2018沪科版中考数学模拟试题二及答案
(完整版)2018上海市黄浦区2018届中考二模数学试题含答案,推荐文档

(A) y kx k ;
(B) y kx k ;
(C) y kx k ;
(D) y kx k .
4.一个民营企业 10 名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是( )
人次
1
1
1
2
1
1
3
工资
30
3
2
1.5
1.2
2
24.(本题满 12 分)
已知抛物线 y x2 bx c 经过点 A(1,0)和 B(0,3),其顶点为 D.
(1)求此抛物线的表达式; (2)求△ABD 的面积; (3)设 P 为该抛物线上一点,且位于抛物线对称轴 右侧,作 PH⊥对称轴,垂足为 H,若△DPH 与△AOB 相 似,求点 P 的坐标.
P,则该反比例函数的解析式为
.
12.如果一次函数的图像经过第一、二、四象限,那么其函数值 y 随自变量 x 的值的增大而
.
(填“增大”或“减小”)
13.女生小琳所在班级共有 40 名学生,其中女生占 60%.现学校组织部分女生去市三女中参观,需要
从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是
那么 AD∶AB=
.
三、解答题:(本大题共 7 题,满分 78 分)
19.(本题满分 10 分)
1
计算: 22 23 2
0
2018 2018 3 2 3 .
20.(本题满分 10 分)
第3页
x2 2xy y2 9
解方程组:
x
2
y2
5
.
21.(本题满分 10 分)
2
如图,AH 是△ABC 的高,D 是边 AB 上一点,CD 与 AH 交于点 E.已知 AB=AC=6,cosB= ,
上海市各区2018届中考数学二模试卷精选汇编:综合计算含解析

上海市各区2018届中考数学二模试卷精选汇编:综合计算含解析21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 图4DCB 图4DCBAH设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x ∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BEADB第21题图∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,5426cot ===∠DF CF DCB (1分)崇明区21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.(第21题图1)A BOP CD (第21题图2)OABDPC21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-=- ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F .(1) 求EAD ∠的余切值;(2) 求BF CF的值.21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.图6ABCD EF(2)求CE∶DE.21. 解:(1)由AB=AC=6,AH⊥BC,得BC=2BH.—————————————————————————(2分)在△ABH中,AB=6,cosB=23,∠AHB=90°,得BH=2643⨯=,AH=————————————(2分)则BC=8,所以△ABC面积=182⨯=——————————————(1分)(2)过D作BC的平行线交AH于点F,———————————————(1分)由AD∶DB=1∶2,得AD∶AB=1∶3,则31CE CH BH ABDE DF DF AD====. ——————————————(4分)金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F.A DF(2)如果BE∶EC=2∶1,求∠CDF的余切值.21.解:(1)∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∴∠DAF=∠AEB,……………………………………………………………………(1分)∵AE=BC,DF⊥AE,∴AD=AE,∠AFD=∠EBA=90°,………………………(2分)∴△ADF≌△EAB,∴AF=EB,………………………………………………………(2分)(2)设BE=2k,EC=k,则AD=BC=AE=3k,AF=BE=2k,…………………………(1分)∵∠ADC=90°,∠AFD=90°,∴∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠CDF=∠DAF…………………………………………………………………(2分)在Rt△ADF中,∠AFD=90°,DF∴cot∠CDF=cot∠DAF=AFDF==.………………………………(2分)静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD中,AC 、DB交于点H.DE平分∠ADB,交AC于点E.联结BE并延长,交边AD于点F.(1)求证:DC=EC;(2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90°AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分)又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区第21题图21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x=-+的图像与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC = 90o,1 tan2ABC∠=(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点MC位于直线AB的同侧,使得ABCABMSS∆∆=2求点M的坐标.21.解:(1)令0y=,则240x-+=,解得:2x=,∴点A坐标是(2,0).令0x=,则4y=,∴点B坐标是(0,4).………………………(1分)∴AB==.………………………………(1分)∵90BAC∠=,1tan2ABC∠=,∴AC过C点作CD⊥x轴于点D,易得OBA DAC∆∆∽.…………………(1分)∴2AD=,1CD=,∴点C坐标是(4,1).………………………(1分)(2)11522ABCS AB AC∆=⋅=⨯=.………………………………(1分)∵2ABM ABCS S∆∆=,∴52ABMS∆=.……………………………………(1分)∵(1M,)m,∴点M在直线1x=上;令直线1x=与线段AB交于点E,2ME m=-;……………………(1分)分别过点A、B作直线1x=的垂线,垂足分别是点F、G,∴AF+BG = OA = 2;……………………………………………………(1分)(第21题图)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长;(2)求CDA ∠的余弦值.21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ···································································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE .······························· (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ··························································· (2分) ∴3=DE . ····································································································· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ············································· (1分)同理得5=BD . ····························································································· (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ······················ (1分)ABCDE 图7∴53=CD . ····································································································· (1分)∴102cos ==∠AD CD CDA . ··········································································· (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .(1)求线段CD 的长;(2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ························································ (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ························································································ (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ······················································· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ··························································································· (1分) ∴43=x . ··································································································· (1分)(2)1141052233=⋅=⨯⨯=ABD S AB DH . ······················································· (1分)∵BD=2DE ,ED A图5∴2==ABD ADES BDSDE, ··············································································· (3分) ∴1015323=⨯=ADES. ·············································································· (1分) 松江区21.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =,BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.21.(本题满分10分, 每小题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6(第21题图)DA∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH =4在Rt AHC ∆中,AC =…………………2分 ∵DE 垂直平分AC∴12CD AC == ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分∴DE = ………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D . (1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用 尺规作图的方法确定点O 的位置并求出的⊙O 半径. (保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。
(完整版)2018年上海市中考数学二模试卷

2018年上海市中考数学二模试卷一、选择题(每小题4分,共24分)1.(4分)(2018?上海)计算的结果是()A.B.C.D.32.(4分)(2018?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×10113.(4分)(2018?上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.(4分)(2018?上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠55.(4分)(2018?上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和406.(4分)(2018?上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍二、填空题(每小题4分,共48分)7.(4分)(2018?上海)计算:a(a+1)=_________.8.(4分)(2018?上海)函数y=的定义域是_________.9.(4分)(2018?上海)不等式组的解集是_________.10.(4分)(2018?上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________支.11.(4分)(2018?上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是_________.12.(4分)(2018?上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为_________米.13.(4分)(2018?上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________.14.(4分)(2018?上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是_________(只需写一个).15.(4分)(2018?上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=_________(结果用、表示).16.(4分)(2018?上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是_________.17.(4分)(2018?上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为_________.18.(4分)(2018?上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为_________(用含t的代数式表示).三、解答题(本题共7题,满分78分)19.(10分)(2018?上海)计算:﹣﹣+||.20.(10分)(2018?上海)解方程:﹣=.21.(10分)(2018?上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.22.(10分)(2018?上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.23.(12分)(2018?上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.24.(12分)(2018?上海)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)(2018?上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.2018年上海市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共24分)1.(4分)(2018?上海)计算的结果是()A.B.C.D.3考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的乘法运算法则进行运算即可.解答:解:?=,故选:B.点评:本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.(4分)(2018?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:60 800 000 000=6.08×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2018?上海)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2考点:二次函数图象与几何变换.专题:几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选:C.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.(4分)(2018?上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.5.(4分)(2018?上海)某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(4分)(2018?上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍考点:菱形的性质.专题:几何图形问题.分析:分别利用菱形的性质结合各选项进而求出即可.解答:解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B 、∵S △ABD =S 平行四边形ABCD ,S △ABC =S 平行四边形ABCD,∴△ABD 与△ABC 的面积相等,故此选项正确;C 、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D 、菱形的面积等于两条对角线之积的,故此选项错误;故选:B .点评:此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.二、填空题(每小题4分,共48分)7.(4分)(2018?上海)计算:a (a+1)=a 2+a.考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=a 2+a .故答案为:a 2+a点评:此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.8.(4分)(2018?上海)函数y=的定义域是x ≠1.考点:函数自变量的取值范围.分析:根据分母不等于0列式计算即可得解.解答:解:由题意得,x ﹣1≠0,解得x ≠1.故答案为:x ≠1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(4分)(2018?上海)不等式组的解集是3<x <4.考点:解一元一次不等式组.专题:计算题.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x >3,解②得:x <4.则不等式组的解集是:3<x <4.故答案是:3<x <4点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x 介于两数之间.10.(4分)(2018?上海)某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352支.考点:有理数的混合运算.专题:应用题.分析:三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.解答:解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.点评:此题考查有理数的混合运算,理解题意,列出算式解决问题.11.(4分)(2018?上海)如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是k<1.考点:根的判别式.分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k>0,然后解不等式即可.解答:解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.(4分)(2018?上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.解答:解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.点评:此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.13.(4分)(2018?上海)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.考点:概率公式.分析:由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.解答:解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,∴恰好抽到初三(1)班的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2018?上海)已知反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是y=﹣(只需写一个).考点:反比例函数的性质.专题:开放型.分析:首先根据反比例函数的性质可得k<0,再写一个符合条件的数即可.解答:解:∵反比例函数y=(k是常数,k≠0),在其图象所在的每一个象限内,y的值随着x的值的增大而增大,∴k<0,∴y=﹣,故答案为:y=﹣.点评:此题主要考查了反比例函数的性质,关键是掌握对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.15.(4分)(2018?上海)如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=,=,那么=﹣(结果用、表示).考点:*平面向量.分析:由点E在边AB上,且AB=3EB.设=,可求得,又由在平行四边形ABCD中,=,求得,再利用三角形法则求解即可求得答案.解答:解:∵AB=3EB.=,∴==,∵平行四边形ABCD中,=,∴==,∴=﹣=﹣.故答案为:﹣.点评:此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.16.(4分)(2018?上海)甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是乙.考点:方差;折线统计图.专题:图表型.分析:根据方差的意义数据波动越小,数据越稳定即可得出答案.解答:解:根据图形可得:乙的成绩波动最小,数据最稳定,则三人中成绩最稳定的是乙;故答案为:乙.点评:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(4分)(2018?上海)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类.分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:解法一:常规解法∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则2×(﹣1)﹣7=y解得y=﹣9.解法二:技巧型∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴7×2﹣y=23∴y=﹣9故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.18.(4分)(2018?上海)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F 与BE交于点G.设AB=t,那么△EFG的周长为2t(用含t的代数式表示).考点:翻折变换(折叠问题).专题:几何图形问题.分析:根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.解答:解:由翻折的性质得,CE=C′E,∵BE=2CE,∴BE=2C′E,又∵∠C′=∠C=90°,∴∠EBC′=30°,∵∠FD′C′=∠D=90°,∴∠BGD′=60°,∴∠FGE=∠BGD′=60°,∵AD∥BC,∴∠AFG=∠FGE=60°,∴∠EFG=(180°﹣∠AFG)=(180°﹣60°)=60°,∴△EFG是等边三角形,∵AB=t,∴EF=t÷=t,∴△EFG的周长=3×t=2t.故答案为:2t.点评:本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出△EFG是等边三角形是解题的关键.三、解答题(本题共7题,满分78分)19.(10分)(2018?上海)计算:﹣﹣+||.考点:实数的运算;分数指数幂.专题:计算题.分析:本题涉及绝对值、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2﹣﹣2+2﹣=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(10分)(2018?上海)解方程:﹣=.考点:解分式方程.专题:计算题;转化思想.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:(x+1)2﹣2=x﹣1,整理得:x2+x=0,即x(x+1)=0,解得:x=0或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=0.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)(2018?上海)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.2 …8.2 9.8体温计的读数y(℃)35.0 …40.0 42.0(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.考点:一次函数的应用.专题:应用题;待定系数法.分析:(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.解答:解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.点评:本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.22.(10分)(2018?上海)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.考点:解直角三角形;直角三角形斜边上的中线.专题:几何图形问题.分析:(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,则CE=1,从而得出BE.解答:解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,又∠ACB=90°∴∠BCD+∠ACH=90°∴∠B=∠BCD=∠CAH,即∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB=;(2)∵sinB=,∴AC:AB=1:,∴AC=2.∵∠CAH=∠B,∴sin∠CAH=sinB==,设CE=x(x>0),则AE=x,则x2+22=(x)2,∴CE=x=1,AC=2,在Rt△ABC中,AC2+BC2=AB2,∴BC=4,∴BE=BC﹣CE=3.点评:本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用,难度不大.23.(12分)(2018?上海)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连接AE,交BD于点G,求证:=.考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定.专题:证明题.分析:(1)证△△BAD≌△CDA,推出∠ABD=∠ACD=∠CDE,推出AC∥DE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案.解答:证明:(1)∵梯形ABCD,AD∥BC,AB=CD,∴∠BAD=∠CDA,在△BAD和△CDA中∴△BAD≌△CDA(SAS),∴∠ABD=∠ACD,∵∠CDE=∠ABD,∴∠ACD=∠CDE,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵AD∥BC,∴=,=,∴=,∵平行四边形ACED,AD=CE,∴=,∴=,∴=,∴=.点评:本题考查了比例的性质,平行四边形的判定,平行线的判定的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.24.(12分)(2018?上海)在平面直角坐标系中(如图),已知抛物线y=x 2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)根据待定系数法可求抛物线的表达式,进一步得到对称轴;(2)因为AC与EF不平行,且四边形ACEF为梯形,所以CE∥AF.分别求出直线CE、AF的解析式,进而求出点F的坐标;(3)△BDP和△CDP的面积相等,可得DP∥BC,根据待定系数法得到直线BC的解析式,根据两条平行的直线k值相同可得直线DP的解析式,进一步即可得到t的值.解答:解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣2),∴,解得.故抛物线的表达式为:y=x2﹣x﹣2=(x﹣1)2﹣,对称轴为直线x=1;(2)设直线CE的解析式为:y=kx+b,将E(1,0),C(0,﹣2)坐标代入得:,解得,∴直线CE的解析式为:y=2x﹣2.∵AC与EF不平行,且四边形ACEF为梯形,∴CE∥AF.∴设直线AF的解析式为:y=2x+n.∵点A(﹣1,0)在直线AF上,∴﹣2+n=0,∴n=2.∴设直线AF的解析式为:y=2x+2.当x=1时,y=4,∴点F的坐标为(1,4).(3)点B(3,0),点D(1,﹣),若△BDP和△CDP的面积相等,则DP∥BC,则直线BC的解析式为y=x﹣2,∴直线DP的解析式为y=x﹣,当y=0时,x=5,∴t=5.点评:考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用,综合性较强,有一定的难度.25.(14分)(2018?上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连接AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.考点:圆的综合题.专题:压轴题.分析:(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)∠GAE≠∠BGC,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.解答:解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB?cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∴∠BGC>∠B=∠GAE,即∠BGC≠∠GAE,又∠AEG=∠BCG≥∠ACB=∠B=∠GAE,∴当∠AEG=∠GAE时,A、E、G重合,则△AGE不存在.即∠AEG≠∠GAE∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.点评:此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.。
上海市各区2018届中考数学二模试卷精选汇编:解方程组不等式组及参考答案

静安区
x1 1
5 ,
x2 1
5
,…………………………………………(
y1 3 5
y2 3 5
4 分)
20.(本题满分 10 分)
x4 5
解方程:
x1 1x
20.(本题满分 10 分)
6x
.
x2 1
x4 5
6x
解方程:
x1 1x
x2 1
解: ( x 4)( x 1) 5( x 1) 6x
x2 3x 4 5x 5 6x 0 x 2 8x 9 0 x1 1, x2 9 经检验 x1 1是 增根,舍去 ∴原方程的根是 x 9 .
20.(本题满分 10 分)
解:方程①可变形为 (x 6 y)( x y) 0
得 x 6y 0或 x y 0
( 2 分)
将它们与方程②分别组成方程组,得(Ⅰ)
x 6y 0
xy0
或(Ⅱ)
( 2 分)
2x y 1
2x y 1
解方程组(Ⅰ)
6 x
13 , 1
y 13
解方程组(Ⅱ)
x1 y1
( 4 分)
所以原方程组的解是
所以原方程组可化为两个二元一次方程组:
x 2 y 3, 2x y 1;
x 2 y 3,
……………… 2 分
2x y 1;
分别解这两个方程组,得原方程组的解是
1
x1 1, x2
, 5 ………… 4 分
y1 1; y2
7 .
5
长宁区 20.(本题满分 10 分)
2
x
5 xy
6y2
0 , ①
解方程组:
2x y 1 . ②
2x 3 x x x 12
精品上海市各区2018届精品中考二模数学分类汇编:计算题专题(含答案)

上海市各区2018届九年级中考二模数学试卷精选汇编计算题专题宝山区、嘉定区19.(本题满分10分) 先化简,再求值:x x x x x --+++-2321422,其中32+=x .19.解:原式2321)2)(2(2-+++++-=x x x x x x …………2分 )2)(2()2(3)2)(1(2+-++-++=x x x x x x ………………………1分 )2)(2(442+-++=x x x x …………………………………………2分 )2)(2()2(2+-+=x x x ………………………2分 22-+=x x …………………………………………1分 把32+=x 代入22-+x x 得: 原式232232-+++=………………1分 1334+=………………………………1分 长宁区19.(本题满分10分) 先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分) =2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 崇明区19.(本题满分10分)12022)9( 3.14)π-+--19.(本题满分10分)解:原式731=+-+-……………………………………………………8分9= …………………………………………………………………2分 奉贤区19.(本题满分10分) 计算:1212)33(8231)12(--+++-.19、3-黄浦区19.(本题满分10分)计算:())102322220183++--.19.解:原式()13-—————————————————————(6分)=13-————————————————————————(2分)=4—————————————————————————————(2分) 金山区 计算:21o o 21tan 452sin 60122-⎛⎫-+- ⎪⎝⎭.19.解:原式=124-+……………………………………………(8分)14+……………………………………………(1分)=5.………………………………………………………(1分)静安区19.(本题满分10分)计算:102018)30(sin )3(32)45cot (18---+-+-+ π. 19.(本题满分10分) 计算:102018)30(sin )3(32)45cot (18---+-+-+ π. 解:原式=12018)21(1)23()1(23--+-+-+ …………………(5分) =2123123-+-++ …………………………(3分)=322+ …………………………………(2分)闵行区19.(本题满分10分) 120183(1)2cos 45+8---o.19.解:原式112+……………………………………(2分+2分+2分+2分)2=.……………………………………………………………………(2分)普陀区19.(本题满分10分)先化简,再求值:42442222---++÷+x x x x x x x ,其中2x =-. 19.解:原式()()22+22(2)22x x x x x x x -=-+-+ ················································· (3分) 122x x x =-++ ····································································· (2分) 12x x -=+. ··············································································· (1分)当2x =-时,原式=······················································· (1分)= ···························································· (1分)青浦区19.(本题满分10分)计算:1012152(3)2-+--+().20.(本题满分10分)先化简,再求值:25+3222x x x x ⎛⎫--÷ ⎪++⎝⎭(),其中x =19.解:原式212-+. ································································ (8分)=1.20.解:原式=()2245223--+⨯++x x x x , ····························································· (5分) =()()()233223+-+⨯++x x x x x , ························································ (1分) =33-+x x . ·················································································· (1分)当=x 2. 松江区19.(本题满分10分)计算:031-+ 19.(本题满分10分)计算:031-解:原式=11)-2分)=2+2分徐汇区19. 101()( 3.14)|4|2π---+.杨浦区19、(本题满分10分) 先化简,再求值:。
上海市各区2018届中考数学二模试卷精选汇编:填空题及答案

16.如图,在梯形ABCD中,AB//CD,∠C=90°,BC=CD=4, ,
若 , ,用 、 表示 ▲.
17.如果一个三角形有一条边上的高等于这条边的一半,
那么我们把这个三角形叫做半高三角形.已知直角三角形ABC
是半高三角形,且斜边 ,则它的周长等于▲.
二、填空题:(本大题共12题,每题4分,满分48分)
7. ;8. ;9. ;10. ;
11. ;12. ;13. ;14. ;
15. ;16. ;17. ;18. .
奉贤区
7.计算: .
8.如果 ,且 ,那么 的值是.
9.方程 的根是.
10.已知反比例函数 ,在其图像所在的每个象限内, 的值随 的值增大而减
17.如图2,点 、 、 在圆 上,弦 与半径 互相平分,那么 度数为▲度.
18.如图3,在△ 中, , ,点 在边 上,且 .
如果△ 绕点 顺时针旋转,使点 与点 重合,点 旋转至点 ,那么线段
的长为▲.
7. 2 8. 9. 10.
11. 12. 13. 400 14. 2.8 15.
16. 2 17. 120° 18.
上海市各区2018届中考二模数学试卷精选汇编 填空题专题
宝山区、嘉定区
二、填空题(本大题共12题,每题4分,满分48分)
7.计算: ▲.
8.一种细菌的半径是 米,用科学记数法把它表示为▲米.
9.因式分解: ▲.
10.不等式组 的解集是▲.
11.在一个不透明的布袋中装有 个白球、 个红球和 个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是▲.
上海市各区2018年中考二模数学试题_(2) 推荐
九年级数学试卷参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.A ;2.D ;3.B ;4.D ;5. B ;6.C . 二、填空题:(本大题共12题,每题4分,满分48分)7.x ≠1; 8.1.37×109; 9.x =1; 10.()()2121+---x x ;11. 4;12.m >3; 13. 0.3; 14.6180120+=x x ; 15.)(21b a-; 16.内切; 17.4 ; 18.750或150. 三、解答题:(本大题共7题,满分78分)19.解:原式=333334+-++-…………………………………………………(8分)=133-………………………………………………………………………(2分)AF N第一个观点第一个观点①②③④⑤①②③④⑤①②③④⑤①②③④⑤⑤④③②①20. 解:由①得 x <1. …………………………………………………………………(3分) 由②得 1-≥x .…………………………………………………………………(3分) ∴ 原不等式组的解集为11<≤-x . …………………………………………(2分) 画图略………………………………………………………………………………(2分) 21.解:(1)过点B 作BF ⊥AD 于F 。
…………………………………………………(1分)在Rt ABF △中,∵35==AF BF i ,且10BF m =。
∴6AF m =………………(2分)∴AB = …………………………………………………………(2分)(2)如图,延长EC 至点M ,AD 至点N ,连接MN ,过点E 作EG ⊥AD 于G 。
在Rt △AEG 中,∵65==AG EG i ,且10BF m =, ∴AG =12m ,BE=GF=AG - AF =6 m 。
……………………………………………(2分)∴ABE CMND S S =△梯形 ………………(1()1122BE EG MC ND ∙∙=+。
精品上海市各区2018届精品中考二模数学分类汇编:二次函数专题(含答案)
上海市各区2018届九年级中考二模数学试卷精选汇编:二次函数专题宝山区、嘉定区24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 已知平面直角坐标系xOy (如图7),直线m x y +=的经过点)0,4(-A 和点)3,(n B . (1)求m 、n 的值;(2)如果抛物线c bx x y ++=2经过点A 、B ,该抛物线的顶点为点P ,求ABP ∠sin 的值;(3)设点Q 在直线m x y +=上,且在第一象限内,直线m x y +=与y 轴的交点为点D ,如果DOB AQO ∠=∠,求点Q 的坐标.24.解:(1) ∵直线m x y +=的经过点)0,4(-A∴04=+-m ……………………1分∴4=m ………………………………1分∵直线m x y +=的经过点)3,(n B ∴34=+n ……………………1分∴1-=n …………………………………………1分(2)由可知点B 的坐标为)3,1(-∵抛物线c bx x y ++=2经过点A 、B ∴⎩⎨⎧=+-=+-310416c b c b∴6=b , 8=c∴抛物线c bx x y ++=2的表达式为862++=x x y …………………1分∴抛物线862++=x x y 的顶点坐标为)1,3(--P ……………1分∴23=AB ,2=AP ,52=PB∴222PB BP AB =+∴︒=∠90PAB ……………………………………1分∴PB APABP =∠sin ∴1010sin =∠ABP …………………………………………1分图7(3)过点Q 作x QH ⊥轴,垂足为点H ,则QH ∥y 轴 ∵DOB AQO ∠=∠,QBO OBD ∠=∠∴△OBD ∽△QBO∴OBDBQB OB =……………1分 ∵直线4+=x y 与y 轴的交点为点D ∴点D 的坐标为)4,0(,4=OD又10=OB ,2=DB∴25=QB ,24=DQ ……………1分∵23=AB∴28=AQ ,24=DQ ∵QH ∥y 轴 ∴AQADQH OD = ∴28244=QH ∴8=QH ……………………………………1分 即点Q 的纵坐标是8又点Q 在直线4+=x y 上点Q 的坐标为)8,4(……………1分长宁区24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A (0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分)∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA =OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分)若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 崇明区24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)已知抛物线经过点(0,3)A 、(4,1)B 、(3,0)C . (1)求抛物线的解析式;(2)联结AC 、BC 、AB ,求BAC ∠的正切值;(3)点P 是该抛物线上一点,且在第一象限内,过点P 作PG AP ⊥交y 轴于点G ,当点G 在点A 的上方,且APG △与ABC △相似时,求点P 的坐标.24.(本题满分12分,每小题4分)解:(1)设所求二次函数的解析式为2(0)y ax bx c a =++≠,………………………1分将A (0,3)、B (4,)、C (3,0)代入,得 1641,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得12523a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩………2分所以,这个二次函数的解析式为215322y x x =-+ ……………………………1分 (2)∵A (0,3)、B (4,)、C (3,0)∴AC =BC =AB =∴222AC BC AB +=∴90ACB =︒∠ ………………………………………………………2分∴13BC tan BAC AC ===∠ ……………………………………………2分(3)过点P 作PH y ⊥轴,垂足为H设P 215(,3)22x x x -+,则H 215(0,3)22x x -+ ∵A (0,3) ∴21522AH x x =-,PH x = ∵90ACB APG ==︒∠∠∴当△APG 与△ABC 相似时,存在以下两种可能: 1° PAG CAB =∠∠ 则13tan PAG tan CAB ==∠∠ 即13PH AH = ∴2115322x x x =- 解得11x = ………………………1分∴点P 的坐标为(11,36) ……………………………………………………1分 2° PAG ABC =∠∠ 则3tan PAG tan ABC ==∠∠ 即3PH AH = ∴231522x x x =- 解得173x = …………………………1分 ∴点P 的坐标为1744(,)39……………………………………………………1分 奉贤区24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (如图8),抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴为直线,过点C 作直线的垂线,垂足为点E ,联结DC 、BC . (1)当点C (0,3)时,① 求这条抛物线的表达式和顶点坐标; ② 求证:∠DCE=∠BCE ;(2)当CB 平分∠DCO 时,求m 的值.黄浦区24.(本题满分12分)已知抛物线2y x bx c =++经过点A (1,0)和B (0,3),其顶点为D . (1)求此抛物线的表达式; (2)求△ABD 的面积;(3)设P 为该抛物线上一点,且位于抛物线对称轴 右侧,作PH ⊥对称轴,垂足为H ,若△DPH 与△AOB 相 似,求点P 的坐标.24. 解:(1)由题意得:013b cc=++⎧⎨=⎩,———————————————————(2分)解得:43b c =-⎧⎨=⎩,—————————————————————————(1分)所以抛物线的表达式为243y x x =-+. ——————————————(1分) (2)由(1)得D (2,﹣1),———————————————————(1分) 作DT ⊥y 轴于点T , 则△ABD 的面积=()11124131211222⨯⨯-⨯⨯-⨯+⨯=.————————(3分) (3)令P ()()2,432p p p p -+>.————————————————(1分)由△DPH 与△AOB 相似,易知∠AOB =∠PHD =90°,所以243132p p p -++=-或2431123p p p -++=-,————————————(2分) 解得:5p =或73p =,所以点P 的坐标为(5,8),78,39⎛⎫-⎪⎝⎭.————————————————(1分)金山区24.(本题满分12分,每小题4分)平面直角坐标系xOy 中(如图8),已知抛物线2y x bx c =++经过点A (1,0)和B (3,0),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标; (2)点E 在抛物线的对称轴上,且EA =EC ,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线 上,∠MEQ =∠NEB ,求点Q 的坐标.24.解:(1)∵二次函数2y x bx c =++的图像经过点A (1,0)和B (3,0), ∴10930b c b c ++=⎧⎨++=⎩,解得:4b =-,3c =.……………………………(2分)∴这条抛物线的表达式是243y x x =-+…………………………………(1分)顶点P 的坐标是(2,-1).………………………………………………(1分)(2)抛物线243y x x =-+的对称轴是直线2x =,设点E 的坐标是(2,m ).…(1分)根据题意得:=,解得:m=2,…(2分)∴点E 的坐标为(2,2).…………………………………………………(1分) (3)解法一:设点Q 的坐标为2(,43)t t t -+,记MN 与x 轴相交于点F .图8作QD ⊥MN ,垂足为D ,则2DQ t =-,2243241DE t t t t =-+-=-+………………………(1分) ∵∠QDE=∠BFE=90°,∠QED=∠BEF ,∴△QDE ∽△BFE ,…………………(1分)∴DQ DEBF EF =,∴224112t t t --+=, 解得11t =(不合题意,舍去),25t =.……………………………(1分) ∴5t =,点E 的坐标为(5,8).…………………………………………(1分)解法二:记MN 与x 轴相交于点F .联结AE ,延长AE 交抛物线于点Q ,∵AE=BE , EF ⊥AB ,∴∠AEF=∠NEB ,又∵∠AEF=∠MEQ ,∴∠QEM=∠NEB ,………………………………(1分)点Q 是所求的点,设点Q 的坐标为2(,43)t t t -+, 作QH ⊥x 轴,垂足为H ,则QH =243t t -+,OH =t ,AH =t -1, ∵EF ⊥x 轴,∴EF ∥QH ,∴EF AFQH AH=,∴221431t t t =-+-,………(1分) 解得11t =(不合题意,舍去),25t =.……………………………………(1分) ∴5t =,点E 的坐标为(5,8).…………………………………………(1分)静安区24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系xOy 中,已知点B (8,0)和点C (9,3-).抛物线c ax ax y +-=82(a ,c 是常数,a ≠0)经过点B 、C ,且与x 轴的另一交点为A .对称轴上有一点M ,满足MA =MC . (1) 求这条抛物线的表达式; (2) 求四边形ABCM 的面积;(3) 如果坐标系内有一点D ,满足四边形ABCD且AD //BC ,求点D 的坐标.24.(本题满分12分,第(1)小题4分,第(2)小题4解:(1)由题意得:抛物线对称轴aax 28-=,即4=x . 点B (8,0)关于对称轴的对称点为点A (0,0)∴0=c , …………(1分)将C (9,-3)代入ax ax y 82-=,得31-=a …………………………(1分)∴抛物线的表达式:x x y 38312+-=…………………………(1分) (2)∵点M 在对称轴上,∴可设M (4,y ) 又∵MA =MC ,即22MCMA =∴2222)3(54++=+y y , 解得y =-3, ∴M (4,-3) …………………(2分) ∵MC //AB 且MC ≠AB , ∴四边形ABCM 为梯形,,AB =8,MC =5,AB 边上的高h = y M = 3 ∴2393)58(21)(21=⨯+⨯=⨯+=MH MC AB S(3) 将点B (8,0)和点C (9,﹣3)代入b kx y BC += 可得⎩⎨⎧-=+=+3908b k b k ,解得⎩⎨⎧=-=243b k 由题意得,∵AD //BC , 3-=BC k ∴3-=AD k ,x y AD 3-=…(又∵AD 过(0,0),DC =AB =8, 设D (x ,-3x ) 2228)33()9(=+-+-x x , …………………………(1分)解得11=x (不合题意,舍去), 5132=x …………………………(1分)∴5393-=-=x y ∴点D 的坐标)539,513(-.……………………(1分)闵行区24.(本题满分12分,其中每小题各4分)如图,已知在平面直角坐标系xOy 中,抛物线22y ax x c =-+与x 轴交于 点A 和点B (1,0),与y 轴相交于点C (0,3). (1)求抛物线的解析式和顶点D 的坐标;(2)求证:∠DAB=∠ACB ;(3)点Q 在抛物线上,且△ADQ 是以AD 为 底的等腰三角形,求Q 点的坐标.24.解:(1)把B (1,0)和C (0,3)代入22y ax x c =-+中,得9603a c c ++=⎧⎨=⎩,解得13a c =-⎧⎨=⎩.……………………………………(2分)∴抛物线的解析式是:223y x x =--+.……………………………(1分) ∴顶点坐标D (-1,4).……………………………………………(1分) (2)令0y =,则2230x x --+=,13x =-,21x =,∴A (-3,0)∴3OA OC ==,∴∠CAO =∠OCA .…………………………………(1分)在Rt BOC ∆中,1tan 3OB OCB OC ∠==.………………………………(1分)∵AC =,DC =AD =, ∴2220AC DC +=,220AD =;∴222AC DC AD +=,ACD ∆是直角三角形且90ACD ∠=,∴1tan 3DC DAC AC ∠==,又∵∠DAC 和∠OCB 都是锐角,∴∠DAC =∠OCB .…………………(1分) ∴DAC CAO BCO OCA ∠+∠=∠+∠,即DAB ACB ∠=∠.……………………………………………………(1分) (3)令(Q x ,)y 且满足223y x x =--+,(3A -,0),(1D -,4)∵ADQ ∆是以AD 为底的等腰三角形,∴22QD QA =,即2222(3)(1)(4)x y x y ++=++-, 化简得:220x y -+=.………………………………………………(1分) 由222023x y y x x -+=⎧⎨=--+⎩,……………………………………………………(1分)解得11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点Q的坐标是⎝⎭,⎝⎭.…(2分) 普陀区24.(本题满分12分)如图10,在平面直角坐标系xOy 中,直线3y kx =+与x 轴、y 轴分别相交于点A 、B ,并与抛物线21742y x bx =-++的对称轴交于点()2,2C ,抛物线的顶点是点D .(1)求k 和b 的值;(2)点G 是y 轴上一点,且以点B 、C 、G 为顶点的三角形与△BCD 相似,求点G 的坐标;(3)在抛物线上是否存在点E :它关于直线AB 的对称点F 恰好在y 轴上.如果存在,直接写出点E 的坐标,如果不存在,试说明理由.24.解:(1) 由直线3y kx =+经过点()2,2C ,可得12k =-.·················································· (1分)由抛物线21742y x bx =-++的对称轴是直线2x =,可得1b =. ······················· (1分) (2) ∵直线132y x =-+与x 轴、y 轴分别相交于点A 、B ,∴点A 的坐标是()6,0,点B 的坐标是()0,3. ····················································· (2分)∵抛物线的顶点是点D ,∴点D 的坐标是92,2⎛⎫ ⎪⎝⎭.·············································· (1分) ∵点G 是y 轴上一点,∴设点G 的坐标是()0,m . ∵△BCG 与△BCD 相似,又由题意知,GBC BCD ∠=∠,∴△BCG 与△BCD 相似有两种可能情况: ·························································· (1分) ①如果BG BC CB CD =,解得1m =,∴点G 的坐标是()0,1. ···· (1分)②如果BG BC CD CB =,那么352m -=,解得12m =,∴点G 的坐标是10,2⎛⎫ ⎪⎝⎭. (1分)综上所述,符合要求的点G 有两个,其坐标分别是()0,1和10,2⎛⎫ ⎪⎝⎭.(3)点E 的坐标是91,4⎛⎫- ⎪⎝⎭或92,2⎛⎫ ⎪⎝⎭. ····································································· (2分+2分)图10xy 11 O青浦区24.(本题满分12分,第(1)、(2)、(3)小题,每小题4分)已知:如图8,在平面直角坐标系xOy 中,抛物线23y axbx =++的图像与x 轴交于点A (3,0),与y 轴交于点B ,顶点C 在直线2x =上,将抛物线沿射线AC 的方向平移,当顶点C 恰好落在y 轴上的点D 处时,点B 落在点E 处. (1)求这个抛物线的解析式;(2)求平移过程中线段BC 所扫过的面积;(3)已知点F 在x 轴上,点G 在坐标平面内,且以点C 、E 、F 、G 为顶点的四边形是矩形,求点F 的坐标. .24.解:(1)∵顶点C 在直线2x =上,∴22=-=bx a,∴4=-b a . ······················ (1分) 将A (3,0)代入23y ax bx =++,得933=0++a b , ························· (1分) 解得1=a ,4=-b . ····················································································· (1分) ∴抛物线的解析式为243=-+y x x .························································· (1分) (2)过点C 作CM ⊥x 轴,CN ⊥y 轴,垂足分别为M 、N .∵243=-+y x x =()221=--x ,∴C (2,1-).··································· (1分)∵1==CM MA ,∴∠MAC =45°,∴∠ODA =45°, ∴3==OD OA . ··························································································· (1分) ∵抛物线243=-+y x x 与y 轴交于点B ,∴B (0,3),∴6=BD . ································································································ (1分) ∵抛物线在平移的过程中,线段BC 所扫过的面积为平行四边形BCDE 的面积, ∴12262122==⨯⨯⋅=⨯=BCDEBCDSSBD CN . ································ (1分)(3)联结CE .∵四边形BCDE 是平行四边形,∴点O 是对角线CE 与BD 的交点, 即OE OC ==(i )当CE 为矩形的一边时,过点C 作1CF CE ⊥,交x 轴于点1F ,设点1F a (,0),在1Rt OCF 中,22211=OF OC CF +, 即 22(2)5a a =-+,解得 52a =,∴点152F (,0) ··········································· (1分) 同理,得点252F (-,0) ····························································································· (1分) (ii )当CE 为矩形的对角线时,以点O 为圆心,OC 长为半径画弧分别交x 轴于点3F 、4F ,可得34=OF OF OC =3F )、4F ()······· (2分) 综上所述:满足条件的点有152F (,0),252F (-,0),3F )),4F (). 松江区24.(本题满分12分,每小题各4分)如图,已知抛物线y=ax 2+bx 的顶点为C (1,1-),P 是抛物线上位于第一象限内的一点,直线OP 交该抛物线对称轴于点B ,直线CP 交x 轴于点A . (1)求该抛物线的表达式;(2)如果点P 的横坐标为m ,试用m 的代数式表示线段BC 的长; (3)如果△ABP 的面积等于△ABC 的面积,求点P 坐标.24.(本题满分12分,每小题各4分)解:(1)∵抛物线y=ax 2+bx 的顶点为C (1,1-)∴ 112a b b a +=-⎧⎪⎨-=⎪⎩…………………………………2分解得:12a b =⎧⎨=-⎩…………………………………1分∴抛物线的表达式为:y=x 2-2x ;…………………………1分 (2)∵点P 的横坐标为m ,∴P 的纵坐标为:m 2-2m ……………………………1分 令BC 与x 轴交点为M ,过点P 作PN ⊥x 轴,垂足为点N ∵P 是抛物线上位于第一象限内的一点,(第24题图)∴PN = m 2-2m ,ON =m ,O M =1由PN BMON OM =得221m m BM m -=………………………1分 ∴ BM =m -2…………………………………………………1分 ∵ 点C 的坐标为(1,1-),∴ BC= m -2+1=m -1………………………………………1分 (3)令P (t ,t 2-2t ) ………………………………………………1分 △ABP 的面积等于△ABC 的面积 ∴AC =AP过点P 作PQ ⊥BC 交BC 于点Q ∴CM =MQ =1∴t 2-2t =1 …………………………………………………1分∴1t =1t =………………………………1分∴ P 的坐标为(1)……………………………………1分徐汇区24. 如图,已知直线122y x =-+与x 轴、y 轴分别交于点B 、C ,抛物线212y x bx c =-++过点B 、C ,且与x 轴交于另一个点A .(1)求该抛物线的表达式;(2)点M 是线段BC 上一点,过点M 作直线l ∥y 轴 交该抛物线于点N ,当四边形OMNC 是平行四边形时, 求它的面积;(3)联结AC ,设点D 是该抛物线上的一点,且满足DBA CAO ∠=∠,求点D 的坐标.杨浦区24、(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图8,在平面直角坐标系中,抛物线于X轴交于点A、B,于y轴交于点C,直线经过点A、C,点P为抛物线上位于直线AC上方的一个动点。
2018年上海市中考数学二模试卷
2018年上海市中考数学二模试卷(总21页)-本页仅作为预览文档封面,使用时请删除本页-2018年上海市中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B. xy2C.2xy D.(﹣)22.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3 C.a3•a2=a5D.2a﹣1=(a≠0)3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABC D是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=.8.(4分)在实数范围内分解因式:4a2﹣3=.9.(4分)方程=1的根是.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是,则第六组的频数为.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=, =,那么=(用、的式子表示).15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈,≈)18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)2018﹣2cos45°+8.20.(10分)解方程组:21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使得2S△ABM=S△ABC,求点M的坐标.22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x 轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B. xy2C.2xy D.(﹣)2【解答】解:由题意可知:2xy是二次单项式,故选:C.2.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5D.2a﹣1=(a≠0)【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)2a2+a中没有同类项,不能合并,故B错误;(D)原式=,故D错误;故选:C.3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,∴k>0,∴它的图象的两个分支分别在第一、三象限.故选:A.4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=5.【解答】解:原式=1+4=5,故答案为:58.(4分)在实数范围内分解因式:4a2﹣3=.【解答】解:4a2﹣3=.故答案为:.9.(4分)方程=1的根是1.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是m.【解答】解:∵关于x的方程x2﹣3x﹣m=0没有实数根,∴△<0,即(﹣3)2﹣4(﹣m)<0,解得m<﹣,故答案为:m<﹣.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为y=﹣x+5.【解答】解:∵直线y=kx+b平行于直线y=﹣x,∴k=﹣.又∵截距为5,∴b=5,∴这条直线的解析式是y=﹣x+5.故答案是:y=﹣x+5.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是,则第六组的频数为8.【解答】解:根据题意,得:第一组到第四组的频率和是=,又∵第五组的频率是,∴第六组的频率为1﹣(+)=,∴第六组的频数为:40×=8.故答案为:8.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=, =,那么=﹣(用、的式子表示).【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∴==, ==,∵AE=2DE,∴=,∵=+.∴=﹣,故答案为﹣.15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.【解答】解:∵y=﹣x2+3x﹣2中a=﹣1,b=3,c=﹣2,且﹣1的相反数是1,与b相等的数是3,﹣2的倒数是﹣,∴y=﹣x2+3x﹣2的“亚旋转函数”为 y=x2+3x﹣.故答案是:y=x2+3x﹣.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为cotα(或).(用锐角α的三角比表示)【解答】解:如图所示:∵正n边形的中心角为2α,边长为5,∵边心距OD=(或),故答案为:(或),17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈,≈)【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为: ==10≈(米/秒).故答案为:.18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=12﹣12.【解答】解:过点C作CF⊥AB于点F,则四边形AFC D为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)2018﹣2cos45°+8.【解答】解:原式=﹣1+1﹣2×+2=﹣+2=2.20.(10分)解方程组:【解答】解:由②得:(x﹣2y)(x+y)=0x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使得2S△ABM=S△ABC,求点M的坐标.【解答】解:(1)令y=0,则﹣2x+4=0,解得x=2,∴点A坐标是(2,0).令x=0,则y=4,∴点B坐标是(0,4).∴AB===2.∵∠BAC=90°,tan∠ABC==,∴AC=AB=.如图1,过C点作CD⊥x轴于点D,∠BAO+∠ABO=90°,∠BAO+∠CAD=90°,∵∴∠ABO=∠CAD,,∴△OAB∽△DAC.∴===,∵OB=4,OA=2,∴AD=2,CD=1,∴点C坐标是(4,1).(2)S△ABC=AB•AC=×2×=5.∵2S△ABM=S△ABC,∴S△ABM=.∵M(1,m),∴点M在直线x=1上;令直线x=1与线段AB交于点E,ME=m﹣2;如图2,分别过点A、B作直线x=1的垂线,垂足分别是点F、G,∴AF+BG=OA=2;∴S△ABM=S△BME+S△AME=ME•BG+ME•AF=ME(BG+AF)=ME•OA=×2×ME=,∴ME=,m﹣2=,m=,∴M(1,).22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?【解答】解:设自行车的平均速度是x千米/时.根据题意,列方程得﹣=,解得:x1=15,x2=﹣30.经检验,x1=15是原方程的根,且符合题意,x2=﹣30不符合题意舍去.答:自行车的平均速度是15千米/时.23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.【解答】证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.又∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠ABF=∠C,∠ABD=∠DBC,∴△ABF∽△CBD.…………………………………………………(1分)∴.………………………………………………………(1分)∴BF•BC=AB•B D.………………………………………………(1分)(2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,∴△ABF≌△GBF.∴AF=FG,BA=BG.…………………………(1分)∵BA=BG,∠ABD=∠GBD,BD=BD,∴△ABD≌△GBD.∴∠BAD=∠BGD.……………………………(1分)∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分)又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分)∴AF=FG.……………………………………………………………(1分)∴四边形ADGF是菱形.……………………………………………(1分)24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x 轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,EH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=,(3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形。
上海市各区2018届中考数学二模试卷精选汇编:综合计算
综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CHAH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区图4DCB A图4DCBAH21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分) 崇明区21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.ADB第21题图21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒=……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH ==……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-=- ………………………………………1分(第21题图1)ABOP CD (第21题图2)OABDPC奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BFCF的值. 21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.(1)求△ABC 的面积; (2)求CE ∶DE.21. 解:(1)由AB =AC =6,AH ⊥BC ,得BC =2BH .—————————————————————————(2分) 在△ABH 中,AB =6,cosB =23,∠AHB =90°, 得BH =2643⨯=,AH=2分) 则BC =8,所以△ABC 面积=182⨯=——————————————(1分) (2)过D 作BC 的平行线交AH 于点F ,———————————————(1分)由AD ∶DB =1∶2,得AD ∶AB =1∶3, 则31CE CH BH AB DE DF DF AD ====. ——————————————(4分)图6ABCD EF金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F .(1)求证:AF=BE ;(2)如果BE ∶EC=2∶1,求∠CDF 的余切值.21.解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°,∴∠DAF=∠AEB ,……………………………………………………………………(1分) ∵AE=BC ,DF ⊥AE ,∴AD=AE ,∠ AFD=∠EBA=90°,………………………(2分) ∴△ADF ≌△EAB ,∴AF =EB ,………………………………………………………(2分)(2)设BE =2k ,EC =k ,则AD =BC =AE =3k ,AF =BE =2k ,…………………………(1分)∵∠ADC =90°,∠AFD =90°,∴∠CDF +∠ADF =90°,∠DAF +∠ADF =90°, ∴∠CDF =∠DAF …………………………………………………………………(2分) 在Rt △ADF 中,∠AFD =90°,DF=∴cot ∠CDF =cot ∠DAF=5AF DF ==.………………………………(2分) 静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD 中,AC 、DB 交于点H .DE 平分∠ADB ,交AC 于点E .联结BE 并延长,交边AD 于点F . (1)求证:DC =EC ; (2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90°AH=DH=CH=BH , AC ⊥BD ,ABCDF图5第21题图∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分) 又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分) Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o,1tan 2ABC ∠=.(1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分) ∴AB ==1分) ∵90BAC ∠=,1tan 2ABC ∠=,∴AC =. 过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分)(2)11522ABC S AB AC ∆=⋅=⨯=.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分) ∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分) 普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长; (2)求CDA ∠的余弦值. 21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ················· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ······· (1分) 设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ··············· (2分) ∴3=DE . ··························· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ··········· (1分)同理得5=BD . ························· (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ···· (1分) ∴53=CD . ·························· (1分)ABCDE 图7∴102cos ==∠AD CD CDA . ··················· (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .(1)求线段CD 的长; (2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ················ (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ························ (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ·············· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ························ (1分) ∴43=x . ·························· (1分) (2)1141052233=⋅=⨯⨯=ABDSAB DH . ·············· (1分) ∵BD=2DE , ∴2==ABD ADES BDSDE, ····················· (3分) ∴1015323=⨯=ADES. ···················· (1分) 松江区21.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =, BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于ED BA图5AB点E. 求DE 的长.21.(本题满分10分, 每小题各5分) 解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH =4在RtAHC ∆中,AC ==…………………2分∵DE 垂直平分AC ∴12CD AC == ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD==……………………………1分 ∴DE = ………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D . (1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用 尺规作图的方法确定点O 的位置并求出的⊙O 半径. (保留作图轨迹,不写作法)(第21题图)DACBE杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018沪科版中考数学模拟试题二(满分120分)一.选择题.(30分)1.1纳米=0.000000001米,用科学计数法表示1纳米是().A. 1×10-8米B. 10×10-9米C. 1×10-9米D. 0.1×10-8米2、下列图形是轴对称图形的是:A B C D3. 如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④4.某中学2016年秋节运动会九年级男子组共有13名同学参加百米短跑,预赛成绩各不相同,根据运动会规则,要取前6名同学参加决赛.小刚已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这13名同学成绩的().A. 众数B. 中位数C. 加权平均数D. 平均数5.下列说法正确的是().A.一组数据2,5,3,1,4,3的中位数是3.5.B.五边形的外角和是540度.C.“菱形的对角线互相平分且垂直”的逆命题是真命题.D.三角形三条边的垂直平分线的交点是三角形的内心.6.线段AB两个端点的坐标分别为A(8,4),B(6,2),以原点O为位似中心,在第一象1后得到线段CD,A、B的对应点分别为C、D,则端点D 限内将线段AB缩小为原来的2的坐标为().A. (3,1)B. (4,2)C. (4,1)D. (3,2)7.若二次函数221y x x m=-++的图象关于x轴对称,则m的值为=++与22y x m x().A. 0B. 1C. -1D. 任意实数8.随县对城区主干道进行绿化,计划把某一段公路的一侧全部栽上树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是().A.5(211)6(1)x x+-=-B.5(21)6(1)x x+=-C.5(211)6x x+-=D.5(21)6x x+=9.试运用数形结合的思想方法确定方程24 2xx+=的根的取值范围为().A. 01x<< B. 10x-<< C. 12x<< D. 23x<<10.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①1m=②40a=③甲车从A地到B地共用了7小时④当两车相距50km时,乙车用时为14h.其中正确结论的个数是:A.4 B.3 C.2 D.1二.填空题.(18分)11. 的算术平方根为_________.12.从0到9这10有意义的概率是___________. 13.如上图,若AB‖DE,则∠1=__________.第13题图第14题图14.如上图,在边长为8的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为___________.(结果保留π)15.按照如图所示的方法排列黑色小正方形地砖,则第10个图案中,白色小正方形地砖的块数是_____________.第15题图第16题图16. 如图,在矩形ABCD中,AD,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF , 其中正确的有___________.三、解答题(本题有8小题,共72分)17.(6分)解不等式组2(+2)3+31<34x x x x ≤⎧⎪+⎨⎪⎩并将解集在数轴上表示出来.18.(6分)计算:2017212sin 60(s 45)(tan 30)--︒+︒+-︒19.(6分)如图,在矩形ABCD 中,AB >AD ,AB =a ,AF 平分∠DAB ,DE ⊥AF 于点E ,CF ⊥AF 于点F .求DE +CF 的值.(用含a 的代数式表示)20.(8分)2017年春,市教育局组织九年级600名学生参加“绿色随州,从我做起”植树活动,每名学生植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图和条形图,经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1) 写出条形图中存在的错误,并说明理由;(2) 写出这20名学生每人植树量的众数、中位数;(3) 在求这20名学生每人植树量的平均数时,小明是这样分析的:第一步:求平均数的公式是12...nx x x x n+++=;第二步:在该问题中,12344,4,5,6,7n x x x x =====; 第三步:45675.54x +++==(棵).① 小明的分析是从哪一步开始出现错误的?② 请你帮他计算出正确的平均数,并估计这600名学生共植树多少棵.21.(7分)英语听力考试期间,需要杜绝考点周围的噪音,如图,点A 是随州市某中学考点,在位于A 考点南偏西15°方向距离125米处点C 处有一消防队,在听力考试期间,消防队突然接到报警电话,告知在位于点C 北偏东75°方向的点F 处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力考试造成影响,取1.732).22. (7分)如图,在等腰△ABC 中,AB =AC ,角平分线AD 、CE 相交于点E ,经过C 、E 两点的⊙O 交AC 于点G ,交BC 于点F ,GC 恰为⊙O 的直径. (1)求证:AD 与⊙O 相切; (2)当BC =4,1c o s 3B =时,求⊙O 的半径.23.(10分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x (x ≥2)个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A 超市:所有商品均打九折(按标价的90%)销售;B 超市:买一副羽毛球拍送2个羽毛球.设在A 超市购买羽毛球拍和羽毛球的费用为A y (元),在B 超市购买羽毛球拍和羽毛球的费用为B y (元).请解答下列问题:(1)分别写出A y 和B y 与x 之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.24. (10分)已知:点P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F ,点O 为AC 的中点.(1)当点P 与点O 重合时如图1,请明证OE=OF ;(2)直线BP 绕点B 逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF 、AE 、OE 之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.25.(12分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.答案23.24.解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.25.解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣2x﹣3;(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S△ABC=AB•OC=×4×3=6,∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△PBC=PM•OH+PM•HB=PM•(OH+HB)=PM•OB=PM,∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=﹣x2+3x=﹣(x﹣)2+,∴当x=时,PM max=,则S△PBC=×=,此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;(3)如图2,设直线m交y轴于点N,交直线l于点G,则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,﹣1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y=x﹣1,即存在满足条件的直线m,其解析式为y=x﹣1.当Q点在x轴上方时直线m的解析式为:y=-x+111。