)(0-⋃,2) C .(-∞,2)(2-⋃,)+∞ D .(2-,0)(2⋃,)+∞7.若正数a ,b 满足:121a b +=,则2112a b +--的最小值为( ) A .2BC .52D.1 8.函数2321,0()|log |,0x x x f x x x ⎧-++≤⎪=⎨>⎪⎩,则方程[()]1f f x =的根的个数是( )A .7B .5C .3D .1二、填空题:(每小题4分,共20分)9.化简:19sin()cos(2640)tan16656-+-︒+︒π的值为 . 10.若函数22(0)()()(0)x x x f x g x x ⎧+≥=⎨<⎩为奇函数,则((1))f g -= .11.方程2sin(2)2103x a π++-=在[0,]2π上有两个不相等的实数根,则实数a 的取值范围是 .12.已知1tan()42πα+=,且02πα-<<,则22sin sin 2cos()4ααπα+=- . 13.对任意的(0,)2πθ∈,不等式2214|21|x sin cos θθ+≥-恒成立,则实数x 的取值范围是 .三、解答题:(共5小题,共68分)14.(10分)设函数2()(4)42f x x a x a =+-+-,(1)解关于x 的不等式()0f x >;(2)若对任意的[1x ∈-,1],不等式()0f x >恒成立,求a 的取值范围.15.(18分)已知sin(2)cos()2()cos()tan()2f -+=-++ππαααπαπα,求()3f π.(2)若tan 2=α,求224sin 3sin cos 5cos --αααα的值. (3)求sin 50(1)︒︒的值.(4)已知3cos()65-=πα,求2sin()3-πα.结合题目的解答过程总结三角函数求值(化简)最应该注意什么问题?16.(12分)已知函数2()cos sin()1()3f x x x x x R π=++-∈.(1)求()f x 的最小正周期及对称点;(2)求()f x 在区间[,]44ππ-上的最大值和最小值,并分别写出相应的x 的值.17.(13分)(1)已知60,2sin()=265<<-ππαα,求sin(2)12-πα.(2)已知cos()4x π-=3(,)24x ππ∈(i )求sin x 的值. (ii )求sin(2)3x +π的值.第Ⅱ卷 提高题(共15分)18.已知定义域为R 的函数2()21g x x x m =-++在[1,2]上有最大值1,设()()g x f x x=. (1)求m 的值;(2)若不等式33(log )2log 0f x k x -≥在[3x ∈,9]上恒成立,求实数k 的取值范围; (3)若函数()(|1|)(|1|)3(|1|)2x x x h x e f e k e k =----+有三个不同的零点,求实数k 的取值范围(e 为自然对数的底数).静海一中2019-2020第一学期高一数学期末学生学业能力调研试卷答案一.选择题(共8小题)1 2 3 4 5 6 7 8A C A D D A A A 二.填空题(共5小题)9. 1 10. 15-11.11322a--<≤12.255-13.45x-≤≤三.填空题(共5小题)14. 解:(1)时,不等式的解集为或时,不等式的解集为时,不等式的解集为或(2)由题意得:恒成立,恒成立.易知,的取值范围为:15. (1)用诱导公式化简等式可得,代入可得. 故答案为;(2)原式可化为:把代入得:故答案为1.(3)cos103sin10sin(1030)sin 50(13tan10)=sin 50sin 50cos10cos10cos 40sin 40sin801cos102cos102︒+︒︒+︒︒+︒︒⋅=︒⋅︒︒︒︒︒===︒︒(4)16.解:(1),,所以的最小正周期为.(2)∵,∴,当,即时,;当,即时,.17.解:由已知可得:,,,,;..提升题:18. 解:(1)因为在上是增函数,所以,解得.(2)由(1)可得:所以不等式在上恒成立.等价于在上恒成立令,因为,所以则有在恒成立令,,则所以,即,所以实数的取值范围为.(3)因为令,由题意可知令,则函数有三个不同的零点等价于在有两个零点,当,此时方程,此时关于方程有三个零点,符合题意;当记为,,且,,所以,解得综上实数的取值范围.。

天津市静海区第一中学2019-2020学年高一12月学生学业能力调研数学试卷

天津市静海区第一中学2019-2020学年高一12月学生学业能力调研数学试卷

数学试题考生注意:本试卷分第Ⅰ卷基础题(100分)和第Ⅱ卷提高题( 20分)两部分,共120分,考试时间为120分钟。

第Ⅰ卷 基础题(共100分)一、选择题: (每小题4分,共36分)1.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则=B A A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}2..命题“20,11x x ∀≥-≥-”的否定是( ) A.20,11x x ∀≥-<- B.20,11x x ∀<-<- C.20,1x x ∃≥-<-1 D.20,11x x ∃<-<- 3.已知2.01.1=a ,1.1log 2.0=b ,1.12.0=c ,则 A .a b c >>B .b c a >>C .a c b >>D .c a b >>4.函数log (21)3a y x =-+(0a >且1a ≠)的图象必过点( ) A.1(,4)2B.(1,3)C.1(,3)2D.(1,4)5.在下列个区间中,存在着函数932)(3--=x x x f 的零点的区间是( ) A .)0,1(- B .)1,0( C .)2,1( D .)3,2(6.()f x 为定义在R 上的奇函数,且当0x ≤时,1()()22xf x x b =++(b 为实数),则(1)f 的值为( ) A.3-B.1-C.1D.37.已知2:log (1)1p x -<,2:230q x x --<,则p 是q 的( )条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要8.()()2ln 1xf x xe=++,则使得()()21f x f x -<成立的x 的取值范围是( )A. 1,13⎛⎫ ⎪⎝⎭B.()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C.11,33⎛⎫- ⎪⎝⎭D.11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U9. (21),(1)()1log ,(01)3a a x x f x x x ->⎧⎪=⎨-<≤⎪⎩,当120,0x x >>且12x x ≠时,()()12120f x f x x x -<-,实数a 的取值范围是( ) A.10,2⎛⎫ ⎪⎝⎭B.11,32⎡⎫⎪⎢⎣⎭C.10,3⎛⎤ ⎥⎝⎦ D.1,3⎛⎤-∞ ⎥⎝⎦二、填空题:(每小题4分,共20分)10已知扇形OAB 的圆心角为4rad ,其面积是22cm 则该扇形的周长是______cm 11.若0a >,0b >,21a b +=,则11a a b++的最小值为______. 12.函数2()42xx f x +=- (12)x -≤≤的最小值为______ .13.角θ的终边经过点()4,P y ,且3sin 5θ=-,则tan θ=______ 14.函数21()(5)m f x m m x +=--是幂函数,且为奇函数,则实数m 的值是_____三、解答题(64分) 16.化简求值:(12分) (1)(6分)1363470.001168- ⎛⎫-++ ⎪⎝⎭(2)(6分)3log 22311lg 25lg 2log 9log 223⎛⎫++-⨯ ⎪⎝⎭.17.(12分)函数23()log (28)f x x x =+-的定义域为A ,函数2()(1)g x x m x m =+++.(1)(5分)若4m =-时,()0g x ≤的解集为B ,求A B ;(2)(7分)若存在1[0,]2x ∈使得不等式()1g x ≤-成立,求实数m 的取值范围. 18.易错易混辨析题(20分)(1)(4分)若()22f x x ax =-+与()1ag x x =+,在区间[]1,2是减函数,则a 的取值范围为(2)(4分)若函数()212()log 3f x x ax a =-+在区间()2,+∞上是减函数,则a 的取值范围为(3(4分))54(log )(221++-=x x x f 在区间(3m-2,m+2)内单调递增,则实数m 的取值范围为 (4)(4分)已知函数()()a x x x f --=2lg 2,若()x f 的定义域为R ,求a 的取值范围(只写出关系式不需要计算)(5)(4分)已知函数()()a x x x f --=2lg 2若()x f 的值域为R ,求a 的取值范围;(只写出关系式不需要计算)通过解答上述习题,请归纳解此类题注意什么问题?(至少写出两点)第Ⅱ卷 提高题(共20分)19.(20分)已知函数()121xaf x =++为奇函数. (1)(8分)求a 的值,并证明()f x 是R 上的增函数;(2)(12分)若关于t 的不等式f (t 2-2t )+f (2t 2-k )<0的解集非空,求实数k 的取值范围.数学1. C .2.C. 3.C 4. B. 5.C 6. C 7.A 8.A 9. C 10.6 11.7 12.-4 13.-3/4 14.-2 16.(1)86π+;(2)12-. 17.(1)(2,4] (2)方法一:对称轴分三种情况讨论方法二:参变分离18.(1)(]0,1 (2)[-4,4] (3)[34,2] (4)a<-1 (5)a>=-1第Ⅱ卷 提高题(共20分) 19.(1)2a =-(2)13k >-。

天津静海县第一中学2019-2020学年高一数学文测试题含解析

天津静海县第一中学2019-2020学年高一数学文测试题含解析

天津静海县第一中学2019-2020学年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在区间上,不等式有解,则的取值范围为()A. B. C. D.参考答案:C2. 在实数的原有运算法则中,补充定义新运算“”如下:当时,;当时,,已知函数,则满足的实数的取值范围是()A.B.C.D.参考答案:C当时,;当时,;所以,易知,在单调递增,在单调递增,且时,,时,,则在上单调递增,所以得:,解得,故选C。

3. 若平面向量b与向量a=(-1,2)的夹角是180°,且|b|=,则b等于( ) A.(-3,6) B.(3,-6)C.(6,-3) D.(-6,3)参考答案:B由已知a与b方向相反,可设b=(-λ,2λ),(λ<0).又|b|==,解得λ=-3或λ=3(舍去),∴b=(3,-6).4. 函数f(x)=a x﹣b的图象如图,其中a、b为常数,则下列结论正确的是( )A.a>1,b<0 B.a>1,b>0 C.0<a<1,b>0 D.0<a<1,b<0参考答案:D【考点】指数函数的图像变换.【专题】计算题.【分析】根据函数的图象,确定函数的单调性,求出a的范围,结合指数函数的图象,推出b的范围,确定选项.【解答】解:由图象得函数是减函数,∴0<a<1.又分析得,图象是由y=a x的图象向左平移所得,∴﹣b>0,即b<0.从而D正确.故选D【点评】本题是基础题,考查学生视图能力,指数函数的图象变换,掌握指数函数的性质,才能正确解题.5. 已知函数,为偶函数,且当时,.记.给出下列关于函数的说法:①当时,;②函数为奇函数;③函数在上为增函数;④函数的最小值为,无最大值.其中正确的是A.①②④ B.①③④ C.①③ D.②④参考答案:B6. 已知a>b,则下列不等式成立的是 ( )高考资源网w。

w-w*k&s%5¥uA. B.ac>bc C. D.参考答案:D略7. 设集合A={x|-l<x≤4},B={x|0<x<5},则A∩B= ( )A.{x|-l<x<0}B.{x|0<x≤4)C.{x|0<x<5}D.{x|0≤x≤4)参考答案:B8. 下列函数中,满足“对任意,(0,),当<时,都有>的是()A.= B. = C . = D参考答案:C解析:依题意可得函数应在上单调递减,故由选项可得C正确。

天津市静海区第一中学2019_2020学年高一数学上学期期末学生学业能力调研试题(扫描版)

天津市静海区第一中学2019_2020学年高一数学上学期期末学生学业能力调研试题(扫描版)

1.【答案】A2. 【答案】C3.A4.【答案】D5. 【答案】D6.【答案】A7.【答案】A8.【答案】A9. 1 10.【答案】-15 11. 12.【答案】13.【答案】14.【答案】(1)见解析(2)试题分析:(1)利用分类讨论思想分和三种情况,并结合二次函数的图像进行求解,即可求得时,解集为或,时,解集为时,解集为或;(2)由题意得:恒成立恒成立试题解析:(1)时,不等式的解集为或时,不等式的解集为时,不等式的解集为或(2)由题意得:恒成立,恒成立. 易知,的取值范围为:15.试题分析:(1)先利用诱导公式把等式进行化简,代入进行求解;(2)可以把分母看成,再利用弦化切进行求解.【详解】(1)用诱导公式化简等式可得,代入可得.故答案为;(2)原式可化为:把代入得故答案为1.(3)1(4)16.试题分析:(1)利用和角公式及降次公式对f(x)进行化简,得到f(x)=,代入周期公式即可;(2)由x的范围求出ωx+φ的范围,结合正弦函数单调性得出最值和相应的x.试题解析:(1),,,,,所以的最小正周期为.(2)∵,∴,当,即时,;当,即时,.17.由已知可得:,,,,;..18.试题分析:(1)结合二次函数的性质可判断g(x)在[1,2]上的单调性,结合已知函数的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,结合对数与二次函数的性质可求;(3)原方程可化为|e x﹣1|2﹣(3k+2)|e x﹣1|+(2k+1)=0,利用换元q =|e x﹣1|,结合二次函数的实根分布即可求解.【详解】(1)因为在上是增函数,所以,解得.(2)由(1)可得:所以不等式在上恒成立.等价于在上恒成立令,因为,所以则有在恒成立令,,则所以,即,所以实数的取值范围为.(3)因为令,由题意可知令,则函数有三个不同的零点等价于在有两个零点,当,此时方程,此时关于方程有三个零点,符合题意;当记为,,且,,所以,解得综上实数的取值范围.。

【解析】天津市部分区2019-2020学年高一上学期期末考试数学试题

【解析】天津市部分区2019-2020学年高一上学期期末考试数学试题
所以 .
当且仅当 时,取到最小值 .
故答案为: .
【点睛】本题主要考查了对数的运算及基本不等式求最值,属于基础题.
14.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100ml血液中酒精含量达到20〜79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/ml,如果在停止喝酒以后,他血液中酒精含量会以每小时20%的速度减少,那么他至少要经过t小时后才可以驾驶机动车.则整数t的值为_________(参考数据: )
5.已知 , , ,则三者的大小关系是( )
A. B. C. D.
【答案】A
, , ;所以 ,故选A.
6.为了得到函数 的图象,只需将函数 的图象上所有的点()
A.向左平移 个单位B.向左平移 个单位
C.向右平移 个单位D.向右平移 个单位
【答案】A
因为函数 ,
所以只需将函数 的图象向右平移 长度单位即可.
12.函数 定义域为_______.
【答案】
【分析】
保证函数有意义即 ,从而得解.
【详解】函数 ,有: ,解得: .
故答案为: .
【点睛】本题主要考查了函数定义域的求解,属于基础题.
13.已知 ,则 的最小值是_______.
【答案】
【分析】
由对数式得 ,再由基本不等式 可得解.
【详解】由 可得: ,即 .
10.已知函数 在区间 上单调递增,且存在唯一 使得 ,则 的取值范围为()
A. B. C. D.
【答案】B
【分析】
由单调得 ,解得 ,由存在唯一 使得 ,得 ,解得 ,从而得解.
【详解】函数 在区间 上单调递增,

天津市六校(静海一中、宝坻一中、杨村一中等)2019_2020学年高一数学上学期期末考试试题

天津市六校(静海一中、宝坻一中、杨村一中等)2019_2020学年高一数学上学期期末考试试题

2018~2019学年度第一学期期末六校联考高一数学一、选择题:(本大题共8个小题,每小题4分,共32分)1.集合*1{N |x-1|3},{|28}2x M x N x =∈<=<<,则M N ⋂=( ) A .{1,2,3} B .1,2}{0, C .{}1,2D .{-1x 3}x <<2.函数4ln 21e xx x f --=)(在区间()(),1k k k N +∈内有零点,则k =( ) A .1B .2C .3D .43.设x ,y R ∈,向量(,1)a x =,(2,)b y =,)1,1(-=,a c ⊥,//b c ,则=+2(( )A .5BCD .104.若函数()()20.3log 54f x x x=+-在区间()1,1a a -+上单调递减,且1.0log2=b ,2.02=c ,则( )A .c b a <<B .b c a <<C .a b c <<D .b a c <<5.设函数⎩⎨⎧≥-<--=0,30,1)(x a a x ax x f x),且(10≠>a a 是R 上的减函数,则a 的取值范围是( )A .2[,13)B .2,13()C .]320,( D .203(,)6.已知定义在R 上的函数()f x 满足)(1)3(x f x f -=+,且(3)y f x =+为偶函数,若()f x 在(0,3)内单调递减,则下面结论正确的是( )A .( 4.5)(3.5)(12.5)f f f -<<B .(3.5)( 4.5)(12.5)f f f -<<C .(12.5)(3.5)( 4.5)f f f -<<D .(3.5)(12.5)( 4.5)f f f -<<7.函数)sin()(ϕ+=wx A x f (其中0>A ,2πϕ<)的部分图象如图所示,为了得到)(x f 的图象,则只要将x x g 2cos )(=的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 8.已知A 是函数)42018cos()42018sin(2)(ππ-++=x x x f 的最大值,若存在实数12,x x 使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12||A x x ⋅-的最小值为( ) A .π2018B .20182πC .20183πD .20184π二、填空题:(本大题共6个小题,每小题4分,共24分) 9.已知21)4sin(22cos =+παα,则1tan tan αα+等于__________.10.如图,在矩形ABCD 中,已知46==AD AB ,,且21,==,则∙=__________. 11.在中,若3tan tan 3tan tan =++B A B A ,且43c o s s i n =⋅B B ,则的形状为__________三角形. 12.已知函数2tan ,0(2)log (),0x x f x x x ≥⎧+=⎨-<⎩,则)6()24(-∙+f f π=________.13.设函数)1(+=x f y 是定义在(-∞,0)∪(0,+∞)的偶函数,)(x f y =在区间(-∞,1)是减函数,且图象过点原点,则不等式0)(1<-x f x )(的解集为________. 14.给出下列说法,正确的有__________.①与)(4,3-=共线单位向量的坐标是)(54,53-; ②集合A={}21,x Z x k k Z ∈=-∈与集合B={}21,x Z x k k Z ∈=+∈是相等集合;③函数110xy =+的图象与21y x =-的图象恰有3个公共点; ④函数()1fx -的图象是由函数()f x 的图象水平向右平移一个单位后,将所得图象在y 轴右侧部分沿y 轴翻折到y 轴左侧替代y 轴左侧部分图象,并保留右侧部分而得到.三、解答题:(共计64分)15.(12分)设全集为R U =,集合}0)6)(3(x {≥-+=x x A ,6}|6-x |x {<=B . (Ⅰ)求B C A R ;(Ⅱ)已知1}a x 2a x {+<<=C ,若B B C = ,求实数a 的取值范围.16.(12分)已知函数1)8(cos )8tan(4)(2-++=ππx x x f .(Ⅰ)求)(x f 的定义域与最小正周期; (Ⅱ)当]4,4[ππ-∈x 时,求)(x f 值域.17.(13分)已知)2cos(2sin 32sin)(2x x x x f ++=π, (Ⅰ)求)(x f 的单增区间和对称轴方程;(Ⅱ)若20π<<x ,101)(-=x f ,求)32(sin π+x18.(13分)已知函数()f x 的定义域为R ,且对任意的R y x ∈,有()()()f x y f x f y +=+.当0x >时,()0f x >,()12f =. (Ⅰ)求)(0f 并证明()f x 的奇偶性; (Ⅱ)判断()f x 的单调性并证明;(Ⅲ)求)(3f ;若()()14626x x f a f +-++>对任意R x ∈恒成立,求实数a 的取值范围.19.(14分)已知R a ∈,函数()21log 2xf x a ⎛⎫=+ ⎪⎝⎭. (Ⅰ)当1a =时,解不等式1)(≤x f ;(Ⅱ)若关于x 的方程()20f x x +=的解集中恰有两个元素,求a 的取值范围; (Ⅲ)设0a >,若对任意[]1,0t ∈-,函数()f x 在区间[],1t t +上的最大值与最小值的和不大于2log 6,求a 的取值范围.天津市部分区2018~2019学年度第一学期期末六校联考高一数学参考答案一、选择题1-5 CBDDA 6-8 BBC 二、填空题9. 8/3 10.-16 11.等腰 12. 3 13. (-∞,0)∪(1,2) 14. ②④ 三、解答题15.解:(Ⅰ)由题6}x -3x x {≥≤=或A12}0x {<<=x B12}x 0x x {≥≤=或B C R∴12}x 3x x {≥-≤=或B C A R ……………………………………………..6分 (Ⅱ)∵B B C = ,即B C ⊆①若φ=C 时,12+≥a a 即1≥a 满足题意. ②若φ≠C 时,12+<a a 即1<a若B C ⊆,则⎩⎨⎧≤+≥12102a a ⇒⎩⎨⎧≤+≥110a a 即110<≤a 又∵1<a ,∴10<≤a综上所述,0≥a 即可.………………………………………………………….….12分16.解析: (Ⅰ)由πππk x +≠+28得()f x 的定义域为3{k }8x x k Z ππ≠+∈,.…2分1-)42sin(21)8(cos )8sin(41)8(cos )8tan(4)(2πππππ+=-++=-++=x x x x x x f ……5分所以()f x 的最小正周期2.2T ππ== ……6分 (Ⅱ)由πππππk 2242k 22-+≤+≤+x ,得ππππk 8k 83-+≤≤+x又∵]44[-x ππ,∈,∴上单调递减,上单调递增,在,)在(]48[]84-[f ππππx12-)4f(--=π,1)8(=πf ,12)4(-=πf1,1]-2[-f(x )∈………………………………………………….12分17.(1))6sin(x -21)x (π+=f 单增区间Z k ]2k 34,2k 3[∈++,ππππ对称轴方程Z ∈+=k k 3x ,ππ…………………………………..6分(2)23536x sin <=+)(由π易知,266πππ<+<x 536x sin =+)(π546x cos =+)(π25243x 2sin =+)(π………………………………………………13分 18.(1))0()0()00()0(f f f f +=+=∴0)0(=f 又因为)(x f 的定义域为R 关于原点对称)()()()0(x f x f x x f f -+=-=∴)(-)(x f x f =-所以)(x f 为奇函数。

2019-2020学年天津市静海一中高一上学期期末数学试题(解析版)

2019-2020学年天津市静海一中高一上学期期末数学试题(解析版)

2019-2020学年天津市静海一中高一上学期期末数学试题一、单选题1.设集合{}|1213A x x =-≤+≤,{}2|log B x y x ==,则A B =I () A .(]0,1 B .[]1,0-C .[)1,0-D .[]0,1【答案】A【解析】化简集合A,B ,根据交集的运算求解即可. 【详解】因为{}|1213[1,1]A x x =-≤+≤=-,{}2|log (0,)B x y x ===+∞,所以0,1]A B =I (, 故选A. 【点睛】本题主要考查了集合的交集运算,属于容易题.2.已知关于x 的不等式()()224210a x a x -+--≥的解集为空集,则实数a 的取值范围是( ) A .62,5⎡⎤-⎢⎥⎣⎦B .62,5⎡⎫-⎪⎢⎣⎭C .6,25⎛⎤-⎥⎝⎦D .(][),22,-∞+∞U【答案】C【解析】由题意得出关于x 的不等式()()224210a x a x -+--<的解集为R ,由此得出240a -=或2400a ⎧-<⎨∆<⎩,在240a -=成立时求出实数a 的值代入不等式进行验证,由此解不等式可得出实数a 的取值范围. 【详解】由题意知,关于x 的不等式()()224210a x a x -+--<的解集为R .(1)当240a -=,即2a =±.当2a =时,不等式()()224210a x a x -+--<化为10-<,合乎题意;当2a =-时,不等式()()224210a x a x -+--<化为410x --<,即14x >-,其解集不为R ,不合乎题意;(2)当240a -≠,即2a ≠±时.Q 关于x 的不等式()()224210a x a x -+--<的解集为R .2400a ⎧-<∴⎨∆<⎩,解得265a -<<.综上可得,实数a 的取值范围是6,25⎛⎤- ⎥⎝⎦.故选:C . 【点睛】本题考查二次不等式在R 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题. 3.已知:1:12p a -<<,[]:1,1q x ∀∈-,220,x ax --<则p 是q 成立的( ) A .充分但不必要条件 B .必要但不充分条件C .充分必要条件D .既不是充分条件也不是必要条件【答案】A【解析】构造函数()22f x x ax =--,先解出命题q 中a 的取值范围,由不等式()0f x <对[]1,1x ∀∈-恒成立,得出()()1010f f ⎧-<⎪⎨<⎪⎩,解出实数a 的取值范围,再由两取值范围的包含关系得出命题p 和q 的充分必要性关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.已知 ,则 的大小关系为( )
A. B.
C. D.
【答案】D
【分析】
根据幂函数的单调性性,得到 ,再根据对数的运算性质,得到 ,即可得到答案.
【详解】由题意,幂函数 在 上为单调递增函数,所以 ,
又由对数 运算性质,可得 ,
所以 ,故选D.
【点睛】本题主要考查了幂函数的单调性,以及对数的运算性质的应用,其中解答中熟练应用幂函数的单调性进行比较是解答的关键,着重考查了推理与运算能力,属于基础题.
得 ,当 时, .
故选D.
【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.
6.若函数 为奇函数,且在 内是增函数,又 ,则 的解集为()
A. B.
C. D.
【答案】A
【分析】
根据 为奇函数可把 化为 ,分类讨论后可得不等式的解集.
【详解】因为 为奇函数,所以 ,所以 即 .源自当 时, 等价于 也即是 ,
2.已知关于 的不等式 的解集为空集,则实数 的取值范围是( )
A. B. C. D.
【答案】C
【分析】
由题意得出关于 的不等式 的解集为 ,由此得出 或 ,在 成立时求出实数 的值代入不等式进行验证,由此解不等式可得出实数 的取值范围.
【详解】由题意知,关于 的不等式 的解集为 .
(1)当 ,即 .
当 时,不等式 化为 ,合乎题意;
当 时,不等式 化为 ,即 ,其解集不为 ,不合乎题意;
(2)当 ,即 时.
关于 的不等式 的解集为 .
,解得 .
综上可得,实数 的取值范围是 .故选C.
【点睛】本题考查二次不等式在 上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.
5.函数 的最小正周期是 ,则其图象向左平移 个单位长度后得到的函数的一条对称轴是( )
A. B. C. D.
【答案】D
分析】
由三角函数的周期可得 ,由函数图像的变换可得, 平移后得到函数解+析式为 ,再求其对称轴方程即可.
【详解】解:函数 的最小正周期是 ,则函数 ,经过平移后得到函数解+析式为 ,由 ,
【答案】
【详解】∵1﹣2a=2sin(2x+ ),
令y1(x)=2sin(2x+ ),y2(x)=1﹣2a,
∵x∈ ,
∴2x+ ∈[ , ],
方程2sin(2x+ )+2a﹣1=0在[0, ]上有两个不等的实根,
由图知, ≤2sin(2x+ )<2,即 ≤1﹣2a<2,
∴﹣2<2a﹣1≤﹣ ,
解得﹣ <a≤ .

故答案为:1.
【点睛】诱导公式有五组,其主要功能是将任意角的三角函数转化为锐角或直角的三角函数.记忆诱导公式的口诀是“奇变偶不变,符号看象限” .
10.若函数 为奇函数,则 ________.
【答案】
根据题意,当 时, 为奇函数, ,则
故答案为 .
11.方程 在 上有两个不相等的实数根,则实数 的取值范围是__________.
7.若正数 满足: ,则 的最小值为()
A.2B. C. D.
【答案】A
【分析】
把 化为 ,利用基本不等式可求最小值.
【详解】因 , 为正数,所以 ,从而 .
又 可化为 ,
故 ,当且仅当 时等号成立,
所以 的最小值为2.
故选:A.
【点睛】本题考查基本不等式的应用,应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.
因为 在 内是增函数,故可得 .
因为 在 内是增函数且 为奇函数,
故 在 内是增函数,又 .
当 时, 等价于 也即是 ,
故可得 .
综上, 的解集为 .
故选:A.
【点睛】如果一个函数具有奇偶性,那么它的图像具有对称性,偶函数的图像关于轴对称,奇函数的图像关于原点对称,因此知道其一侧的图像、解+析式、函数值或单调性,必定可以知晓另一侧的图像、解+析式、函数值或单调性.
8.函数 ,则方程 的根的个数是( )
A. 7B. 5C. 3D. 1
【答案】A
【分析】
根据题意,分别讨论 ,和 两种情况,根据函数解+析式,即可求出结果.
【详解】因为
(1)当 时,由 ,解得 或 ,
若 ,则 或 ,解得 或 ;或 或 ;
若 ,则 或 ,解得 ;
(2)当 时,由 ,解得 或 (舍),所以 .
∴实数a的取值范围是 .
故答案为 .
点睛:这个题目考查了已知函数零点求参的问题;对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个含x的函数,注意让含x的函数式子尽量简单一些.
12.已知 ,且 ,则 .
【答案】
,且 ,所以 ,
3.已知: , , 则 是 成立的( )
A.充分但不必要条件B.必要但不充分条件
C.充分必要条件D.既不是充分条件也不是必要条件
【答案】A
【分析】
构造函数 ,先解出命题 中 的取值范围,由不等式 对
恒成立,得出 ,解出实数 的取值范围,再由两取值范围的包含关系得出命题 和 的充分必要性关系.
【详解】构造函数 ,对 , 恒成立,
则 ,解得 ,
,因此, 是 的充分但不必要条件,故选A.
【点睛】本题考查充分必要条件的判断,一般利用集合的包含关系来判断两条件的充分必要性:
(1) ,则“ ”是“ ”的充分不必要条件;
(2) ,则“ ”是“ ”的必要不充分条件;
(3) ,则“ ”是“ ”的充要条件;
(4) ,则“ ”是“ ”的既不充分也不必要条件.
若 ,则 ,解得 ;
若 ,则 ,解得 .
综上,方程 的根的个数是7个.
故选A
【点睛】本题主要考查由复合函数值求参数的问题,灵活运用分类讨论的思想即可求解,属于常考题型.
二、填空题:(每小题4分,共20分)
9.化简: 的值为________.
【答案】1
【分析】
利用诱导公式可求三角函数式的值.
【详解】原式
静海一中2019-2020第一学期高一数学期末
学生学业能力调研试卷
第I卷基础题(共105分)
一、选择题:(每小题5分,共40分)
1.设集合 , ,则 ()
A. B. C. D.
【答案】A
【分析】
化简集合A,B,根据交集的运算求解即可.
【详解】因为 , ,
所以 ,
故选A.
【点睛】本题主要考查了集合的交集运算,属于容易题.
相关文档
最新文档