汽车碰撞理论4

合集下载

C-NCAP汽车碰撞评分标准

C-NCAP汽车碰撞评分标准

C-NCAP共有4项试验:正面100%碰撞试验,正面40%碰撞试验,侧面碰撞试验和鞭打试验。

1.正面100%碰撞试验试验车辆 100%重叠正面冲击固定刚性壁障。

碰撞速度为50km/h(试验速度不得低于50km/h)。

试验车辆到达壁障的路线在横向任一方向偏离理论轨迹均不得超过 150mm。

在前排驾驶员和乘员位置分别放置一个 Hybrid III 型第 50 百分位男性假人,用以测量前排人员受伤害情况。

在第二排座椅最左侧座位上放置一个 Hybrid III 型第 5 百分位女性假人,最右侧座位上放置一个 P 系列 3 岁儿童假人,用以考核乘员约束系统性能及对儿童乘员的保护。

若车辆第二排座椅 ISOFIX固定点仅设置于左侧,可以将女性假人放置的位置与儿童约束系统及儿童假人调换。

二.正面40%碰撞试验试验车辆 40%重叠正面冲击固定可变形吸能壁障。

碰撞速度为56km/h(试验速度不得低于56km/h),偏置碰撞车辆与可变形壁障碰撞重叠宽度应在 40%车宽±20mm 的范围内。

在前排驾驶员和乘员位置分别放置一个Hybrid III型第50百分位男性假人,用以测量前排人员受伤害情况。

在第二排座椅最左侧座位上放置一个 Hybrid III 型第 5 百分位女性假人,用以考核乘员约束系统的性能。

三.侧面碰撞试验移动台车前端加装可变形吸能壁障冲击试验车辆驾驶员侧。

移动壁障行驶方向与试验车辆垂直,移动壁障中心线对准试验车辆 R 点,碰撞速度为50km/h(试验速度不得低于50km/h)。

移动壁障的纵向中垂面与试验车辆上通过碰撞侧前排座椅 R 点的横断垂面之间的距离应在±25mm内。

在驾驶员位置放置一个 EuroSID II 型假人, 用以测量驾驶员位置受伤害情况。

在第二排座椅被撞击侧放置 SID-IIs(D 版)假人并使用安全带,用以考核乘员约束系统的性能及对第二排乘员的保护。

四.试验评分项目(满分48分,每项16分)正面100%碰撞(16分)头- 5分颈- 2分胸- 5分大腿-2分小腿-2分正面40%偏置碰撞(16分)头- 4分胸- 4分大腿-4分小腿-4分侧面碰撞(16分)头- 4分胸- 4分腹部-4分骨盆-4分附加评分项目(满分3分)前排安全带提醒装置(1.5分)侧气囊和气帘(1分)ISOFIX装置(0.5分)信息说明内容安全配置燃料消耗量*五.被评价车型分成五类①小型乘用车-长度小于4m的乘用车,包括小型MPV;②A类乘用车-两厢式乘用车及长度小于等于4.5m或排量不大于1.6L的三厢式乘用车;③B类乘用车-长度大于4.5m且排量大于1.6L的乘用车;④多功能乘用车——MPV(座椅多于2排);⑤运动型乘用车——SUV。

课件4:1.5 弹性碰撞和非弹性碰撞

课件4:1.5 弹性碰撞和非弹性碰撞
第一章 动量守恒定律
5 弹性碰撞和非弹性碰撞
新课导入
碰撞是自然界中常见的现象,你能列举出一些碰撞现象吗?
肢体之间的碰撞
汽车之间的碰撞
网球和球拍的碰撞
水上电动碰碰船
陨石撞击地球
大部分物体碰撞的特点: 1.相互作用时间极短。 2.相互作用力极大,即内力远大于外力,遵循动量守恒定律。
思考:那么如果从能量的角度去研究碰撞前后物体动能的变化,该 如何对碰撞进行分类呢?
典例精析
例2.如图所示,物块A与轻质弹簧相连并静止在光滑水平面上,物块B以一 定的初速度向物块A运动。在两物块与弹簧作用的过程中,两物块的v-t图 像如图所示,则( A )
A.物块A的质量大于物块的质量 B.弹簧在t2时刻的弹性势能最大 C.物块A在t2时刻的加速度最大 D.物块B在0~t3时间内动能一直减小
思考:你能归纳总结碰撞的种类以及其特点吗?
种类 弹性碰撞 非弹性碰撞 完全非弹性碰撞
特点 动量守恒,机械能守恒 动量守恒,机械能有损失 动量守恒,机械能损失最大
典例精析
例1.如图,在光滑水平面上,两个物体的质量都是m,碰撞前一个物体静止,另 一个以速度v 向它撞去。碰撞后两个物体粘在一起,成为一个质量为2m 的物体, 以一定速度继续前进。碰撞后该系统的总动能是否会有损失?
T 谢谢观看 HANK YOU!
课堂达标
1.现有甲、乙两滑块,质量分别为2m和m,以相同的速率v在光滑水 平面上相向运动并发生碰撞。若碰撞后,甲滑块静止不动,则碰撞
过程中损失的机械能为( D )
A.16 mv2
B.14 mv2
C.
1 2
mv2
D. mv2
2.带有
1 4
光滑圆弧轨道、质量为m0的小车静止置于光滑水平面上,如图所示。

汽车碰撞分析与估损 第四章 车辆事故及损伤形式

汽车碰撞分析与估损 第四章 车辆事故及损伤形式
பைடு நூலகம்
5、承载式车身碰撞变形顺序
承载式车身在发生前部或后部碰撞时,碰撞力将从碰撞点开始,沿着车身构件向外传
播,从而造成更大面积的损坏。一般来说,车身发生变形的顺序如下:
1)弯曲变形:在碰撞发生后的一瞬间,碰撞力达到最大,它首先会对构件产生挤压作用, 使构件中部产生弯曲变形。但由于金属构件具有弹性,所以在碰撞力消失后可能会部分或 全部恢复原状。在事故查勘时,如果发现测量的高度值超出允许范围,通常表示产生了弯 曲变形。
产生挤压变形,Z轴方向的分力使车辆产生向上或向下的拱曲或凹陷变形。
碰撞力除了对车辆部件产生直接损坏之外,还对车辆产生扭转力矩作用 这就是为什么我们在实际事故中经常能够看到被撞车辆明显产生偏转甚
至掉头现象。但在这种情况下,一部分碰撞力用于推动车辆转动,减小 了车辆本身的受力,可能会减轻车辆的损坏程度。不幸的是,在车辆旋 转过程中,往往容易造成二次碰撞而导致更大的破坏。
汽车保险概述
目录
第一章 汽车保险概述 第二章 车辆识别基础 第三章 车辆结构知识 第四章 车辆事故及损伤形式 第五章 事故现场查勘 第六章 机动车定损 第七章 钣金和喷漆 第八章 机械和电气修理 第九章 计算机估损 第十章 二手车价格评估
第4章 车辆事故及损伤形式
4.1 常见的碰撞类型 4.2 碰撞力对车辆变形的影响 4.3 车身结构对车辆变形的影响 4.4 车辆其它主要部件的损伤形式
9、两车正面追尾碰撞
A车为后部碰撞受损,B车为前部碰撞 受损
A车后保险杠面罩及保险杠,后车身 板、行李箱盖等变形,两侧尾灯损坏, 严重时会导致两侧围板变形、行李箱 底板变形、后悬架机构位置变形等。
B车保险杠面罩及保险杠、格栅、两 侧前照灯损坏等。 严重时会导致发动机水箱及其支架、 空调冷凝器和相关部件损坏,发动机 舱盖、翼子板变形,发动机后移,纵 梁损坏等

4反冲和碰撞

4反冲和碰撞

碰撞和反冲一、碰撞1.碰撞指的是物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.在碰撞现象中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.按碰撞前后物体的动量是否在一条直线上有正碰和斜碰之分,中学物理只研究正碰的情况.2.一般的碰撞过程中,系统的总动能要有所减少.若总动能的损失很小,可以略去不计,这种碰撞叫做弹性碰撞.若两物体碰后黏合在一起,这种碰撞动能损失最多,叫做完全非弹性碰撞.一般情况下系统动能都不会增加(由其他形式的能转化为机械能的除外,如爆炸过程) 二、反冲现象(爆炸模型)指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.【例1】 平静的湖面上浮着一只长L =6 m 、质量为550 kg 的船,船头上站着一质量为m =50 kg 的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远?mLMs s图5-2-2深化拓展某人站在静浮于水面的船上,从某时刻开始人从船头走向船尾.设水的阻力不计,那么在这段时间内关于人和船的运动情况判断错误的是A.人匀速行走,船匀速后退,两者速度大小与它们的质量成反比B.人加速行走,船加速后退,而且加速度大小与它们的质量成反比C.人走走停停,船退退停停,两者动量总和总是为零D.当人从船头走到船尾停止运动后,船由于惯性还会继续后退一段距离迁移:如图5-2-1所示,在光滑水平面上,质量为M 和m 的两物体开始速度均为零,在m 下滑的过程中,M 将后退.由于水平方向系统不受外力,所以水平方向上动量守恒.m 滑到底端时,若M 后退距离为s ,则m 水平方向移动的距离为(b -a -s ),代入m 1s 1+m 2s 2=0,可解得M 后退的距离为:s =mM a b m +-)(.bM a m图5-2-1【例2】 动量分别为5 kg ·m/s 和6 kg ·m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞,若已知碰撞后A 的动量减小了2 kg ·m/s ,而方向不变,那么A 、B 质量之比的可能范围是多少?深化拓展 光滑水平面上A 、B 两物体均向右在同一直线上运动,以后发生碰撞.以向右为正方向,已知撞前两物体的动量分别为p A =12 kg ·m/s ,p B =13 kg ·m/s ,则撞后它们的动量的变化量Δp A 和Δp B 有可能是①Δp A =-3 kg ·m/s ,Δp B =3 kg ·m/s②Δp A=4 kg·m/s,Δp B= 4 kg·m/s③Δp A=-5 kg·m/s,B④Δp A=-24 kg·m/s B 以上结论正确的是A.①④C.③④答案:度大小应保证其顺序合理.专题:人船模型问题:如图—1所示,质量为M的小船长L,静止于水面,质量为M的小船长为L,静止于水面,质量为m的人从船左端走到船下端悬着质量为m的人而静止于高度为h的空中,欲使人能完全沿强着地,人下方的强至少应为多长?变例3:如图—4所示,质量为M的物体静自轨道右测与球心等高处静止释放,求M向右运动的最大距离。

汽车碰撞测试方法

汽车碰撞测试方法

汽车碰撞测试方法车辆碰撞是一项关乎人们生活安全的重要问题,合理的碰撞测试方法对于车辆的安全性能评估至关重要。

本文将从碰撞测试的目的、测试方法与标准、测试装置与数据分析等方面进行展开论述,为各行业提供参考。

一、碰撞测试的目的碰撞测试的主要目的是评估车辆在事故中的安全性能,通过模拟真实场景的碰撞过程,获取车辆在不同碰撞方向和速度下的受力情况,进而优化车辆结构,提高乘员的安全保护水平。

碰撞测试可为汽车制造商提供参考数据,以便进行结构设计和改进,并为政府监管部门制定相关安全标准提供依据。

二、碰撞测试的方法与标准1. 前碰撞测试方法前碰撞是最常见的交通事故类型,因此前碰撞测试是最为重要的测试之一。

前碰撞测试通常借助于行星齿轮驱动系统,使得试验车辆以特定速度与钢板障碍物相撞。

测试过程中应记录车辆前部的形变、乘员受力情况等数据,并根据不同国家或地区的标准,评估车辆的安全性能得分。

2. 侧碰撞测试方法侧碰撞是造成车辆乘员伤害的主要类型之一,侧碰撞测试的目的是评估车辆侧面结构的刚度以及乘员遭受的侧向撞击力。

测试时,选取适合的自动驾驶系统来控制车辆的方向、速度和角度,与障碍物进行侧面碰撞。

测试结果将通过计算机模型以及乘员智能人偶等手段,获取具体的乘员受力值和碰撞点的能量吸收情况。

3. 抗滚翻测试方法滚翻事故在特定情况下可能发生,而滚翻事故是最为危险的车辆事故之一。

抗滚翻测试的目的是确定车辆在不同角度、速度和路况条件下的滚翻稳定性。

测试方法通常采用搭建实验场地,通过改变车身重心、侧倾角度等参数,模拟真实环境下的滚翻情况,并记录车辆在不同条件下的滚翻倾斜角度、支撑力和侧向力等指标。

三、测试装置与数据分析1. 测试装置为了确保碰撞测试的准确性和可重复性,需要使用专业的测试装置。

测试装置包括碰撞测试道路、钢板障碍物、传感器装置、高速摄像仪等。

钢板障碍物用于模拟真实的交通事故中的固定障碍物,传感器装置可测量车辆的速度、加速度等参数,高速摄像仪可记录碰撞过程中车体的变形情况。

汽车碰撞安全评估要求

汽车碰撞安全评估要求

汽车碰撞安全评估要求作为现代交通工具的重要装备之一,汽车的安全性一直是人们关注的焦点。

在汽车行业,对于汽车碰撞安全性的评估要求十分严格,以确保乘车人员的生命安全。

本文将从不同角度探讨汽车碰撞安全评估的要求。

一、车身结构安全性评估要求车身结构的安全性是保护车内人员免受碰撞伤害的关键因素之一。

在汽车设计过程中,车身的抗碰撞性、刚性和变形能力必须得到合理的评估。

首先,抗碰撞性要求车身结构能够承受碰撞力,并通过安全保护区域将碰撞能量有效地吸收、分散和转移。

其次,车身结构要具有一定的刚性,以保持车辆在碰撞过程中的稳定性和控制性能。

最后,车身在碰撞时应能适当变形,减缓碰撞产生的冲击力。

这些要求需要通过大量的试验和模拟分析来评估和验证。

二、主动安全技术评估要求主动安全技术是指通过车辆主动干预来避免碰撞或减轻碰撞伤害的技术。

常见的主动安全技术包括制动辅助系统、车道保持辅助系统、盲点监测系统等。

在汽车碰撞安全评估中,主动安全技术的功能、可靠性和效果是必须要评估的重要指标。

评估要求包括系统的正常工作、对不同速度、角度和道路条件下的预防和干预能力、对驾驶员和乘员的警示和提示效果等。

三、被动安全系统评估要求被动安全系统是在碰撞发生时,为乘车人员提供保护的技术手段,如安全气囊、安全带等。

评估被动安全系统的要求包括系统的快速响应和灵敏性、是否能正确识别碰撞事件、气囊的充气速度和辅助撞击材料的选择等。

此外,被动安全系统评估还需要考虑乘车人员在碰撞后的保护性能,如头部、颈部、躯干和下肢的保护。

四、碰撞测试评估要求碰撞测试是评估车辆碰撞安全性最重要的手段之一。

根据不同的市场和地区,汽车碰撞测试标准也有所不同。

通常包括正面碰撞、侧面碰撞和倾覆碰撞等多种测试。

在进行碰撞测试时,有一些评估要求是通用的,如车辆速度、碰撞角度和碰撞区域等。

同时,还需要评估测试数据的准确性和可信度,以确保评估结果的科学性和可靠性。

总结而言,对汽车碰撞安全性的评估要求十分严格。

各国汽车安全碰撞试验介绍

各国汽车安全碰撞试验介绍

各国汽车安全碰撞试验介绍汽车安全碰撞试验已经成为评价汽车安全性能的重要标准。

各国都有自己的汽车安全碰撞试验标准和测试方法,在这篇文章中,我将向您介绍几个主要国家的汽车安全碰撞试验。

1.美国汽车安全碰撞试验美国国家公路交通安全管理局(NHTSA)管理并设计了多项汽车安全碰撞试验。

其中包括正面碰撞试验、侧面碰撞试验、侧翻试验等。

正面碰撞试验:美国的正面碰撞试验是使用固定的障碍物模拟汽车与汽车之间的碰撞。

这项试验设计了车辆前部居民空间的保护、安全气囊的部署等要求。

侧面碰撞试验:侧面碰撞试验使用移动车辆与静止的车辆进行碰撞,模拟了车辆与树木或电线杆的碰撞。

这项试验测试了车辆侧部安全性能和侧面安全气囊的保护。

侧翻试验:侧翻试验模拟了汽车在行驶过程中可能发生的侧翻情况。

在这项试验中,车辆被在60度斜坡上高速行驶,然后突然转向。

2.欧洲汽车安全碰撞试验欧洲的汽车安全碰撞试验由欧洲汽车安全机构(Euro NCAP)负责设计和管理。

Euro NCAP的测试要求更为严格,包括正面碰撞、侧面碰撞、侧翻、行人保护等多个方面。

正面碰撞试验:欧洲的正面碰撞试验与美国类似,但要求车辆提供更好的保护性能,包括车顶部分的刚性和车辆前端的吸能区域。

侧面碰撞试验:欧洲的侧面碰撞试验在车辆上加装了可动壁板,模拟车辆与车辆之间的侧面碰撞。

这项试验评估了乘客在碰撞时的保护水平,并对乘客的头部、胸部和髋部提供保护。

侧翻试验:欧洲的侧翻试验要求车辆在特定条件下进行紧急避让行驶,并模拟车辆侧翻的情况。

试验评估车辆的稳定性和乘客的保护水平。

行人保护:欧洲的碰撞试验也包括对行人保护的评估,包括车辆前部对行人的安全性能和引擎罩的设计。

3.日本汽车安全碰撞试验日本的汽车安全碰撞试验标准由日本汽车评价组织(JNCAP)制定和管理。

JNCAP的测试要求比较严格,主要包括正面、侧面碰撞、行人保护和预防碰撞安全性能等方面。

正面碰撞试验:日本的正面碰撞试验要求车辆以50公里/小时的速度冲击固定障碍物。

《4 碰撞》PPT课件(甘肃省县级优课)

《4 碰撞》PPT课件(甘肃省县级优课)
若m1m2 则v1 v1 v2 0
若m1 m2 则v1 v1 v2 2v1
交换速度
原速弹回
m1的速度不 变,m2以2v1 的速度被撞 出去
10
1. 例 质量相等的A、BA球的速度是6m/s,B球 的速度是-2m/s,不久两球发生了对心碰撞,那么碰撞之后 两球的速度可能值是( ABC )
对心碰撞(正碰) 碰撞前后物体的速度在 同一直线 上 非对心碰撞(斜碰) 碰撞前后物体的速度不在同一直线上
三、碰撞的规律
碰撞问题的三个规律(原则) (1)动量制约:动量守恒 (2)动能制约:动能不增加 (3)运动制约:速度要合理
①碰前两物体同向,则v后>v前,碰后,原来
在前的物体速度一定增大,且v前′≥v后′ 速度要合理②两物体相向运动,碰后两物体的运动方向
第四节 碰撞
教学目标
(一)知识与技能 1.知道碰撞及碰撞的特点 2.了解碰撞的分类 3. 掌握碰撞的规律 (二)过程与方法
通过体会碰撞中动量守恒、机械能守恒与否, 体会动量守恒定律、机械能守恒定律的应用。 (三)情感、态度与价值观 感受不同碰撞的区别,培养探索的精神。
生活中的碰撞
一、什么是碰撞
课堂小结
一、什么是碰撞 二、碰撞的分类 三、碰撞的规律
四、弹性碰撞的处理
课后作业
课后练习1、2、3
不可能都不改变,除非两物体碰撞后速度
均为零
四、弹性碰撞的处理
一动一静弹性正碰
v1
m1
m2
v1/ m1
v2/ m2
动画模拟
m1v1 m1v1 m2v2
1 2
m1v12
1 2
m1v12
1 2
m2
v2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈汽车碰撞理论与仿真方法摘要:本文主要介绍了汽车碰撞理论基本内容以及仿真方法。

首先,概述了汽车碰撞理论的特点、基本原理,着重阐述了汽车碰撞的基本形式,对其中包括汽车对刚体的碰撞、汽车对汽车的正面碰撞、汽车对汽车的追尾碰撞,汽车对汽车的侧面碰撞等内容,对如何鉴别区分这几种碰撞形式做了简单的方法分析。

特别对刚体碰撞、正面碰撞、追尾碰撞等做了详细的介绍,重点在于阐明了碰撞速度的基本计算方法。

其次,片面的描述了汽车碰撞仿真方法,以汽车正面碰撞有限元仿真模拟、汽车侧面碰撞仿真方法为例,简单介绍了它们的语运用步骤。

关键词:碰撞原理;碰撞形式;碰撞速度;碰撞模拟1.引言:汽车结构安全设计和交通事故的科学分析都要求掌握汽车肇事特征与碰撞的基本规律。

问题的难点在于,在碰撞过程中,汽车在瞬态力的作用下车身结构产生快速的非线性大变形,单单从刚体运动学、动力学来推断碰撞前的车速是不可能的,必须深入研究在碰撞过程中汽车结构的弹塑性性能及相关的变形、能量、速度、加速度及撞击力的变化规律,从而确定这些特征参量与碰撞速度的非线性关系。

研究汽车碰撞过程中碰撞速度与结构变形的关系是汽车改型、开发及设计中十分重要的基础性研究,它对于现代道路交通事故鉴定分析的重要性逐渐引起人们的关注。

美国国家道路安全局从!台汽车碰撞试验中给出汽车的刚度系数及其变形计算方法,日本著名的汽车交通事故鉴定专家林洋先生多次指明:“汽车车身作为碰撞物体的特性至关重要,这是因为必须根据汽车车身的损坏状态反推出碰撞事故的产生过程。

”在他的著作中给出了汽车典型碰撞过程的汽车变形与碰撞速度的经验公式。

美、日汽车试验研究成果中给出低速下汽车碰撞速度与汽车车身变形的线性关系。

它的重要价值不仅指出几个典型碰撞下车速判别定量依据,更重要的指明了汽车碰撞速度与结构变形的深入研究方向的重要意义,这也是本课题系统研究的指导原则。

2.汽车碰撞理论基本概述2.1汽车碰撞的特点碰撞是瞬间物理过程,碰撞时间极短,它携带碰撞体的很多信息[]1。

严格的讲,汽车碰撞具有以下特点:1)是车辆之间相互交换运动能量的现象;2)是相互挤压、通过车身的损坏和固定物的损坏来消耗一部分运动能量;3)是部分相互损坏而另一部分相互推斥的现象;4)不仅有运动能量的交换,有时还伴有将部分运动能量转换成角运动的现象;5)车辆与乘员之间有剧烈的相对运动,这就是乘员的二次碰撞,即乘员受伤害的原因之一;6)碰撞过程及其短,一般在0.1-0.2s时间内发生。

乘员的运动,以摩擦功的形式消耗掉。

碰撞后的运动时间一般为数秒。

碰撞与碰撞后的运动是人力根本无法左右的纯物理现象,碰撞与碰撞后的运动结果,将造成车辆损失、乘员受伤并留下路面痕迹(胎痕、车身的碰擦痕、路面上散落物和固定物体的损坏)等。

2.2碰撞的基本原理汽车事故中的碰撞现象,是一种比较复杂的力学过程,就汽车本身力学性质而言,即有钢铁结构所具有的刚性较大的一面,又有在一定撞击力作用下产生塑性变形的后果。

同时由于碰撞中的汽车质量、速度、汽车结构和外形上的差异,对汽车碰撞后的损坏程度以及运动状况都将有很大的差别:但其碰撞的基本原理仍可归纳为以下几方面:1)碰撞是一种动量交换现象,对于相撞的A 、B 来讲即有如下动量关系:2211202101v m v m v m v m +=+(1)即在碰撞后,动量的总量不变。

2)碰撞是一种反弹现象,汽车作为碰撞物体是一种部分弹性碰撞物体,根据公式(1),反弹系数公式为201012v v v v e --=(2) 即可以导出碰撞后速度的公式为)1()1(1)1()1(1220122010202110212010101e v v e m m v v v v e v v e m m v v v v e e ++=++--=+-=++--=(3)式中:e v 1—A (肇事车)的有效碰撞速度;e v 2—B (被撞车)的有效碰撞速度。

3)碰撞是一种消耗部分动能的现象,即碰撞前两辆车的动能合计=碰撞后两车的动能合计+塑性变形功碰撞损失的动能,其公式为2201022121))(1()(2v v e m m m m E c --+=(4) 4)碰撞时所作用的力伟挤压力或挤压力加上摩擦力,假设两车如下图一所示向心二维碰撞,根据库仑定律有以下公式:2221R V V R VR R F F F F F μμ+=+⨯=(5)式中:F—对A、B车的拖拉摩擦力;RF—A对B的挤压力;V—摩察系数。

RA车图一 B车5)挤压力作用在相对碰撞速度上。

1.3碰撞形式1)汽车对刚体的正面碰撞;2)汽车对汽车的正面碰撞;3)汽车对汽车的追尾碰撞;4)汽车对汽车侧面碰撞。

3.汽车的碰撞事故分析3.1汽车对刚体的正面碰撞(如图二所示)图二汽车对刚体的正面碰撞如上图所示,即由以下公式可求汽车行驶速度:m k x v ⨯=0(6) 式中:x —车体的塑性变形量;k —无质量塑性弹簧变形系数;m —汽车的质量。

经过大量的计算,发现汽车碰撞刚性障碍壁时速度耗量为碰撞前速度的30%左右,汽车碰撞刚性障碍壁时碰撞过程中损失的能量为总能量55%的左右[]2。

3.2汽车对汽车碰撞类型的确定在碰撞发生后,首先要确定以下几点事实:1)碰撞地点;2)碰撞发生后,根据通行原则,首先要搞清是事故车行车状况,可通过以下手段确定:(1)轮胎痕迹的变化轮胎的印痕是事故现场留下的最有说服力的证据,可以说是最主要的证据。

印痕的长度、排列、形状实际上有很多种。

滑痕图形见图三:图三 事故现场往往留有路面上的滑痕。

根据轮胎在路面上的滑痕可以表明以下几个问题 a.滑痕的轨迹说明了驾驶状态;b.在碰撞地点,滑痕有异变;c.横向侧滑时滑痕宽度比纵向滑动的滑痕宽;d.制动距离>滑痕长度。

(2)路面上的散落物(特别是玻璃和漆片的散落状况)在汽车发生碰撞时,汽车的前挡风玻璃和车身上的漆片,必然被碰碎和脱离车身,而且在碰撞的最早时期就会破裂,并沿碰撞时汽车行驶的方向散落在地面上。

其散落状态如图四图四因此记录玻璃及漆片碎块以及其散落区域,是确定实际碰撞地点的重要证据。

(3)路面划痕当两车底盘高低相差较大时,在正面碰撞时有可能会发生潜入型碰撞,即低底盘车辆(如轿车)会潜入到高底盘车辆(如货车)的下部,而低底盘车辆的车身底部下面会与路面发生摩擦而留下划痕。

(4)事故车的最终停车位置和姿态根据碰撞后事故车最终停车位置,再根据轮胎印痕、路面划痕、路面上散落物之间的相互关系,可分析出碰撞实际地点,所以最终停车位置与姿态,将成为最为重要的证据。

因此事故发生后,除抢救伤员必要外,必须记录最原始的事故车停车位置和状态。

在因抢救伤员而要移动事故车辆时,也应先对事故车停车位置有文字记录,以作为事后的证据。

(5)事故车的碰撞变形状态根据事故现场留下的轮胎印痕、玻璃碎片、漆片等散落地点和两辆事故车最终停车位置,可分析两车碰撞地点和运动状态。

3.3汽车对汽车的正面碰撞1)简单概述汽车遇到正面撞击(如下图五所示)的几率大约占所有导致死亡的汽车事故的半数[]3,所以研究汽车正面碰撞是十分必要的。

图五 根据事故的成因,正面碰撞有以下三种类型:a .超车时越过中心线或避让本车道内的障碍而越过中心线后与对面来车的碰撞;b .弯道行驶中越过中心线的碰撞;c .打盹时越过中心线的碰撞。

具体碰撞类型由2.2所讲内容进行判断。

2)碰撞速度的计算(1)有效碰撞速度可由以下公式计算:x v e 3.105=(7) 22221111m k v x m k v x ee ==(8) 221x x x +=(9) 式中:x —总变形量;1x —A 车的变形量;2x —B 车的变形量。

(2)碰撞速度的推算由以下公式可计算出两车碰撞后离开的车速1v 和2v :i gL k L v igL k L g v 22222111112222±=±=ϕϕ(10)式中:1ϕ、2ϕ —分别为车辆A 、B 的纵向滑动附着系数;1L 、2L —分别为车辆A 、B 碰撞后的滑移距离;1k 、2k —附着系数修正值;i —道路的纵坡度。

⎪⎩⎪⎨⎧+=+-+=221120210120102121)(v m v m v m v m v v m m m v e 由公式(7)、(8)、(9),联立(10)可求得碰撞速度10v 和20v 。

3.4汽车对汽车的追尾碰撞1)汽车追尾碰撞一般类型:制动追尾型、起步追尾型、错觉追尾、变更行车车道的追尾型。

2)追尾碰撞的特点(1)被追车辆一般都不知情,且未做回避动作;(2)恢复系数比正面碰撞小;(3)前车还会因撞击而继续向前滚动一段距离;(4)在小车追尾碰撞前方大型货车时,小车往往发生潜入式碰撞,并可能粘挂在大货车尾部而一同前进,直至大型货车采取制动措施停车后才会停下,且绝大多数都会造成前排座椅乘员的严重伤亡;(如下图六所示)(5)追尾碰撞时,追尾车(肇事车)大部分是在边紧急制动边向前运动情况下发生的,而且两车的速度方向相同。

图六3)追尾碰撞速度的计算(1)碰撞后两车共同拥有的运动速度c v 为:212221111)(2m m L f m k L m g v c ++=ϕ(11) 式中:2f 为被追尾车的滚动阻力系数。

6.458.322112++=x m m m v e (12) ⎪⎩⎪⎨⎧+=+-+=c e v m m v m v m v v m m m v )()(21202101)20102112(13) 由公式(11)、(12),联立方程组(13)可以求得碰撞速度10v 和20v 。

3.5汽车对汽车的侧面碰撞(如下图七所示)图七侧面碰撞大都发生在两车行驶方向有夹角的两个车道交汇处,其形式有:1.迎头侧面碰撞迎头侧碰撞主要发生在视野不良的交叉路口,由于未注意信号或侧方来车后,驶入交叉路口与已进入交叉路口车辆发生的碰撞。

一般来说在碰撞前的瞬间,双方可能均未发现对方车辆或发现后已来不及采取措施。

2.右转向侧碰撞主要发生在交叉路口、右转向车辆与直行车辆之间。

具体又可分为已发现对方车辆和未发现对方车辆两类,对已发现对方车辆类,则属于“抢道事故”,属于判断错误,而未发现对方车辆类,则属于“视线被挡住事故”,主要是右转向车辆与直行车辆之间存在一辆挡住视线的第三辆车。

3.左转向侧碰撞主要发生在等待信号后,对面信号变绿灯后,左转向的右侧车辆和仍在直行的左侧车道的车辆之间发生的碰撞。

4.行车道变更的侧碰撞主要发生在前车未确定后面的交通状况,而变更车道时,与从后方欲超过前车的直行车辆之间的碰撞,是前车变更车道认识错误和后车超车判断错误交错结果而造成的。

5.直角侧碰撞直角侧碰撞时除部分采取紧急制动停住车辆或原本就因故障停驶在路口内外,被撞车大多数仍在行驶。

相关文档
最新文档