等差数列的概念及性质(练习及答案)

合集下载

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手,多多赢得小印章!分析:以下答案仅供参考!(1) 先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、…… 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、…… 从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用a 1表示;末项:一个数列的最后一项,通常用a n 表示,它也可表示数列的第n 项. 每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变得差,通常用d 来表示;和 :一个数列的某些项的和,常用S n 来表示 .(3) 三个重要的公式:① 通项公式:末项=首项+(项数-1)×公差1(1)n a a n d =+-⨯回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:(),()n m a a n m d n m -=-⨯② 项数公式:项数=(末项-首项)÷公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到: 1()1n n a a d =-÷+ (1na a 若);1n ()1n a a d =-÷+(1n a a 若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、……、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组. 当然,我们还可以有其他的配组方法.③ 求和公式:和=(首项+末项)×项数÷21()2n n s a a n =+⨯÷对于这个公式的得到我们可以从两个方面入手:(思路1)1+2+3+…+98+99+100=101×50=5050(思路2)这道题目,我们还可以这样理解:即,和= (100+1)×100÷2=101×50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:(1)4+8+12+…+32+36=(4+36)×9÷2=20×9=180 ,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20×9 ;(2)65+63+61+…+5+3+1=(1+65)×33÷2=33×33=1089 ,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33×33 .如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项 .中项定理也可用在速算与巧算中.譬如:计算:124.68+324.68+524.68+724.68+924.68分析:这是一列等差数列,项数是奇数,中间数是524.68,所以可以用5×524.68=2623.4 .等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点.一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透.【复习2】某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.问:这个剧一共有多少个座位?分析:首项:70-(25-1)×2=22 ,座位总数:(22+70)×25÷2=1150.【复习3】小明从1月1日开始写大字。

第30讲 等差数列的概念及性质(讲义 练习)(解析版)

第30讲 等差数列的概念及性质(讲义 练习)(解析版)

第30讲 等差数列的概念及性质知识点概要1.等差数列的概念一般地,如果数列{a n }从第2项起,每一项与它的前一项之差都等于同一个常数d ,即a n +1-a n =d 恒成立,则称{a n }为等差数列,其中d 称为等差数列的公差.拓展:等差数列定义的理解(1)“每一项与它的前一项之差”这一运算要求是指“相邻且后项减去前项”强调了:①作差的顺序;②这两项必须相邻.(2)定义中的“同一常数”是指全部的后项减去前一项都等于同一个常数,否则这个数列不能称为等差数列.2.等差数列的通项公式及其推广若等差数列{a n }的首项为a 1,公差为d ,则其通项公式为a n =a 1+(n -1)d .该式可推广为a n =a m +(n -m )d (其中n ,m ∈N +).思考:等差数列的通项公式a n =a 1+(n -1)d 是什么函数模型? [答案] d ≠0时,一次函数;d =0时,常数函数. 3.等差数列的单调性等差数列{a n }中,若公差d >0,则数列{a n }为递增数列;若公差d <0,则数列{a n }为递减数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N +)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N +)⇔{a n }为等差数列; (3)通项公式法:a n =an +b (a ,b 是常数,n ∈N +)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法. 4.等差中项如果x ,A ,y 是等差数列,那么称A 为x 与y 的等差中项,且A =x +y2.在一个等差数列中,中间的每一项都是它的前一项与后一项的等差中项. 思考1:在等差数列中,任意两项都有等差中项吗? [答案] 是. 5.等差数列的性质{a n }是公差为d 的等差数列,若正整数s ,t ,p ,q 满足s +t =p +q ,则a s +a t =a p +a q . ①特别地,当p +q =2s (p ,q ,s ∈N +)时,a p +a q =2a s .②对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n=a 2+a n -1=…=a k +a n -k +1=….思考2:在等差数列{a n }中,2a n =a n +1+a n -1(n ≥2)成立吗?2a n =a n +k +a n -k (n >k >0)是否成立?[答案] 令s =t =n ,p =n +1,q =n -1,可知2a n =a n +1+a n -1成立;令s =t =n ,p =n +k ,q =n -k ,可知2a n =a n +k +a n -k 也成立.拓展:(1)从等差数列中,每隔一定的距离抽取一项,组成的数列仍为等差数列. (2)若{a n }是公差为d 的等差数列,则①{c +a n }(c 为任一常数)是公差为d 的等差数列; ②{ca n }(c 为任一常数)是公差为cd 的等差数列; ③{a n +a n +k }(k 为常数,k ∈N +)是公差为2d 的等差数列.(3)若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p ,q 是常数)是公差为pd 1+qd 2的等差数列.(4){a n }的公差为d ,则d >0⇔{a n }为递增数列; d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.精选同步练习一、填空题1.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为_____. 【答案】-21 【分析】设这三个数为a d -,a ,a d +,依题意得到方程组,解得,a b ,即可得到这三个数,从而得解; 【解析】解:设这三个数为a d -,a ,a d +,则2229()()59a d a a d a d a a d -+++=⎧⎨-+++=⎩,, 解得34a d =⎧⎨=⎩或34a d =⎧⎨=-⎩∴这三个数为1-,3,7或7,3,1-. ∴它们的积为21-故答案为:21-2.在等差数列{}n a 中,1018a =,3078a =,则25a =______. 【答案】63 【分析】应用等差数列的性质:()m na a d m n m n-=≠-以及通项公式,即得解由等差数列的性质,可知公差301078183301020a a d --===-,所以()251025101815363a a d =+-=+⨯=. 故答案为:633.已知{a n }为等差数列,且a 6=4,则a 4a 7的最大值为________. 【答案】18 【分析】由题意,a 4a 7=(a 6-2d )(a 6+d )转化为二次函数的最大值,即得解 【解析】设等差数列的公差为d ,则a 4a 7=(a 6-2d )(a 6+d )=(4-2d )(4+d )=-2(d +1)2+18, 即a 4a 7的最大值为18. 故答案为:184.已知b 是a ,c 的等差中项,且a b c >>,若()lg 1a +,()lg 1b -,()lg 1c -成等差数列,15a b c ++=,则a 的值为______.【答案】7 【分析】根据等差中项的性质列出方程组,解方程组即可求出结果. 【解析】由题意,知()()()22lg 1lg 1lg 115b a cb ac a b c a b c=+⎧⎪-=++-⎪⎨++=⎪⎪>>⎩,解得753a b c =⎧⎪=⎨⎪=⎩,故答案为:7.5.在如下数表中,已知每行、每列中的数都成等差数列,那么位于表中的第n 行第n +1列的数是________. 【答案】2n n +## 【分析】由题中数表知,第n 行中的项满足a 1=n ,d =2n -n =n ,由等差数列的通项公式即得解由题中数表知,第n 行中的项分别为n,2n,3n ,…,组成一等差数列,设为{a n }, 则a 1=n ,d =2n -n =n ,所以a n +1=n +n ·n =n 2+n ,即第n 行第n +1列的数是n 2+n . 故答案为:n 2+n6.在等差数列5-,132-,2-,12-,…的每相邻两项间插入一个数,使之成为一个新的等差数列{}n a ,则新数列的通项公式为n a =________.【答案】32344n -【分析】根据首项和第三项构造方程求得新等差数列的公差d ,利用等差数列通项公式可得结果. 【解析】设{}n a 的公差为d ,则()732522d =---=,解得:34d =,{}n a ∴是以5-为首项,34为公差的等差数列,()332351444n a n n ∴=-+-=-. 故答案为:32344n -.7.已知数列{a n }中,a 1=2,a n +1=22nn a a +(n ∈N *),则数列{a n }的通项公式a n =________. 【答案】2n【分析】根据题意可判断1n a ⎧⎫⎨⎬⎩⎭为等差数列,即可求出通项公式.【解析】 ∵a n +1=22n n a a +,a 1=2,∴a n ≠0,∴11n a +=1n a +12,即11n a +-1n a =12,又a 1=2,则11a =12, ∴1n a ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列.∴1n a =11a +(n -1)×12=2n ,∴a n =2n.故答案为:2n.8.已知数列{}n a 为等差数列,公差()0d d ≠,且满足344651222024a a a a a a d ++=,则6511a a -=___________. 【答案】1506- 【分析】利用等差数列的基本量法化简得出56506a a d =,进而可求得6511a a -的值. 【解析】()()()()34465124444442228a a a a a a a d a a a d a d a d ++=-+++++()()()22224444445641284324242024a a d d a a d d a d a d a a d =++=++=++==,所以,56506a a d =,因此,566556111506506a a d a a a a d ---===-. 故答案为:1506-. 9.已知数列{}n a 中,135a =,()()111n n na n a n n +=+++,则数列{}n a 的通项公式为______.【答案】225n a n n =-【分析】将()()111n n na n a n n +=+++两边同时除以()1n n +,进而化为111n na a n n+-=+,然后结合等差数列的定义得到答案. 【解析】 由题意,可得111n n a a n n +=++,即111n n a a n n +-=+.又135a =,∴数列n a n ⎧⎫⎨⎬⎩⎭是以1315a =为首项,为1公差的等差数列,∴()32155n a n n n =+-=-,∴225n a n n =-. 故答案为:225n a n n =-.10.在数列{}n a 中,若11a =,212a =,()*12211++=+∈n n n n N a a a ,则该数列的通项为__________. 【答案】1n a n= 【分析】由题设知1{}na 是等差数列,根据等差数列通项公式有1n n a ,即可写出{}n a 的通项.【解析】 ∵()*12211++=+∈n n n n N a a a , ∴数列1{}n a 是等差数列,又21111a a -=且111a ,∴11(1)n n n a =+-=,故1n a n=. 故答案为:1n a n=. 11.已知数列{}n a 满足12123371,2,3,,N n n n na a a a a a n a *++++====∈,下列说法正确的是________. ①49a =;②N ,n n a ∀*∈都是整数; ③21221,,k k k a a a -+成等差数列;④21N ,N ,n n n k n a a ka ∃∀**++∈∈+=.【答案】②③ 【分析】根据12123371,2,3,,N n n n n a a a a a a n a *++++====∈,直接求得4a ,由递推公式1237n n n na a a a ++++=得()()22413n n n n n n a a a a a a +++++++=,令21n n n n a a b a +++=,则有2n n b b +=, 从而的出数列{}n b 的通项,从而可判断②③④的对错. 【解析】 解:2341713a a a a ⋅+==,故①错误; 因为1237n n n na a a a ++++=,即3127n n n n a a a a +++-= 则41237n n n n a a a a ++++=-,两式相减得:()()32124n n n n n n a a a a a a ++++++=+, 所以()()22413n n n n n n a a a a a a +++++++=,令21n n n n a a b a +++=,则有2n n b b +=, 又13122a a b a +==,24235a a b a +==, 所以2,21,5,2,n n k k N b n k k N ++=-∈⎧=⎨=∈⎩,所以21n n n n a b a a ++=⋅-,又因1231,2,3a a a ===均为整数,所以N ,n n a ∀*∈都是整数,故②正确;当n 为奇数时,则1n +为偶数,2n +为奇数, 212n n n a a a +++=,即212n n n a a a +++=, 即212122k k k a a a -++=,所以21221,,k k k a a a -+成等差数列,故③正确;因为2,21,5,2,n n k k N b n k k N ++=-∈⎧=⎨=∈⎩,所以当n 为奇数时,212n n n a a a +++=, 所以当n 为偶数时,215n n n a a a +++=, 故④错误. 故答案为:②③.12.有一列向量{}{}{}1112222:(,),:(,),,:(,)n n n n n a a x y a a x y a a x y ===,如果从第二项起,每一项与前一项的差都等于同一个向量,那么这列向量称为等差向量列.已知等差向量列{}na ,满足13(20,13),(18,15)a a =-=-,那么这列向量{}n a 中模最小的向量的序号n =_______【答案】4或5 【分析】由题意结合等差向量列的定义首先确定向量{}n a 的坐标表示,然后求解向量的模即可确定最小的向量的序号. 【解析】由题意可得:()()()3118,1520,132,2a a -=---=, 则每一项与前一项的差所得的同一个向量为:()1,1, 结合等差向量列的定义和等差数列通项公式可得:()201121n x n n =-+-⨯=-,()131112n y n n =+-⨯=+,即:()21,12n a n n =-+,这列向量{}n a 的模:(n a n =考查二次函数()2218585f x x x =-+,当18942x ==时,二次函数有最小值, 则这列向量{}n a 中模最小的向量的序号n =4或5. 故答案为:4或5. 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、单选题13.已知等差数列{}n a 的公差为2,且15919a a a ++=,则3711a a a ++=( ) A .21 B .25C .31D .35【答案】C 【分析】由题意可得出37111596d a a a a a a ++=+++,即可求得结果. 【解析】设等差数列{}n a 的公差为d ,则2d =,则()37111591592226196231a a a a d a d a d a a a d ++=+++++=+++=+⨯=, 故选:C.14.在等差数列{}n a 中,已知113a =,45163a a +=,33k a =,则k =( )A .50B .49C .48D .47【答案】A 【分析】求出等差数列{}n a 的公差d 的值,利用等差数列的通项公式结合已知条件可求得k 的值. 【解析】设等差数列{}n a 的公差为d ,则45121627733a a a d d +=+=+=,解得23d =,所以,()()121121133333k k k a a k d --=+-=+==,解得50k =. 故选:A.15.已知数列{}n a ,32a =,71a =,若11n a ⎧⎫⎨⎬+⎩⎭为等差数列,则11a =( )A .12B .23C .1D .2【答案】A 【分析】利用等差中项的性质可求得11a 的值. 【解析】由于数列11n a ⎧⎫⎨⎬+⎩⎭为等差数列,则7311211111a a a =++++,所以,117312121211111213a a a =-=-=+++++,解得1112=a .故选:A.16.已知数列{}n a 是首项为a ,公差为1的等差数列,数列{}n b 满足1.nn na b a +=若对任意的*n ∈N ,都有6n b b ≥成立,则实数a 的取值范围是( )A .[]6,5--B .()6,5--C .[]5,4--D .()5,4--【答案】B 【分析】依题意,对任意的*n ∈N ,都有6n b b ≥成立,即611n a a ≥,利用数列{}n a 的单调性可得670,0a a <>,即可求解.【解析】 由已知111n n n na b a a +==+, 对任意的*n ∈N ,都有6n b b ≥成立,即61111n a a +≥+,即611n a a ≥, 又数列{}n a 是首项为a ,公差为1的等差数列,1n a a n ∴=+-,且{}n a 是单调递增数列,当n →+∞时,10na →, 670,0a a ∴<>,即5060a a +<⎧⎨+>⎩,解得65a -<<-.故选:B. 【点睛】关键点睛:本题考查等差数列通项公式及数列单调性的应用,解题的关键是要利用数列的单调性结合已知条件得到670,0a a <>.17.数列{}n a 中,115a =,()*1332+=-∈n n a a n N ,则该数列中相邻两项的乘积是负数的是( ) A .2122,a a B .2223,a aC .2324,a aD .2425,a a【答案】C 【分析】由数列中项的递推关系可得4723n n a -=,由相邻两项积为负有(452)(472)09n n --<,即可得n 的值,进而确定符合条件的相邻两项. 【解析】123n n a a +-=-,则247215(1)33-⎛⎫=+--= ⎪⎝⎭n na n .要使10n n a a +<,即(452)(472)09n n --<,可得454722n <<,*n N ∈,∴n =23.则该数列中相邻两项的乘积为负数的项是23a 和24a , 故选:C18.已知各项均大于1的数列{}n a 满足()1 2.71828a e e =≈,{}n a 中任意相邻两项具有差为2的关系.记n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈,下列四个结论:①2A 为单元素集; ②6312S e =+; ③2212n n S S n --=;④若将23n A +中所有元素按照从小到大的顺序排列得到数列{}n b ,则{}n b 是等差数列. 其中所有正确结论的编号为( ) A .①② B .①③C .①③④D .②③④【答案】C 【分析】由各项均大于1且{}n a 中任意相邻两项具有差为2的关系,分别列举出数列{}n a 的前几项,并由n a 的所有可能值构成的集合为n A ,n A 中所有元素之和为n S ,*N n ∈分别检验得出答案. 【解析】 由题意12345678121481046810,2,,,4,6,,,24622e e e e e e e e a e a e a a a e a e a a e e e e e e e e ++⎧⎧++⎧⎧⎪⎪++++⎧⎧⎪⎪⎪⎪==+===+=+==⎨⎨⎨⎨⎨⎨+++⎩⎩⎪⎪⎪⎪+⎩⎩⎪⎪+⎩⎩①2a 的所有可能值构成的集合为{}22A e =+为单元素集,正确;②6A 中所有元素之和为61062318e e e e S =+++++=+,错误;③由归纳关系,2n S 和21n S -都有n 个数,且从小到大排列对应相减均为2,故2212n n S S n --=,正确;④23n A +为23n a +可能值构成的集合,从小到大排列为以e 为首项,公差为4的等差数列,正确; 故选:C【点睛】关键点点睛:本题考查归纳推理,考查数列的应用,解决本题的关键点是归纳出数列的前几项,并得到2n S 和21n S -都有n 个数,且从小到大排列对应相减均为2,以及每项的可能值构成的集合,从小到大排列为公差为4的等差数列,结合题目得出选项,考查学生逻辑推理能力,属于中档题.三、解答题19.已知等差数列{a n },a 6=5,a 3+a 8=5.(1)求{a n }的通项公式a n ;(2)若数列{b n }满足b n =a 2n -1,求{b n }的通项公式b n .【答案】(1)a n =5n -25(n ∈N +);(2)10n -30(n ∈N +).【分析】(1)结合等差数列的通项公式的公式求出首项和公差,进而求出结果;(2)结合(1)的结果,将2n -1代入即可求出结果.【解析】(1)设{a n }的首项是a 1,公差为d ,依题意得1155295a d a d +=⎧⎨+=⎩,∴1205a d =-⎧⎨=⎩, ∴a n =5n -25(n ∈N +).(2)由(1)知,a n =5n -25,∴b n =a 2n -1=5(2n -1)-25=10n -30,∴b n =10n -30(n ∈N +).20.已知等差数列{}n a 中,112220,86a a ==.(1)求数列{}n a 的公差d 和1a ;(2)满足10150n a <<的共有几项.【答案】(1)1406a d =-⎧⎨=⎩;(2)23. 【分析】(1)用基本量1a ,d 表示题设条件,联立即得解;(2)写出{}n a 通项公式646n a n =-,解不等式,结合n 为整数,即得解.【解析】(1)设首项为1a ,公差为d ,由已知得111020,2186.a d a d +=⎧⎨+=⎩ 解方程组,得140,6.a d =-⎧⎨=⎩ (2)由(1)知140,6.a d =-⎧⎨=⎩1(1)40(1)6646n a a n d n n ∴=+-=-+-⋅=-由10150n a <<,又646n a n =-,10646150n ∴<-<.解不等式,得289833n <<, 取整数共有23项.21.已知f (x )=22x x +,在数列{x n }中,x 1=13,x n =f (x n -1)(n ≥2,n ∈N *),试说明数列{1n x }是等差数列,并求x 95的值.【答案】说明见解析,x 95=150. 【分析】 首先利用递推关系,变形求得1n x -11n x -=12(n ≥2),根据数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求通项公式,即可求得95x .【解析】因为当n ≥2时,x n =f (x n -1),所以x n =1122n n x x --+(n ≥2),即x n x n -1+2x n =2x n -1(n ≥2), 得1122n n n n x x x x ---=1(n ≥2),即1n x -11n x -=12(n ≥2).又11x =3,所以数列{1nx }是以3为首项,12为公差的等差数列, 所以1n x =3+(n -1)×12=52n +,所以x n =25n +,所以x 95=2955+=150.22.甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个养鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个. 甲 乙请你根据提供的信息回答问题.(1)第2年养鸡场的个数及全县出产鸡的总只数;(2)到第6年这个县的养鸡业规模比第1年是扩大了还是缩小了?请说明理由.【答案】(1)第2年养鸡场有26个,全县出产鸡31.2万只;(2)缩小了,理由见解析.【分析】从第1年到第6年平均每个养鸡场出产的鸡数成等差数列,记为{a n },从第1年到第6年的养鸡场个数也成等差数列,记为{b n },由图易得通项公式,n n a b ,从第1年到第6年全县出产鸡的总只数记为数列{c n },则c n =a n b n .(1)计算2c 即得;(2)计算6c 与1c 比较可得.【解析】由题图可知,从第1年到第6年平均每个养鸡场出产的鸡数成等差数列,记为{a n },公差为d 1,且a 1=1,a 6=2;从第1年到第6年的养鸡场个数也成等差数列,记为{b n },公差为d 2,且b 1=30,b 6=10;从第1年到第6年全县出产鸡的总只数记为数列{c n },则c n =a n b n .(1)由a 1=1,a 6=2,得1111,52,a a d =⎧⎨+=⎩∴111,0.2,a d =⎧⎨=⎩得a 2=1.2; 由b 1=30,b 6=10,得11230,510,b b d =⎧⎨+=⎩∴1230,4,b d =⎧⎨=-⎩得b 2=26. ∴c 2=a 2b 2=1.2×26=31.2,即第2年养鸡场有26个,全县出产鸡31.2万只.(2)∵c 6=a 6b 6=2×10=20<c 1=a 1b 1=30,∴到第6年这个县的养鸡业规模比第1年缩小了. 23.已知数列{a n }满足a 1=2,a n +1=22n n a a +. (1)数列1n a ⎧⎫⎨⎬⎩⎭是否为等差数列?说明理由. (2)求a n .【答案】(1)是等差数列,理由见解析;(2)a n =2n.【分析】(1)由已知得11n a +-1n a =12,根据等差数列的定义可得证; (2)根据等差数列的通项公式可求得答案.【解析】解:(1)数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,理由如下: ∵a 1=2,a n +1=22n n a a +,∴11n a +=22n na a +=12+1n a ,∴11n a +-1n a =12, 所以数列1n a ⎧⎫⎨⎬⎩⎭是以首项为11a =12,公差为d =12的等差数列. (2)由(1)可知,1n a =11a +(n -1)d =2n ,∴a n =2n. 24.已知数列{a n }中,a 1=12,a n +1=112n n a a ++(n ∈N *). (1)求证:11n a ⎧⎫⎨⎬-⎩⎭是等差数列; (2)求数列{a n }的通项公式.【答案】(1)证明见解析;(2)a n =1n n +. 【分析】(1)由已知求得a n +1=12na -,然后由等差数列的定义作差可证; (2)利用(1)的结论先求出11n a -,然后可得结论. 【解析】(1)证明:因为对于n ∈N *,a n +1=112n n a a ++,所以a n +1=12n a -, 所以111n a +--11n a -=1112n a ---11n a -=211n n a a ---=-1. 所以数列11n a ⎧⎫⎨⎬-⎩⎭是首项为111a -=-2,公差为-1的等差数列. (2)由(1)知11n a -=-2+(n -1)(-1)=-(n +1),所以a n -1=-11n +,即a n =1n n +. 25.已知数列{a n }满足a 1a 2…a n =1-a n .(1)求证数列{11n a -}是等差数列,并求数列{a n }的通项公式; (2)设T n =a 1a 2……a n ,b n =a n 2T n 2,证明:b 1+b 2+…+b n <25. 【答案】(1)证明见解析,a n =1n n +;(2)证明见解析. 【分析】(1)由题设得112n na a +=-,进而构造11n a -与111n a +-的关系式,利用等差数列的定义证明结论,然后求a 1,即可得a n ;(2)由(1)求得T n 与b n ,再利用放缩法与裂项相消法证明结论.【解析】(1)∵a 1a 2…a n =1-a n ①,则a 1a 2…a n +1=1-a n +1②, ∴两式相除得:1111n n n a a a ++-=-,整理得112n n a a +=-, ∴1111122n n n n a a a a +--=-=--,则12111111n n n n a a a a +-==----, ∴111111n n a a +-=---,又n =1时有a 1=1-a 1,解得:112a =, ∴1121a =--, ∴数列{11n a -}是以2-为首项,1-为公差的等差数列, ∴12(1)11n n n a =---=---,即1n n a n =+. (2)由(1)得:T n =a 1a 2...a n =121 (2311)n n n ⨯⨯⨯=++, ∴b n =2222221111()()()1351121(2)(2)()()22n n n n n n n n n n n ⨯==<<=+++++++++1135()()22n n -++, ∴b 1+b 2+...+b n <222222222 (577923255255)n n n -+-++-=-<+++,得证. 26.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,N n *∈. (1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0(N )n n a a n *≥∈,求证:数列{}n b 的第0n 项是最大项;(3)设130a λ=<,()N n n b n λ*=∈,求λ的取值范围,使得对任意m ,*N n ∈,0n a ≠,且1,66mn a a ⎛⎫∈ ⎪⎝⎭.【答案】(1)65n a n =-;(2)证明见解析;(3)1(,0)4-.【分析】(1)由题知{}n a 是等差数列,即求;(2)由题得{}2n n a b -为常数列,可证;(3)由()N n n b n λ*=∈可得2nn a λλ=+,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=,结合条件即得.【解析】(1)因为112()n n n n a a b b ++-=-,35n b n =+, 所以112()2(3835)6n n n n a a b b n n ++-=-=+--=, 所以{}n a 是等差数列,首项为11a =,公差为6, ∴65n a n =-.(2)由()112n n n n a a b b ++-=-,得1122n n n n a b a b ++-=-. 所以{}2n n a b -为常数列,1122n n a b a b -=-,即1122n n a b a b =+-. 因为0n n a a ≥,n *∈N ,所以011112222n n b a b b a b +-≥+-,即0n n b b ≥. 故{}n b 的第0n 项是最大项.(3)因为n n b λ=,所以()112n nn n a a λλ++-=-,当2n ≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+ ()()()11222223n n n n λλλλλλλ---=-+-+⋅⋅⋅+-+ 2n λλ=+.当1n =时,13a λ=,符合上式.所以2nn a λλ=+.因为130a λ=<,且对任意*N n ∈,11(,6)6na a ∈,故0n a <,特别地2220a λλ=+<,于是1(,0)2λ∈-, 此时对任意*N n ∈,0n a ≠, 当102λ-<<时,222||n n a λλλ=+>,21212||n n a λλλ--=-+<,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=,∴m n a a 的最大值及最小值分别是12321a a λ=+及21213a a λ+=, 由21136λ+>及3621λ<+,解得104,综上所述,λ的取值范围是1(,0)4-.。

等差数列知识点、例题。练习

等差数列知识点、例题。练习

等差数列知识点、例题。

练习数列的概念和性质(一)练习一、定义:按一定次序排成的一列数叫做数列.:1. 从函数的角度看,数列可以是定义域为N*(或它的有限子集)的函数,当自变量从小到大依次取值时对应的一列函数值;2. 如果两个数列的数完全相同而顺序不同,则它们不是相同的数列;3. 在同一个数列中,一个数可以重复出现;4. 数列中的每一个数叫做这个数列的项,各项依次叫做第1项,第2项。

. 二、数列的表示:通项公式:an f(n)1.解析法递推公式:an 1 f(an)一、巩固提高1. 数列1,3,6,10,15,。

的通项an可以等于( ) (A)n2 (n 1) (B)n(n 1)n(n+1)2(C) (D) n 2n+2 222. 数列-1,0,-13,0,-25,0,-37,0,。

的通项an可以等于( )nn(-1)1(-1)1(6n 5) (B)(6n 5) (A)22nn(-1)1(-1)1(6n 5) (D) (6n 5) (C)223..巳知数列{an}的首项a1=1,an 1 2an 1(n 2),则a5为( )(A) 7 (B)15 (C)30 (D)31 二、能力提升5. 根据数列的前几项,写出数列{an}的一个通项公式: (1)__,,,,,。

; 3__4,,,。

; __(2)2,-6,12,-20,30,。

; (3)一、巩固提高数列的概念和性质(二)练习1.若数列{an}的前n项和Sn 2n 1,则a1与a5的值依次为( )2(A) 2,14 (B)2,18 (C)3,4 (D)3,18 2.若数列{an}的前n项和Sn 4n2 n 2,则该数列的通项公式为( ) (A)an 8n 5 (n N*) (B) an 8n 5(n N*)(n 1) 5(C)an 8n 5(n 2) (D)an *8n 5(n 2,n N)5.已知数列{an}满足a1=1,当n 2时,恒有a1a2。

高中数学选择性必修二 4 2 1 等差数列的概念(精讲)(含答案)

高中数学选择性必修二 4 2 1 等差数列的概念(精讲)(含答案)

4.2.1 等差数列的概念考点一 判断是否为等差数列【例1】(2020·上海高二课时练习)下列数列中,不是等差数列的是( ) A .1,4,7,10B .lg2,lg4,lg8,lg16C .54322,2,2,2D .10,8,6,4,2【答案】C【解析】根据等差数列的定义,可得:A 中,满足13n n a a +-=(常数),所以是等差数列;B 中,lg 4lg 2lg8lg 4lg16lg8lg 2---=-=(常数),所以是等差数列;C 中,因为453423222222-≠--≠,不满足等差数列的定义,所以不是等差数列;D 中,满足12n n a a +-=-(常数),所以是等差数列.故选:C.【一隅三反】1.(2019·山西应县一中期末(理))若{}n a 是等差数列,则下列数列中也成等差数列的是( )A .{}2naB .1n a ⎧⎫⎨⎬⎩⎭C .{}3n aD .{}n a【答案】C 【解析】A:22n+1n a -a =(a n +a n+1)(a n+1﹣a n )=d[2a 1+(2n ﹣1)d],与n 有关系,因此不是等差数列.B:n+1n 11-a a =n+1n -da a ⨯=[]11-d a +nd a +n-1d ⨯()() 与n 有关系,因此不是等差数列.C:3a n+1﹣3a n =3(a n+1﹣a n )=3d 为常数,仍然为等差数列;D: 当数列{a n }的首项为正数、公差为负数时,{|a n |}不是等差数列;故选:C 2.(2020·全国高一课时练习)已知下列各数列,其中为等差数列的个数为( ) ① 4,5,6,7,8,… ② 3,0,-3,0,-6,… ③ 0,0,0,0,… ④ 1234,,,,10101010… A .1 B .2C .3D .4【答案】C【解析】第一个数列是公差为1的等差数列.第二个数列是摆动数列,不是等差数列.第三个是公差为0的等差数列.第四个是公差为110的等差数列.故有3个等差数列,所以选C. 3.(2020·全国课时练习)已知数列{}n a ,c 为常数,那么下列说法正确的是( ) A .若{}n a 是等差数列时,不一定是等差数列B .若{}n a 不是等差数列时,一定不是等差数列C .若是等差数列时,{}n a 一定是等差数列 D .若不是等差数列时,{}n a 一定不是等差数列【答案】D【解析】当{}n a 是等差数列时,由等差数列的性质可知,一定是等差数列,A 错;对于数列{}n a :1,2,4,5,令,则为等差数列,B 错;当c 为0时, 0,0,0,0是等差数列,但{}n a 不是等差数列,C 错.故选D .考点二 求等差数列的项或通项【例2】(1)(2020·兴安县第三中学期中)由1a =4,3d =确定的等差数列{}n a ,当a n =28时,序号n 等于( ) A .9B .10C .11D .12(2)(2020·广西南宁三中开学考试)在单调递增的等差数列{}n a 中,若31a =,2434a a =,则1a =( ) A .1-B .12-C .0D .12【答案】(1)A (2)C【解析】(1)因为14a =,3d =,所以()1131n a a n d n =+-=+,所以3128n a n =+=,解得9n = 故选:A(2)因为{}n a 是等差数列,所以3121a a d =+=,()()11334a d a d ++=, 解得:12d =,10a =故选:C【一隅三反】1.(2020·江苏江都·邵伯高级中学月考)等差数列{}n a 中,37158a a a ++=,83a =,则9a =( )A .2B .5C .11D .13【答案】A【解析】因为37158a a a ++=,得13228a d +=①,又83a =,得173a d +=②,由①②得:1101a d =⎧⎨=-⎩,故9181082a a d =+=-=.故选:A.2.(2020·兴安县第三中学期中)在数列{}n a 中,1a =2,12n n a a +-=,则51a 的值为( ) A .96 B .98 C .100 D .102【答案】D【解析】因为1a =2,12n n a a +-=,所以数列{}n a 是以2为首项,2为公差的等差数列,所以2n a n =,所以51251102a =⨯=故选:D3.(2020·广西南宁三中开学考试)数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是( ) A .31n - B .32n + C .32n - D .31n +【答案】B【解析】因为13n n a a +-=,所以数列{}n a 是以5为首项,3为公差的等差数列,则()*53132,n a n n n N =+-=+∈.故选:B考点三 等差中项【例2】(1)(2020·全国高一课时练习)已知a =,b =a,b 的等差中项为( )A BCD (2)(2020·昆明市官渡区第一中学开学考试(文))已知0,0a b >>,并且111,,2a b成等差数列,则9a b +的最小值为_________. 【答案】(1)A (2)16【解析】(1)13a ==+,b ==,a b ∴的等差中项为122a b A +==⨯12=⨯= A.(2)由题可得:111a b +=,故1199(9)()1916a ba b a b a b b a+=++=+++≥ 【一隅三反】1.(2020·广东濠江·金山中学高一月考)在等差数列{} n a 中,若288a a +=,则()2375a a a +-=___________.【答案】60;【解析】在等差数列{}n a 中,288a a +=,28528a a a ∴+==,解得54a =,2237555()(2)64460a a a a a +-=-=-=.故答案为:602.(2020·全国其他(理))已知数列{}n a 为等差数列,若2533a a a +=,且4a 与72a 的等差中项为6,则5a =( ) A .0 B .1C .2D .3【答案】D【解析】设{}n a 的公差为d .数列{}n a 为等差数列,2533a a a +=,且4a 与72a 的等差中项为6,∴1111143(2)32(6)12a d a d a d a d a d +++=+⎧⎨+++=⎩,解得11a =-,1d =,5143a ∴=-+=.故选:D .3.(2019·兴安县第三中学期中)已知等差数列{}n a 的前三项为1,1,23a a a -++,则此数列的首项1a=______ . 【答案】1-【解析】依题意可得()()()12321a a a -++=+,解得0a =,故等差数列{}n a 的前三项为1,1,3-,所以11a =-故答案为:1-考点四 证明数列为等差数列【例4】(2019·全国高一课时练习)设数列{a n }满足当n >1时,a n =1114n n a a --+,且a 1=15.(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列;(2)a 1a 2是否是数列{a n }中的项?如果是,求出是第几项;如果不是,请说明理由. 【答案】(1)见证明;(2) a 1a 2是数列{a n }中的项,是第11项.【解析】(1)证明:根据题意a 1=15及递推关系a n ≠0.因为a n =1114n n a a --+.取倒数得111n n a a -=+4, 即111n n a a --=4(n >1),所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为5,公差为4的等差数列. (2)解:由(1),得1n a =5+4(n -1)=4n +1,141n a n =+. 又121111594541a a n =⨯==+,解得n =11. 所以a 1a 2是数列{a n }中的项,是第11项. 【一隅三反】1.(2020·全国高一课时练习)已知2()2x f x x =+,在数列{}n a 中,113a =,1()n n a f a -=*2,n n N ≥∈。

等差数列及性质

等差数列及性质

等差数列及性质一、知识梳理:1.等差数列的定义(1)前提条件:①从第2项起.②每一项与它的前一项的差等于同一个常数.(2)结论:这个数列是等差数列.(3)相关概念:这个常数叫做等差数列的公差,常用字母d表示.2.等差中项(1)前提:三个数a,A,b成等差数列.(2)结论:A叫做a,b的等差中项.(3)满足的关系式:2A=a+b.34.等差数列通项公式的推广5.等差数列的性质(1){a n}是公差为d的等差数列,若正整数m,n,p,q满足m+n=p+q,则:a m+a n=a p+a q.特别地,当m+n=2k(m,n,k∈N*)时,a m+a n=2a k.(2)对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a1+a n =a2+a n-1=…=a k+a n-k+1=….(3)若{a n}是公差为d的等差数列,则①{c+a n}(c为任一常数)是公差为d的等差数列;②{ca n}(c为任一常数)是公差为cd的等差数列;③{a n+a n+k}(k为常数,k∈N*)是公差为2d的等差数列.(4)若{a n},{b n}分别是公差为d1,d2的等差数列,则数列{pa n+qb n}(p,q是常数)是公差为pd1+qd2的等差数列.(5).等差数列的图象由a n=d n+(a1-d),可知其图像是直线上的一些等间隔的点,其中是该直线的斜率.(6).等差数列的单调性:对于a n=d n+(a1-d),(1)当d>0时,{a n}为;(2)当d<0时,{a n}为;(3)当d=0时,{a n}为.二、题型探究:探究一:等差数列的通项公式及其应用例1.(1)已知等差数列{a n}:3,7,11,15,….①135,4m+19(m∈N*)是{a n}中的项吗?试说明理由.②若a p,a q(p,q∈N*)是数列{a n}中的项,则2a p+3a q是数列{a n}中的项吗?并说明你的理由.(2)在等差数列{a n}中,已知a5=10,a12=31,则首项a1=________,公差d=________.1.(1)若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q =________.(2)已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?探究二:等差数列的判定例2.(1)已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2且x ∈N *)确定.①求证:⎩⎨⎧⎭⎬⎫1x n 是等差数列;②当x 1=12时,求x 2 015.(2)已知1b +c ,1c +a ,1a +b 成等差数列,证明:a 2,b 2,c 2也成等差数列.等差数列的判定方法有以下三种:(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }为等差数列; (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }为等差数列;(3)通项公式法:a n =an +b (a ,b 是常数,n ∈N *)⇔{a n }为等差数列. 但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.2.(1)判断下列数列是否为等差数列:①在数列{a n }中a n =3n +2; ②在数列{a n }中a n =n 2+n .(2)已知c n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2,则数列{c n }________等差数列(填“是”或“不是”).(3)已知数列{a n }满足a 1=2,a n +1=2a n a n +2,则数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.探究三:等差中项的应用例3.一个等差数列由三个数组成,三个数的和为9,三个数的平方和为35,求这三个数.[互动探究]若将题中的三个数改为四个数成等差数列,且四个数之和为26,第二个数与第三个数之积为40,求这四个数.三个数或四个数成等差数列的设法当三个数或四个数成等差数列且和为定值时,方法一:可设出首项a1和公差d,列方程组求解.方法二:采用对称的设法,三个数时,设为a-d,a,a+d;四个数时,可设为a-3d,a-d,a+d,a+3d.3.(1)方程x2-6x+1=0的两根的等差中项为()A.1 B.2C.3 D.4(2)已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.探究四:等差数列性质的应用例4.在等差数列{a n}中:(1)若a5=a,a10=b,求a15;(2)若a3+a8=m,求a5+a6.(3)若a1+a2+…+a5=30,a6+a7+…+a10=80,求a11+a12+…+a15.(1)利用等差数列的通项公式列关于a1和d的方程组,求出a1和d,进而解决问题是处理等差数列问题的最基本方法.(2)巧妙地利用等差数列的性质,可以大大简化解题过程.4.(1)已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A .a 1+a 101>0 B .a 2+a 101<0 C .a 3+a 99=0 D .a 51=51(2)若x ≠y ,且两个数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各成等差数列,那么a 1-a 2b 1-b 2等于( )A .1 B.23C.34D.43探究五:等差数列的综合问题例5.在公差不为零的等差数列{a n }中,a 1,a 2为方程x 2-a 3x +a 4=0的根,求数列{a n }的通项公式.例6.在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列{a n }的通项公式;(3)若λa n +1a n +1≥λ对任意n ≥2的整数恒成立,求实数λ的取值范围.5.(1)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n ,则a n =________.(2)已知数列{a n }满足(a n +1-a n )(a n +1+a n )=16,且a 1=1,a n >0.①求证:数列{a 2n }为等差数列; ②求a n .例7.已知等差数列{a n }的首项为a 1,公差为d ,且a 11=-26,a 51=54,求a 14的值.你能判断该数列从第几项开始为正数吗?[解] 由等差数列通项公式a n =a 1+(n -1)d ,列方程组⎩⎪⎨⎪⎧a 1+10d =-26,a 1+50d =54,解得⎩⎪⎨⎪⎧a 1=-46,d =2.∴a 14=-46+13×2=-20.∴a n =-46+(n -1)×2=2n -48. 令a n ≥0,得2n -48≥0⇒n ≥24, ∴从第25项开始,各项为正数.[错因与防范] (1)忽略了对“从第几项开始为正数”的理解,误认为n =24也满足条件.(2)由通项公式计算时,易把公式写成a n =a 1+nd ,导致结果错误.(3)等差数列通项公式中有a 1,a n ,n ,d 四个量,知三求一,一定要准确应用公式.7.(1)首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是________. (2)一个等差数列的首项为125,公差d >0,从第10项起每一项都大于1,求公差d 的范围.例8.(本题满分12分)两个等差数列5,8,11,…和3,7,11,…都有100项,那么它们共有多少相同的项?[解] 设已知的两数列的所有相同的项构成的新数列为{c n },c 1=11.2分 又等差数列5,8,11,…的通项公式为a n =3n +2,4分 等差数列3,7,11,…的通项公式为b n =4n -1.6分 所以数列{c n }为等差数列,且公差d =12,①8分 所以c n =11+(n -1)×12=12n -1.10分又a 100=302,b 100=399,c n =12n -1≤302,②得n ≤2514,可见已知两数列共有25个相同的项.12分[规范与警示] (1)解题过程中①处易出现令3n +2=4n -1,解得n =3的错误,这实际上是混淆了两个n 的取值而导致的错误,也是常犯错误,解题过程中②处易出现c n =12n -1≤399,导致错误.这是对题意不理解造成的,两个数列的公共项应以较小的为基准求解.(2)在解决数列的问题时弄清公式中各量的含义,不同的数列中同一量的意义是相同的,但是并不一定对应.如本例中项数n 在数列{a n }和数列{b n }中的意义,当项相同时,对应的序号n 不一定相同.巩固练习:1.(2015·汉口高二检测)下列说法中正确的是( )A .若a ,b ,c 成等差数列,则a 2,b 2,c 2成等差数列B .若a ,b ,c 成等差数列,则log 2a ,log 2b ,log 2c 成等差数列C .若a ,b ,c 成等差数列,则a +2,b +2,c +2成等差数列D .若a ,b ,c 成等差数列,则2a ,2b ,2c 成等差数列2.已知x ≠y ,且两个数列x ,a 1,a 2,…,a m ,y 与x ,b 1,b 2,…,b n ,y 各自都成等差数列,则a 2-a 1b 2-b 1等于( )A.m nB.m +1n +1C.n mD.n +1m +13.(2014·高考重庆卷)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8C .10 D .144.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37=( ) A .0 B .37C .100 D .-37 5.(2014·高考辽宁卷)设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0B .d >0C .a 1d <0 D .a 1d >0 6.(2015·泰安高二检测)在等差数列{a n }中,a 3,a 10是方程x 2-3x -5=0的根,则a 5+a 8=________.7.(2015·河北省石家庄市月考)在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为________.8.已知数列{a n }满足a 1=1,若点⎝ ⎛⎭⎪⎫a n n ,a n +1n +1在直线x -y +1=0上,则a n=________.9.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为________.10.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9.11.数列{a n }为等差数列,b n =⎝⎛⎭⎫12a n,又已知b 1+b 2+b 3=218,b 1b 2b 3=18,求{a n }的通项公式.12.已知数列{a n }满足a 1=4,a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列;(2)求数列{a n }的通项公式.备选:《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共为4升,则第5节的容积为________升.巩固练习答案:1.解析:选C.因为a ,b ,c 成等差数列,则2b =a +c , 所以2b +4=a +c +4,即2(b +2)=(a +2)+(c +2), 所以a +2,b +2,c +2成等差数列.2.解析:选D.设这两个等差数列公差分别是d 1,d 2,则a 2-a 1=d 1,b 2-b 1=d 2.第一个数列共(m +2)项,∴d 1=y -x m +1;第二个数列共(n +2)项,∴d 2=y -x n +1.这样可求出a 2-a 1b 2-b 1=d 1d 2=n +1m +1. 3.解析:选B.法一:设等差数列的公差为d ,则a 3+a 5=2a 1+6d =4+6d =10,所以d =1,a 7=a 1+6d =2+6=8.法二:由等差数列的性质可得a 1+a 7=a 3+a 5=10,又a 1=2,所以a 7=8. 4.解析:选C.设c n =a n +b n ,由于{a n },{b n }都是等差数列,则{c n }也是等差数列,且c 1=a 1+b 1=25+75=100,c 2=a 2+b 2=100, ∴{c n }的公差d =c 2-c 1=0.∴c 37=100,即a 37+b 37=100.5.解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0.6.解析:由已知得a 3+a 10=3.又数列{a n }为等差数列,∴a 5+a 8=a 3+a 10=3. 答案:37.解析:由等差数列的性质可知,a 3+a 5+a 7+a 9+a 11=(a 3+a 11)+(a 5+a 9)+a 7=5a 7=100,∴a 7=20.∴3a 9-a 13=2a 9+a 9-a 13=(a 5+a 13)+a 9-a 13=a 5+a 9=2a 7=40.答案:408.解析:由题设可得a n n -a n +1n +1+1=0,即a n +1n +1-a n n =1,所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为公差的等差数列,且首项为1,故通项公式a nn=n ,所以a n =n 2.答案:n 29.解析:由于三边长构成公差为4的等差数列,故可设三边长分别为x -4,x ,x +4. 由一个内角为120°,知其必是最长边x +4所对的角. 由余弦定理得,(x +4)2=x 2+(x -4)2-2x (x -4)·cos 120°, ∴2x 2-20x =0,∴x =0(舍去)或x =10, ∴S △ABC =12×(10-4)×10×sin 120°=15 3.答案:15 310.解:(1)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧a 1+4d =-1a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5d =1. (2)设数列{a n }的公差为d .由已知得,⎩⎪⎨⎪⎧a 1+a 1+5d =12a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=1d =2.∴a n =1+(n -1)×2=2n -1,∴a 9=2×9-1=17.11.解:∵b 1+b 2+b 3=⎝⎛⎭⎫12a 1+⎝⎛⎭⎫12a 2+⎝⎛⎭⎫12a 3=218,b 1b 2b 3=⎝⎛⎭⎫12a 1+a 2+a 3=18,∴a 1+a 2+a 3=3. ∵a 1,a 2,a 3成等差数列,可设a 1=a 2-d ,a 3=a 2+d ,∴a 2=1. 由⎝⎛⎭⎫121-d+12+⎝⎛⎭⎫121+d =218,得2d +2-d =174,解得d =2或d =-2. 当d =2时,a 1=1-d =-1,a n =-1+2(n -1)=2n -3;当d =-2时,a 1=1-d =3,a n =3-2(n -1)=-2n +5. 12.解:(1)证明:b n +1-b n =1a n +1-2-1a n -2=1(4-4a n)-2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.又b 1=1a 1-2=12,∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知b n =12+(n -1)×12=12n .∵b n =1a n -2,∴a n =1b n +2=2n +2.∴数列{a n }的通项公式为a n =2n+2.备选:解析:设自上而下各节的容积构成的等差数列为 a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9.则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=4a 1+6d =3,a 7+a 8+a 9=3a 1+21d =4.解得⎩⎨⎧a 1=1322,d =766,故a 5=a 1+4d =6766. 答案:67667(1)解析:a n =24+(n -1)d ,由题意知,⎩⎪⎨⎪⎧a 10<0,a 9≥0,即⎩⎪⎨⎪⎧24+9d <0,24+8d ≥0,解得-3≤d <-83.答案:⎣⎡⎭⎫-3,-83 (2)解:设等差数列为{a n },由d >0,知a 1<a 2<…<a 9<a 10<a 11…,依题意,有⎩⎪⎨⎪⎧1<a 10<a 11<…,a 1<a 2<…<a 9≤1,即⎩⎪⎨⎪⎧a 10>1a 9≤1⇔⎩⎨⎧125+(10-1)d >1,125+(9-1)d ≤1,解得875<d ≤325,即公差d 的取值范围是⎝⎛⎦⎤875,325.。

等差数列练习题及答案

等差数列练习题及答案

等差数列练习题及答案等差数列练习题及答案数学作为一门基础学科,无论在学校还是在社会生活中都扮演着重要的角色。

其中,等差数列是数学中的一个重要概念,也是我们常见的数学问题之一。

本文将为大家提供一些等差数列的练习题及答案,以帮助大家更好地理解和掌握这个概念。

练习题一:已知等差数列的首项为3,公差为5,求第10项的值。

解答一:根据等差数列的性质,第n项的值可以通过公式an = a1 + (n-1)d来计算。

其中,an表示第n项的值,a1表示首项的值,d表示公差。

代入已知条件,可得第10项的值为a10 = 3 + (10-1)5 = 3 + 45 = 48。

练习题二:已知等差数列的前n项和为Sn = 2n^2 + n,求该等差数列的公差。

解答二:根据等差数列的性质,前n项和可以通过公式Sn = n/2(a1 + an)来计算。

代入已知条件,可得2n^2 + n = n/2(a1 + a1 + (n-1)d)。

化简后得到2n^2 + n = n/2(2a1 + (n-1)d)。

进一步化简可得4n^2 + 2n = n(2a1 + (n-1)d)。

由于等差数列的前n项和是一个关于n的二次函数,所以4n^2 + 2n = n(2a1 + (n-1)d)也是一个关于n的二次函数。

两个二次函数相等,意味着它们的系数相等。

根据系数相等的条件,可得4 = 2a1 + (n-1)d,即2a1 + (n-1)d = 4。

由此可得公差d = (4 - 2a1)/(n-1)。

练习题三:已知等差数列的前n项和为Sn = 3n^2 + 2n,求该等差数列的首项。

解答三:根据等差数列的性质,前n项和可以通过公式Sn = n/2(a1 + an)来计算。

代入已知条件,可得3n^2 + 2n = n/2(a1 + a1 + (n-1)d)。

化简后得到3n^2 + 2n = n/2(2a1 + (n-1)d)。

进一步化简可得6n^2 + 4n =n(2a1 + (n-1)d)。

高考一轮复习 等差数列 知识点+例题+练习

高考一轮复习 等差数列 知识点+例题+练习

自主梳理1.等差数列的有关定义(1)一般地,如果一个数列从第____项起,每一项与它的前一项的____等于同一个常数,那么这个数列就叫做等差数列.符号表示为____________ (n ∈N *,d 为常数).(2)数列a ,A ,b 成等差数列的充要条件是____________,其中A 叫做a ,b 的____________.2.等差数列的有关公式(1)通项公式:a n =____________,a n =a m +__________ (m ,n ∈N *).(2)前n 项和公式:S n =______________=________________.3.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列的充要条件是其前n 项和公式S n =____________.4.等差数列的性质(1)若m +n =p +q (m ,n ,p ,q ∈N *),则有________________,特别地,当m +n =2p 时,________________.(2)等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)等差数列的单调性:若公差d >0,则数列为________;若d <0,则数列为__________;若d =0,则数列为____________.自我检测1. 已知等差数列{a n }中,a 5+a 9-a 7=10,记S n =a 1+a 2+…+a n ,则S 13的值为________.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d =________.3.设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=________.4.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=________.学生姓名教师姓名 班主任 日期时间段 年级 课时 教学内容 等差数列及其前n 项和教学目标 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.了解等差数列与一次函数的关系.4.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.重点 等差数列性质、公式灵活应用难点同上5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=________.探究点一 等差数列的基本量运算例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50,(1)求通项a n ;(2)若S n =242,求n .变式迁移1 设等差数列{a n }的公差为d (d ≠0),它的前10项和S 10=110,且a 1,a 2,a 4成等比数列,求公差d 和通项公式a n .探究点二 等差数列的判定例2 已知数列{a n }中,a 1=35,a n =2-1a n -1 (n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大值和最小值,并说明理由.变式迁移2 已知数列{a n }中,a 1=5且a n =2a n -1+2n -1(n ≥2且n ∈N *).(1)求a 2,a 3的值.(2)是否存在实数λ,使得数列{a n +λ2n }为等差数列?若存在,求出λ的值;若不存在,说明理由.探究点三 等差数列性质的应用例3 若一个等差数列的前5项之和为34,最后5项之和为146,且所有项的和为360,求这个数列的项数.变式迁移3 已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且前n 项和为286,求n ;(2)若S n =20,S 2n =38,求S 3n ;(3)若项数为奇数,且奇数项和为44,偶数项和为33,求数列的中间项和项数.探究点四 等差数列的综合应用例4 已知数列{a n }满足2a n +1=a n +a n +2 (n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72.若b n =12a n -30,求数列{b n }的前n 项和的最小值.变式迁移4 在等差数列{a n }中,a 16+a 17+a 18=a 9=-36,其前n 项和为S n .(1)求S n 的最小值,并求出S n 取最小值时n 的值.(2)求T n =|a 1|+|a 2|+…+|a n |.1.等差数列的判断方法有:(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)中项公式:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.2.对于等差数列有关计算问题主要围绕着通项公式和前n 项和公式,在两个公式中共五个量a 1、d 、n 、a n 、S n ,已知其中三个量可求出剩余的量,而a 与d 是最基本的,它可以确定等差数列的通项公式和前n 项和公式.3.要注意等差数列通项公式和前n 项和公式的灵活应用,如a n =a m +(n -m )d ,S 2n -1=(2n -1)a n 等.4.在遇到三个数成等差数列问题时,可设三个数为①a ,a +d ,a +2d ;②a -d ,a ,a +d ;③a -d ,a +d ,a +3d 等可视具体情况而定.一、填空题1.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=______.2.如果等差数列{}a n 中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7=________.3.已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是________.4.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为________.5.等差数列{a n }的前n 项和满足S 20=S 40,下列结论中正确的序号是________. ①S 30是S n 中的最大值;②S 30是S n 中的最小值;③S 30=0;④S 60=0.6.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.8.在数列{a n }中,若点(n ,a n )在经过点(5,3)的定直线l 上,则数列{a n }的前9项和S 9=________.二、解答题9.设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110,且a 22=a 1a 4.(1)证明:a 1=d ;(2)求公差d 的值和数列{a n }的通项公式.10.已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a2n-1(n∈N*),求数列{b n}的前n项和T n. 11.在数列{a n}中,a1=1,3a n a n-1+a n-a n-1=0(n≥2).(1)证明数列{1a n}是等差数列;(2)求数列{a n}的通项;(3)若λa n+1a n+1≥λ对任意n≥2的整数恒成立,求实数λ的取值范围.。

(完整版)等差数列知识点总结及练习(精华版)

(完整版)等差数列知识点总结及练习(精华版)

等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。

{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。

{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【基础练习】
1、2016是等差数列4,6,8,…的( )
A 、第1004项
B 、第1005项
C 、第1006项
D 、第1007项
2、在数列}{n a 中,)(122211*+∈+==N n a a a n n ,
,则=101a ( ) A 、49 B 、50 C 、51 D 、52
3、在等差数列中,)(n m m a n a n m ≠==,,则=+n m a ( )
A 、n m -
B 、0
C 、2m
D 、2n
4、等差数列}{n a 的首项为70,公差为9-,则这个数列中绝对值最小的一项是( )
A 、8a
B 、9a
C 、10a
D 、11a
5、设数列}{n a 、}{n b 都是等差数列,且10075252211=+==b a b a ,,,则3737b a +
=( )
A 、0
B 、37
C 、100
D 、37-
6、在等差数列}{n a 中,若45076543=++++a a a a a ,则=+82a a .
7、若b a ≠,两个等差数列b x x a ,,,21与b y y y a ,,,,321的公差分别为1d ,
2d ,则
=2
1d d .
【基础练习】
1、2016是等差数列4,6,8,…的( D )
A 、第1004项
B 、第1005项
C 、第1006项
D 、第1007项
2、在数列}{n a 中,)(122211*+∈+==N n a a a n n ,
,则=101a ( D ) A 、49 B 、50 C 、51 D 、52
3、在等差数列中,)(n m m a n a n m ≠==,,则=+n m a ( B )
A 、n m -
B 、0
C 、2m
D 、2n
4、等差数列}{n a 的首项为70,公差为9-,则这个数列中绝对值最小的一项是( B )
A 、8a
B 、9a
C 、10a
D 、11a
5、设数列}{n a 、}{n b 都是等差数列,且10075252211=+==b a b a ,,,则3737b a +
=( C )
A 、0
B 、37
C 、100
D 、37-
6、在等差数列}{n a 中,若45076543=++++a a a a a ,则=+82a a 180 .
7、若b a ≠,两个等差数列b x x a ,,,21与b y y y a ,,,,321的公差分别为1d ,
2d ,则
=21d d 3
4 .。

相关文档
最新文档