完整采油工程课程设计
采油工程课程设计

采油工程课程设计一、课程目标知识目标:1. 让学生理解采油工程的基本概念、原理及流程,掌握油气藏开发的基本知识。
2. 使学生了解采油工程中常用的设备及技术,掌握其工作原理和应用范围。
3. 引导学生掌握油气藏动态分析的基本方法,培养学生的数据分析能力。
技能目标:1. 培养学生运用所学知识解决实际采油工程问题的能力,提高学生的实践操作技能。
2. 培养学生查阅相关资料、文献的能力,提高学生的自主学习能力。
3. 培养学生团队协作、沟通表达的能力,提高学生的综合素质。
情感态度价值观目标:1. 培养学生对石油工程事业的热爱和责任感,激发学生投身石油行业的兴趣。
2. 培养学生严谨求实的科学态度,提高学生的工程质量意识。
3. 引导学生关注能源、环保等问题,培养学生的社会责任感和使命感。
课程性质:本课程为专业实践课程,旨在让学生深入了解采油工程的实际操作和技术应用。
学生特点:高二年级学生,具有一定的物理、化学基础,对石油工程有浓厚兴趣。
教学要求:结合实际案例,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。
将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. 采油工程概述- 油气藏类型及特点- 采油工程的基本任务和目标- 油气藏开发技术政策2. 采油技术及其设备- 钻井、完井工艺及设备- 采油方法及设备- 增产措施及设备3. 油气藏动态分析- 油气藏压力、产量分析- 油气藏动态预测- 采收率计算及评价4. 采油工程案例分析- 典型油气藏开发案例- 采油工程事故案例分析- 案例讨论与总结5. 采油工程新技术与发展趋势- 智能油田技术- 环保型采油技术- 油气藏高效开发技术教学内容按照教学大纲安排,结合教材章节进行组织。
具体进度如下:第一周:采油工程概述第二周:采油技术及其设备第三周:油气藏动态分析第四周:采油工程案例分析第五周:采油工程新技术与发展趋势教学内容注重科学性和系统性,结合实际案例,使学生掌握采油工程的基本知识、技术和方法。
采油工程课程设计

采油工程课程设计
1. 题目:采油工程设计
2. 目的:通过学习和实践,掌握采油工程的基本原理、设计方法和实施技术,培养学生独立思考和综合应用知识的能力,为其未来在采油领域的工作打下坚实的基础。
3. 内容:
(1) 采油地质学基础
分析油藏地质特征,确定采油方式和开采方式。
包括油层分析、油藏分类、储量计算、井位布置等。
(2) 油井工程设计
包括井控设计和完井设计两部分。
井控设计包括井眼轨迹、钻井液、钻头选择等方面;完井设计包括套管、射孔、压裂等技术方面。
(3) 钻井工程
学生需要掌握钻井操作和钻井现场管理等方面的基本知识,学习班组制作钻井方案,现场调整方案,执行方案。
(4) 提高采收率
学生需要学习提高采收率的方法和技术,了解数值模拟技术的
应用及其方法,掌握评价采收率的基本方法。
4. 考核方式:课程设计作业+ 实验报告+期末论文。
5. 参考书目:
(1) 《采油工程》
(2) 《油井钻完井工程》
(3) 《油田开发技术》
(4) 《油藏物理量测》
(5) 《油田采收率提高技术》。
采油工程在线课程设计

采油工程在线课程设计一、课程目标知识目标:1. 学生能够理解采油工程的基本概念,掌握油气藏的形成、开采原理及采油工艺流程。
2. 学生能够掌握我国主要油田的分布特点,了解不同油田的开采技术及差异。
3. 学生能够了解采油工程中涉及的数学、物理、化学等基础知识,并将其应用于实际问题分析。
技能目标:1. 学生能够运用所学知识分析油气藏的开采情况,提出合理的开采方案。
2. 学生能够运用数据分析和计算方法,解决采油过程中遇到的实际问题。
3. 学生能够通过查阅资料、课堂讨论等方式,获取和整合信息,提高自主学习能力。
情感态度价值观目标:1. 学生能够认识到石油在我国能源体系中的地位,增强能源危机意识,培养节能环保观念。
2. 学生能够了解采油工程对环境的影响,关注石油开采与环境保护的平衡,树立绿色开采理念。
3. 学生能够通过学习采油工程,培养科学精神、创新意识和团队合作意识。
课程性质:本课程为专业选修课,旨在帮助学生了解采油工程的基本知识,提高解决实际问题的能力。
学生特点:学生为高中二年级学生,具有一定的数学、物理、化学基础,对能源和工程领域有一定兴趣。
教学要求:注重理论与实践相结合,提高学生的动手操作能力和实际问题解决能力,培养学生的自主学习能力和创新精神。
通过分解课程目标,为后续教学设计和评估提供具体依据。
二、教学内容1. 油气藏的形成与分布- 油气藏的形成条件- 我国主要油田的分布特点- 油气藏的类型及开采难度2. 采油工程基本原理- 油气藏的压力与驱动方式- 采油方法及工艺流程- 提高采收率的技术措施3. 采油工程数学模型与计算- 油藏渗流方程- 产量预测与优化- 油藏模拟与数值计算4. 采油工程技术与应用- 常规采油技术- 稠油开采技术- 深海油气开采技术5. 采油工程与环境问题- 采油工程对环境的影响- 环保型开采技术- 石油污染治理与生态修复教学内容安排与进度:第一周:油气藏的形成与分布第二周:采油工程基本原理第三周:采油工程数学模型与计算第四周:采油工程技术与应用第五周:采油工程与环境问题本教学内容根据课程目标,结合教材章节内容进行选择和组织,确保科学性和系统性。
2024年度采油工程课程设计

采油工程课程设计需要注重实践环节的设置,通过案例分析可以让学生
更加深入地了解采油工程的实际问题和挑战,提高其实践能力和解决问
题的能力。
02
强化综合能力培养
在课程设计中需要注重培养学生的综合能力,包括地质勘探、开发方案
制定、采油工艺选择以及生产管理等方面的能力。通过案例分析可以让
学生更加全面地了解和掌握这些知识和技能。
胜利油田是中国重要的海上油田之一,其海上开发案例具有 独特性和创新性。该案例重点介绍了海上油田开发的地质勘 探、平台建设、钻采技术和环境保护等方面的内容。
17
成功经验与教训总结
成功经验
大庆油田和胜利油田在开发过程中积累了丰富的成功经验,包括科学的地质勘探、合理的开发方案、 先进的采油工艺以及高效的生产管理等。这些经验对于其他油田的开发具有重要的借鉴意义。
2024/2/3
10
03
采油工程设计实践
2024/2/3
11
油田地质特征分析
油藏类型与储层物性
分析油田的油藏类型(如构造 油藏、岩性油藏等),评估储 层的孔隙度、渗透率等物性参
数。
2024/2/3
油层分布与厚度
研究油层在平面和纵向上的分 布情况,确定油层的有效厚度 和含油饱和度。
地质构造与断层
分析油田所处的地质构造背景 ,识别断层、褶皱等构造特征 对油藏的影响。
环保与节能措施
在采油过程中,采取有效的环保和节能措施 ,降低能耗和减少环境污染。
2024/2/3
采油设备选型与布局
根据采油工程方案,合理选择和布局采油设 备,确保安全生产和高效采油。
课程设计报告书
撰写规范、内容详实的课程设计报告书,全 面反映设计思路和成果。
采油工程课程设计

采油工程课程设计
采油工程课程设计
采油工程课程设计是一项重要的任务,要求课程设计者具有丰富的知识、经验和能力。
下面将介绍如何制定采油工程课程的步骤:
第一步,首先要了解采油工程的内容及相关知识,以便能够设计出适
合不同学习者的适当的学习内容和范围。
掌握采油工程的基本理论、
实践经验和知识结构,能够帮助课程设计者更好地理解不同领域的实
践应用。
第二步,根据不同学习者的能力和背景,明确目标和学习范围,确定
课程的类型、难度和学习方式,并考虑实践性训练。
如果是在校学习,可以采用传统的课堂教学方式;如果是远程学习,则可以采用网上教
学或视频教学的形式。
第三步,设计课程内容。
对于采油工程课程,课程设计者要搜集或撰
写大量相关资料,安排采油工程的结构及内容,然后细化知识点,把
它们编入课程大纲中。
同时,应根据学习者的实际情况,制定灵活的
学习计划,确定各种学习实践活动,以深入了解和巩固相关知识。
第四步,课程设计好后,还需要组织实施和评估。
具体的实施要综合
考虑学习者的实际情况,给学习者提供科学、有效的学习指导和技能
训练,不断加强学习者的实践性训练;在课程的最后,还需要对学习
者的学习效果及专业水平等做出有效的评估。
通过以上几步,我们可以看出,完成采油工程课程设计是一项费时费
力的工作,需要课程设计者具备准确的知识、丰富的经验、良好的分析能力和组织协调能力,能够为学习者提供更有效、实用的课程,从而促进学习者专业水平的提高。
采油工程含课程设计

采油工程含课程设计一、课程目标知识目标:1. 学生能理解采油工程的基本概念、原理及工艺流程。
2. 学生能够掌握采油工程中涉及的关键技术,如油井钻探、完井、采油、提高采收率等。
3. 学生能够了解我国采油工业的发展现状及趋势。
技能目标:1. 学生能够运用所学知识分析实际采油工程案例,提出解决问题的方案。
2. 学生能够通过课程设计,培养动手实践能力和团队协作能力。
3. 学生能够熟练使用相关软件和设备,进行采油工程数据的处理和分析。
情感态度价值观目标:1. 学生能够增强对石油工程领域的兴趣,树立从事相关行业的职业理想。
2. 学生能够认识到石油资源在我国经济发展中的重要性,增强能源节约和环保意识。
3. 学生能够在课程学习中,培养严谨、求实、创新的学习态度,提高自主学习能力。
课程性质:本课程为专业核心课程,旨在让学生全面了解采油工程的理论和实践,培养具备实际操作能力的高素质技术技能人才。
学生特点:学生为高中二年级学生,具备一定的物理、化学基础,对石油工程有一定了解,但对采油工程的具体实践操作相对陌生。
教学要求:结合学生特点,注重理论与实践相结合,充分运用案例分析、课程设计等教学方法,提高学生的实践操作能力和解决实际问题的能力。
通过分解课程目标为具体的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 采油工程基本概念:介绍石油的形成、分布及开采过程,使学生了解采油工程的基本背景。
- 教材章节:第一章《石油与采油工程概述》2. 采油工艺流程:讲解油井钻探、完井、采油、油气分离等工艺流程,使学生掌握采油工程的主要环节。
- 教材章节:第二章《采油工艺流程》3. 采油关键技术:分析油井完井、压裂、酸化、提高采收率等关键技术,让学生了解采油工程的技术要点。
- 教材章节:第三章《采油关键技术》4. 采油设备与工具:介绍常用的采油设备、工具及其作用,使学生熟悉采油工程中的设备使用。
- 教材章节:第四章《采油设备与工具》5. 采油工程案例分析:分析典型采油工程案例,培养学生解决实际问题的能力。
采油工程含课程设计

采油工程 含课程设计一、课程目标知识目标:1. 理解采油工程的基本概念、原理及工艺流程;2. 掌握油气藏开发的基本方法、技术与设备;3. 了解我国石油工业的发展历程及在国民经济中的地位。
技能目标:1. 能够分析油气藏的地质特征,选择合适的开采方法;2. 能够运用所学知识,解决实际采油过程中遇到的问题;3. 能够通过查阅资料、课堂讨论等方式,提高自主学习能力。
情感态度价值观目标:1. 培养学生对石油工业的热爱和责任感,激发为我国石油事业贡献力量的意愿;2. 增强学生的环保意识,认识到石油开采与环境保护的密切关系;3. 培养学生团队协作精神,学会在合作中学习、成长。
课程性质:本课程为专业课程,旨在让学生深入了解采油工程的基本知识、技能及发展前景。
学生特点:高中生,具有一定的物理、化学基础知识,对石油工业有一定的好奇心。
教学要求:结合实际案例,注重理论与实践相结合,提高学生的实际操作能力。
通过小组讨论、实验操作等形式,激发学生的学习兴趣,培养其创新精神和实践能力。
将课程目标分解为具体的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 采油工程基本概念:油气藏、储量、可采储量、采收率等;教材章节:第一章 油气藏地质基础2. 采油工艺流程:勘探、钻井、试油、采油、油气集输;教材章节:第二章 采油工艺技术3. 油气藏开发方法:天然能量开采、人工举升、注水开发等;教材章节:第三章 油气藏开发方法4. 采油设备与关键技术:钻机、采油树、油气分离器、注水设备等;教材章节:第四章 采油设备与关键技术5. 石油工业在我国的发展:历程、现状、趋势;教材章节:第五章 我国石油工业的发展6. 环保与可持续发展:石油开采对环境的影响、环保措施、可持续发展策略;教材章节:第六章 环保与可持续发展教学内容安排和进度:第一周:油气藏地质基础、采油工艺流程第二周:油气藏开发方法、采油设备与关键技术第三周:我国石油工业的发展、环保与可持续发展教学内容确保科学性和系统性,结合教材章节,按照教学进度逐步引导学生掌握采油工程相关知识。
采油工程课程设计3

采油工程课程设计3采油工程课程设计任务要求中国石油大学(北京)远程教育学院一、基础数据井深:2000+学号末两位×10m。
例如:学号为214140001512,则井深=2000+12×10=2120m。
油层静压:给定地层压力系数为1.0MPa/100m,即油层静压=井深/100×1.0MPa。
例如:井深为2120m,则油层静压=2120/100×1.0=21.2MPa套管内径:0.124m油层温度:90℃恒温层温度:16℃地面脱气油粘度:30mPa.s油相对密度:0.84气相对密度:0.76水相对密度:1.0油饱和压力:10MPa含水率:0.4套压:0.5MPa油压:1MPa生产气油比:50m3/m3原产液量(测试点):30t/d原井底流压(测试点):学号×0.005+2,例如:井深为2120m,则测试点流压为2120×0.005+2=12.6MPa 抽油机型号:CYJ10353HB电机额定功率:37KW配产量:50t/d泵径:44mm冲程:3m冲次;6rpm沉没压力:3MPa抽油杆:D级杆,使用系数SF=0.8,杆径19mm,抽油杆质量2.3kg/m二、计算步骤及评分标准1、基础数据计算与分析(10分)根据学号计算井深和油层静压,根据给定基础数据分析该井采油工程的特点。
2、画IPR曲线(10分)1)采油指数计算;2)画出IPR曲线;3)利用IPR曲线,由给定的配产量计算对应的井底流压。
3、采油工程参数计算(20分)若下泵深度为1500米,杆柱设计采用单级杆,其基本参数已给出,计算悬点最大、最小载荷计算、抽油杆应力范围比,并评价此抽油杆是否能满足生产要求。
4、抽油机校核计算(20分)说明给定抽油机型号的参数,计算设计中产生的最大扭矩和理论需要电机功率,并与给定抽油机型号参数进行对比,判断此抽油机是否满足生产要求。
5、增产措施计算(20分)由于油藏渗透率较低,需要对储层进行水力压裂,已知施工排量2方/分,裂缝高度15米,压裂液综合滤失系数分003.0,设计的压裂裂缝总长度为400米,试用米/吉尔兹玛公式计算所需的施工时间;如果平均砂液比为30%(支撑剂体积/压裂液体积),计算相应的支撑剂体积和压裂液体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冲次:6rpm
柱塞与衬套径向间隙:0.3mm
沉没压力:3MPa
二、设计计算步骤
2.1
油井流入动态是指油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力。从单井来讲,IPR曲线表示了油层工作特性。因而,它既是确定油井合理工作方式的依据,也是分析油井动态的基础。本次设计油井流入动态计算采用Petro bras方法Petro bras方法计算综合IPR曲线的实质是按含水率取纯油IPR曲线和水IPR曲线的加权平均值。当已知测试点计算采液指数时,是按产量加权平均;预测产量时,按流压加权平均。
当0 q 时,令q =10 t/d,则p = =15.754 Mpa
同理,q =20 t/d,P =13.877 Mpa
q =30 t/d,P =12.0 Mpa
当q q 时,令q =50 t/d,则按流压加权平均进行推导得:
P =f +0.125(1-f )P [-1+ =8.166Mpa
同理q =60t/d,P =5.860 Mpa
当q q 时,
令q =71t/d,P =2.233 Mpa
综上,井底流压与产量的关系列表如下:
Pwf/Mpa
15.747
13.873
12.0
10.0
8.166
5.860
2.233
Q/(t/d)
10
20
30
40.653506071得到油井的流入动态曲线如下图:
图1油井IPR曲线
2.2
井筒多相流压力梯度方程
采油工程课程设计
课程设计
姓名:唐建锋
学号:039582
中国石油大学(北京)
石油工程学院
2012年12月10日
一、给定设计基础数据:
井深:2000+82×10=2820m
套管内径:0.124m
油层静压:2820/100×1.2=33.84MPa
油层温度:90℃
恒温层温度:16℃
地面脱气油粘度:30mPa.s
①已知任一点(井底或井口)的压力 ,选取合适的深度间隔 (可将管 等分为n段)。
②估计一个对应于计算间隔 的压力增量 。
③计算该段的 和 ,以及 、 下的流体性质参数。
④计算该段压力梯度
⑤计算对应于 的压力增量
⑥比较压力增量的估计量 与计算值 ,若二者之差不在允许范围内,则以计算值作为新的估计值,重复第②~⑤步,使两者之差在允许范围 之内为止。
(1)采液指数计算
已知一个测试点: 、 和饱和压力 及油藏压力 。
因为 , = =30/(33.84-12)= 1.4/(d.Mpa)
(2)某一产量 下的流压Pwf
=j( )=1.4 x(33.84-10)=33.38t/d
= + =33.38+1.4*10/1.8=41.16t/d
-油IPR曲线的最大产油量。
由计算得到,由于该段的压力大于饱和压力的值,所以该段的流型为纯液流。
计算该段的压力梯度 。由压力梯度的计算公式:
=843.40; =计算对应于 的该段管长(深度差) 。
⑥将第步计算得的 与第②步估计的 进行比较,两者之差超过允许范围,则以新的 作为估算值,重复②~⑤的计算,使计算的与估计的 之差在允许范围 内为止。该过程之中只迭代一次。
油相对密度:0.84
气相对密度:0.76
水相对密度:1.0
油饱和压力:10MPa
含水率:0.4
套压:0.5MPa
油压:1 MPa
生产气油比:50m3/m3
原产液量(测试点):30t/d
原井底流压(测试点):12Mpa
抽油机型号:CYJ10353HB
电机额定功率:37kw
配产量:50t/d
泵径:44mm(如果产量低,而泵径改为56mm,38mm)
井筒多相管流的压力梯度包括:因举高液体而克服重力所需的压力势能、流体因加速而增加的动能和流体沿管路的摩阻损失,其数学表达式如下:
ρ gsinθ+ρ v ρ /d*
式中ρ 为多相混合物的密度;v 为多相混合物的流速;f 为多相混合物流动时的摩擦阻力系数;d为管径;p为压力;h为深度;g为重力加速度;θ为井斜角的余角。
由以上的流体物性参数判断流型:
不同流动型态下的 和 的计算方法不同,为此,计算中首先要判断流动形态。该方法的四种流动型态的划分界限如表1所示。
表1流型界限
流动型态
界限
泡流
段塞流
过渡流
雾流
其中 =1.071-0.7277 且 >0.13(如果 <0.13,则取 =0.13);
=50+36 ;
=75+84( ) 。
井筒多相管流计算包括两部分:(1)由井底向上计算至泵入口处;
(2)油管内由井口向下计算至泵出口处。
1)由井底向上计算至泵入口处,计算下泵深度Lp。采用深度增量迭代方法,首先估算迭代深度。在本设计中为了减小工作量,采用只迭代一次的方法。计算井筒多相管流时,首先计算井筒温度场、流体物性参数,然后利用Orkiszewski方法判断流型,进行压力梯度计算,最后计算出深度增量和下泵深度Lp。
按深度增量迭代的步骤:
井底流压12Mpa,假设压力降为0.2Mpa;估计一个对应的深度增量 =40m,即深度为1960m。
由井温关系式可以计算得到该处的井温为:89.96℃。
平均的压力和温度: =(90+89.96)/2=89.98℃。平均压力 =11.9Mpa。由平均压力和平均温度计算的得到流体的物性参数为:溶解油气比R =71.31;原油体积系数B =1.25原油密度P =739.00;油水混合液的密度P =843.40;死油粘度μ =6.537*10 ;活油粘度μ =3.318*10 ;水的粘度μ =3.263*10 ;液体的粘度μ= 3.296*10 ;天然气的压缩因子Z=0.9567;天然气的密度 90.70。以上单位均是标准单位。
⑦计算该段下端对应的深度 和压力
⑧以 处的压力 为起点压力重复第②~⑦步,计算下一段的深度 和压力 ,直到各段累加深度等于或大于管长 时为止。
2.2计算气-液两相垂直管流的Orkiszewski方法
本设计井筒多相流计算采用Orkiszewski方法。
2)由井口向下计算至泵出口处,计算泵排出口压力PZ。采用压力增量迭代方法,首先估算迭代压力。同样为了减小工作量,也采用只迭代一次的方法。计算井筒多相管流时,首先计算井筒温度场、流体物性参数,然后利用Orkiszewski方法判断流型,进行压力梯度计算,最后计算出压力增量和泵排出口压力PZ。
按压力增量迭代的步骤