信号与系统_第一章答案

合集下载

信号与系统第一章习题答案

信号与系统第一章习题答案

t 0 > 0 函数式的信号的波形如图 1.2(b)所示. 。
3
cos ωt
1 … …

5π 2ω

3π 2ω

π 2ω
-1
π 2ω
(a)
3π 2ω
5π 2ω
t
cos ωtε (t )
1
ε (t )
1

π 2ω
3π 2ω
5π 2ω
t
t
(b)
-1 (c ) 图 1.1
cos ωtε (t − t 0 )
1
P = lim
E =∞
1 T → ∞ 2T
1 ∫ [ε (t )] dt = 2
T 2 −T
(2) ε (t ) − ε (t − 1) 是脉冲信号,其为能量信号,能量为:
E = lim
[ε (t ) − ε (t − 1)]2 dt = ∫0 [ε (t ) − ε (t − 1)]2 dt =1 T →∞ ∫−T
T
2
(4) 3 cos (ω 0t + θ ) 是功率信号,其平均功率为:
P = lim
1 T → ∞ 2T
2 ∫−T [3 cos (ω0 t + θ )] dt = Tlim →∞ T
1 2T
2

T
−T
9
cos 2(ω0 t + θ ) + 1 1 9 9 dt = lim ⋅ ⋅ 2T = T → ∞ 2 2T 2 2
T 2
2ω t 1 − cos 0 1 cos ω0 t + 1 9ω 0t ω t 5 dt = lim + sin − sin 0 + ∫ − T T →∞ 2T 2 20 20 2

信号与系统(西安工程大学)知到章节答案智慧树2023年

信号与系统(西安工程大学)知到章节答案智慧树2023年

信号与系统(西安工程大学)知到章节测试答案智慧树2023年最新第一章测试1.周期信号,其周期为()参考答案:82.=( )参考答案:13.积分的值为()。

参考答案:24.已知,则等于()。

参考答案:5.已知某语音信号,对其进行运算得到信号,与信号相比,信号将发生什么变化( )参考答案:长度变长、音调变低第二章测试1.系统的零输入响应是指仅由系统的激励引起的响应。

()参考答案:错2.系统的零输入响应表达形式一定与其微分方程的通解形式相同,系统的零状态响应表达形式一定与其微分方程的特解形式相同。

()参考答案:错3.卷积的方法只适用于线性时不变系统的分析()。

参考答案:对4.单选题:单位阶跃信号作用于某线性时不变系统时,零状态响应为,则此系统单位冲激响应为()参考答案:5.判断题:两个线性时不变系统级联,其总的输入输出关系与它们在级联中的次序没有关系。

()参考答案:对第三章测试1.连续非周期信号频谱的特点是( )。

参考答案:连续;非周期2.若对进行理想取样,其奈奎斯特取样频率为,对进行取样,其奈奎斯特取样频率为 ( )。

参考答案:3.如图所示信号,其傅里叶变换=F [],等于()。

参考答案:24.如图:所示周期信号,该信号不可能含有的频率分量是()。

参考答案:1 Hz5.已知信号的频谱的最高角频率为,的频谱的最高角频率为,信号的最高角频率等于( )。

参考答案:第四章测试1.请判断下面说法是否正确:若连续时间信号是有限时宽信号,且绝对可积,则其拉氏变换的收敛域为整个s平面。

( )参考答案:对2.利用常用函数的象函数及拉普拉斯变换的性质,函数的拉普拉斯变换为()。

参考答案:3.描述某LTI系统的微分方程为,则激励下的零状态响应为()。

参考答案:4.如图所示的复合系统,由四个子系统组成,若各个子系统的系统函数或冲激响应分别为:则复合系统的冲激响应为()。

参考答案:5.描述某连续线性时不变系统的微分方程为,系统的冲激响应为(),阶跃响应为()。

信号与系统--完整版答案--纠错修改后版本

信号与系统--完整版答案--纠错修改后版本
3.6、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。
1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)(2)(3)(4)
4.34 某LTI系统的频率响应,若系统输入,求该系统的输出。
4.35 一理想低通滤波器的频率响应
4.36 一个LTI系统的频率响应
若输入,求该系统的输出。
4.39 如图4-35的系统,其输出是输入的平方,即(设为实函数)。该系统是线性的吗?
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
(1) (2) (3) (4) (5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1)(3) (5)
(8)(9)
4下列方式求图4-25示信号的频谱函数 (1)利用xx和线性性质(门函数的频谱可利用已知结果)。
(1)
5-18 已知系统函数和初始状态如下,求系统的零输入响应。
(1),
(3),
5-22 如图5-5所示的复合系统,由4个子系统连接组成,若各子系统的系统函数或冲激响应分别为,,,,求复合系统的冲激响应。
5-26 如图5-7所示系统,已知当时,系统的零状态响应,求系数a、b、c。
5-28 某LTI系统,在以下各种情况下起初始状态相同。已知当激励时,其全响应;当激励时,其全响应。
(7)(8)
1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统(应自炉)习题答案第1章 习题解重点

信号与系统(应自炉)习题答案第1章 习题解重点
(
(222222j t k j t j t j k f t k e
e
e
e
f t π
π
π
πππ+++++==⨯==
∴原函数是周期函数,令1k =,则基波周期为2π。
1-2.
求信号( 14sin( 110cos(2--+=t t t f的基波周期。
解:cos(101 t +的基波周期为15
π,s i n (4
1-8.
用阶跃函数写出题图1-8所示各波形的函数表达式。
t
t
t
(a (
bc
题图1-8
解:(a)((((((3[31]2[11]f t t u t u t u t u t =++-+++-- (((3[13]t u t u t +-+---
(((((
(3 3(1 1(1 1(3 3f
t t u t t u t t u t t u t =+++--++-+-+--(b)([( (1]2[(1 (2]4(2 f t u t u t u t u t u t =--+---+-
1 t -的基波周期为
1
2
π二者的最小公倍数为π,故( 14sin( 110cos(2--+=t t t f的基波周期为π。
1-3.
设(3, 0<=tt f ,对以下每个信号确定其值一定为零的t值区间。
(1)(t f -1(2)((t f t f -+-21(3)((t f t f --21(4)(t f 3(5)(f

信号与系统 人民邮电出版社 第二版第一章 课后答案

信号与系统 人民邮电出版社 第二版第一章 课后答案
w
w
w
.k hd
第一章 信号与系统的基本概念 习题
南京邮电大学 信号分析与信息处理教学中心
aw
信号与系统
2006.1
.c
SIGNALS AND SYSTEMS
om
.c

1 2 0
1-1 下列信号中哪些是周期信号,哪些是脉冲信号?哪 些是能量信号?哪些是功率信号它们的平均功率各为多 少? ω 0t ω 0t j (ω 0t +θ )
om

q
w
画系统 x (t ) q ∑ 模拟图:

15

y (t )
w
5
11
15
w
aw
) 1-23 已知某系统的数学模型为 y " ( t ) + a y ' ( t ) + a y ( t ) = b ' x ( t ) + b x ( t, 其模拟图如下,试导出微分方程中的系数 a1, a0 , b1, b0 与模拟图 与模拟 中的系数 α1,α0 , β1, β0的关系。 解:设辅助函数 q" x(t ) β0 β1 如图所示,则 q" = β 0 x + α 0 y + α1q' y (t ) q' q"
w
w
1 y ( t ) = {[[ x1( t ) + x2 ( t )]2 [[ x1( t ) x2 (t )]2 } 4 = x1(t ) x2 ( t )
.k hd
对所假设系统,有:
q(3) (t ) = x (t ) 5q" (t ) 11q' (t ) 15q(t )

信号与系统第一、二、三章自测题解答

信号与系统第一、二、三章自测题解答

第一章自测题答案1.已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ 2.2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。

3.=-⎰∞∞-dt t t e tj )(0δωoj ωet 。

4.试画出下列各函数式表示的信号图形: (1)0 ),()(001>-=t t t u t f(2))]4()([3cos )(2--=t u t u t t f π在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。

(3)][sin )(3t u t f π=5.已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形。

答:函数表达式:f(2-t) = [u(t)-u(t-1)]+2[u(t-1)-u(t-2)] f(6-2t)=[u(t-2)-u(t-2.5)]+2[u(t-2.5)-u(t-3)]6.信号f (5-3t )的波形如图1.2所示,试画出f (t )的波形。

答:f(5-3t)左移5/3得到f(-3t),然后再扩展3倍得到f(-t),最后反褶可得到f(t)7.对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(a) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统9. 一线性非时变系统,当输入为单位阶跃信号u (t )时,输出r (t )为 )1()()(t u t u e t r t --+=-,试求该系统对图1.3所示输入e (t )的响应。

信号与系统课后习题答案

信号与系统课后习题答案

f 2 (−1) (t) =
δ (t − 2) − δ (t − 3)
*
t ε e(−t+1) (t + 1)dt
−∞
= [δ (t − 2) − δ (t − 3)]* (1 − e−(t+1) )ε (t + 1)
= (1 − e−(t−2+1) )ε (t − 2 + 1) − (1 − e−(t−3+1) )ε (t − 3 + 1)
) − iL (t) − uC (t) R1
R2
状态方程为:
⎪⎪⎧u&C (t) ⎨
=
f (t) R1C

uC (t) R1C

iL (t) C
⎪⎪⎩i&L
(t)
=
uC
(t)
− R2iL L
(t)
1.17 写出题图 1.8 系统的输入输出方程。
解: (b)系统框图等价为:
⎧x′′(t) = f (t) − 3x′(t) − 2 y(t)
x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T 1
P=0
(3)
1 ε (t ) 是能量信号,其能量为: 1+ t
E = lim
∞ 1 1 ε ( t ) dt = ε (t ) dt =1 ∫ ∫ 0 1 + t T →∞ −T 1 + t T
2
2
1 P = lim T → ∞ 2T
1 ε (t ) dt = 0 ∫−T 1 + t
5
ε (t + t 0 )
1
ε (t 0 − t )
1
− t0
(a)
t
t0
(b) 图 1.5
t
ε (t 0 − 2t )
1
t0 2
图 1.6
t
(7) ε (t 0 − 2t ) − ε (− t 0 − 2t ) t 0 > 0 函数式的信号的波形如图 1.7(c )所示. 。
ε (− t 0 − t )
T 2
2ω t 1 − cos 0 1 cos ω0 t + 1 9ω 0t ω t 5 dt = lim + sin − sin 0 + ∫ − T T →∞ 2T 2 20 20 2
T
1 1 1 1 = lim ⋅ ⋅ 2T + ⋅ ⋅ 2T T →∞ 2T 2 2T 2 =1
(6) f (2 − t ) (8) f (− 2 − t )ε (− t )
图 1.14
【知识点窍】本题考察信号的绘制及自变量变换导致信号变换的概念 【逻辑推理】本题用到信号的时域运算与变换。 解: (1) f (2t ) 信号的波形如图 1.15 所示。 (2) f (t )ε (t ) 信号的波形如图 1.16 所示。
j ω 0 +θ ) 2
] dt = lim 9e
T→∞
2 j (ω 0 +θ )
2T = ∞
(6) e − at cos ω 0 tε (t ) 为能量信号,其能量为:
E = lim
T →∞ −T
∫ [e
T
− at
cos ω 0t ε (t ) dt = lim
]
2
T →∞ 0

T
e − 2at cos 2 ω0 tdt 1
图 1.9 (10) 2 −( n− 2) ε [n − 2] 函数式的信号的波形如图 1.10 所示. 。
2−( n−2) ε[n −2]
1 … -1 0 1 2 3
n
图 1.10 (11) − nε [n + 2] 函数式的信号的波形如图 1.11 (c )所示. 。
−n
… -1
1 0 1 2 … -2 -1
1 ε (t ) 1+ t
(5) 3e j (ω 0 +θ ) (7) 3t ε (t )
ω 0t ωt + sin 0 4 5
【 知识点窍】 本题考察周期信号、 脉冲信号、 能量信号、 功率信号的概念 【 逻辑推理】 时间间隔无穷大时, 周期信号都是功率信号,只存在有限时间内的信号是能量信 号。信号总能量为有限值而信号平均功率为零的是能量信号;信号平均功率为有限值而信号总能量 为无限大的是功率信号。 解: (1) ε (t ) 是功率信号,其平均功率:
1
ε (t − t 0 )
1

t0 t0
(a) 图 1.2
π 2ω
t
-1
3π 2ω
5π 2ω
t
(b)
(3) cos[ω (t − t 0 )]ε (t )
t 0 > 0 函数式的信号的波形如图 1.3(b)所示. 。 t 0 > 0 函数式的信号的波形如图 1.4 所示. 。
(4) cos[ω (t − t 0 )]ε (t − t 0 )
1.4 已知信号 f (t ) 的波形如图 1.14 所示。试画出下列各信号的波形。 (1) f (2t ) (3) f (t − 3) (2) f (t )ε (t ) (4) f (t − 3)ε (t − 3)
9
(5) f (t + 2 ) (7) f (2 − t )ε (2 − t ) (9) f (t − 1)[ε (t ) − ε (t − 2)]
(a)
图 1.13
(b)
【知识点窍】本题考察信号的概念。 【逻辑推理】本题用到了基本信号的性质及描述。 解: (a)由图 1.13(a)可得:
t − 1 f (t ) = 1 0
(b)由图 1.13(b)可得:
1≤ t ≤ 2 2 <t ≤ 4 其它
t 2 0≤ t ≤ 2 f (t ) = 2t − 8 2<t ≤ 4 0 其它
t0 > 0
t0 > 0
(7) ε (t 0 − 2t ) − ε (− t 0 − 2t ) t 0 > 0 (9) 2 −n ε [n ] (11) − nε [n + 2]
1 5

【知识点窍】本题考察基本信号的绘制及自变量变换导致信号变换的概念 【逻辑推理】本题用到了基本信号的性质及信号的时域运算与变换。 解: (1) cos ωtε (t ) 函数式的信号的波形如图 1.1(c )所示. 。 (2) cos ωt ε (t − t 0 )

第一章 信号与系统的基本概念
1.1 学习重点
1、 信号与系统的基本概念,信号的分类,会画信号的波形。 2、 常用基本信号 (连续时间信号和离散时间信号) 的时域描述方法、 特点以及性质, 并会灵活运用性质。 3、 信号的时域分解、 变换与时域运算,及其综合运用。 4、 深刻理解线性时不变系统的定义与性质,并会应用这些性质。 5、 利用 MATLAB 表示信号、 实现信号的基本运算。
4
cos ω (t − t 0 )
1 … …
t0
-1 (a)
t
cos [ω (t − t 0 )]ε (t )
1 …
t0
-1
t
(b) 图 1.3
cos ω (t − t 0 )
1 …
t0
-1
t
图 1.4 (5) ε (t 0 − t ) (6) ε (t 0 − 2t )
t 0 > 0 函数式的信号的波形如图 1.5(b)所示. 。 t 0 > 0 函数式的信号的波形如图 1.6 所示. 。
f (t + 2 )
1
f (2 − t )
1
-4
-3
-2
-1 0
t
0
1
2
3
4
5
t
图 1.19
图 1.20
ε (t + 2 )
1
ε (2 − t )
1
-2
-1
0
t
0
1
2
t
(a)
(b)
f (2 − t )ε (2 − t )
1
0
1
2Байду номын сангаас
3
4
5
t
(c)
图 1.21
11
ε (− t )
1
f (t − 2 )
1
1
ε (− t 0 − 2t )
1
− t0
(a)
t
t −0 2
(b)
t
ε (t 0 − 2t ) − ε (− t0 − 2t )
1
t −0 2
t0 2
(c ) 图 1.7
6
t
(8) ε [sin πt ] 函数式的信号的波形如图 1.8(b)所示. 。
sin πt
1 … -2 -1 -1 (a) 1 2 3 …
t 0 > 0 函数式的信号的波形如图 1.2(b)所示. 。
3
cos ωt
1 … …

5π 2ω

3π 2ω

π 2ω
-1
π 2ω
(a)
3π 2ω
5π 2ω
t
cos ωtε (t )
1
ε (t )
1

π 2ω
3π 2ω
5π 2ω
t
t
(b)
-1 (c ) 图 1.1
cos ωtε (t − t 0 )
2 0
E = lim
T →∞ −T
∫ [3 cos(ω t + θ )] dt =∫ [3 cos (ω t + θ )] dt =∞
T ∞ 0 −∞
(5) 3e j (ω 0 +θ ) 为功率信号,其平均功率为:
P = 9e 2 j (ω0 +θ )
E = lim
T →∞ −T
( ∫ [3e
T
E =∞
1.2
试画出下列各函数式表示的信号的波形。 (1) cos ωtε (t ) (3) cos[ω (t − t 0 )]ε (t ) (5) ε (t 0 − t ) (2) cos ωt ε (t − t 0 )
t0 > 0 t0 > 0
t0 > 0
(4) cos[ω (t − t 0 )]ε (t − t 0 ) (6) ε (t 0 − 2t ) (8) ε [sin πt ] (10) 2 −( n− 2) ε [n − 2] (12) sin πn
1
P = lim
E =∞
1 T → ∞ 2T
1 ∫ [ε (t )] dt = 2
T 2 −T
(2) ε (t ) − ε (t − 1) 是脉冲信号,其为能量信号,能量为:
E = lim
相关文档
最新文档