单细胞蛋白论文2
大专食品毕业论文范文

大专食品毕业论文范文食品安全是当今世界上人们所关注的焦点问题之一,每年食源性疾病所造成的严重后果,使食品安全问题已成为全球公众健康优先考虑的问题。
下面是店铺为大家整理的食品毕业论文,供大家参考。
食品毕业论文范文一:食品检验结果的质量控制研究摘要:随着经济的不断发展,人们的生活质量在很大程度得到了提升,食品安全成为人们关注的焦点。
从近些年我国的食品安全问题情况来看,食品安全问题对人们的身体健康造成了很大的威胁,所以加强对食品的检验和质量控制就比较重要。
主要就食品检验结果的质量控制进行详细分析,希望能通过此次理论研究有助于食品安全的进一步强化。
关键词:食品安全;食品检测;质量控制引言食品安全是社会民生的基础保障,让老百姓吃上放心的食品才能够促进社会的和谐稳定发展。
近些年食品安全问题相对严重,这就需要通过相应的措施进行应对,加强对食品检验以及对其检验结果的质量控制,充分保障食品的安全性。
故此对食品检验结果质量控制就有着实质性意义。
1食品检验及抽样过程的质量控制分析1.1食品检验内涵食品的质量检验主要是按照某一食品执行的产品标准实施的符合性检验,然后出具公正性的检验报告,在检验结果方面对食品判定是合格或者不合格。
对食品进行质量检验技术性比较强,同时也是对实验室能力水平的一种反映,而食品质量检验的准确性就对食品企业的生存有着严重影响,所以这就需要加强对食品的安全检验结果的质量控制[1]。
对每个检验的环节都要充分重视,保障检验结果的完整性以及准确性。
1.2食品检验抽样过程的质量控制分析食品的检验过程是按照一定的程序进行实施的,首先是对食品的抽样检查,这也是检验工作的头道工序,抽样过程中要能够有代表性。
具体的操作过程要结合不同产品在抽样前制定合理的抽样方案,并能够明确抽样的依据以及方法和地点等,抽样人员最少2名,要持证上岗,并填写抽样单,抽样单位确认后再进行签字和盖章,还要对样品进行确认[2]。
加强对抽样人员业务素质以及道德品质的教育,抽样过程要坚持原则,也就是随机抽样的原则,通过对同批产品中上中下几个位置进行取样。
蛋白质论文

一前言人类基因组计划完成后,美国于2001年9 月正式启动了“功能糖组学”研究项目,项目的总体目标就是阐明由蛋白质- 糖链相互作用的介忖的细胞通讯机制。
基因组计划提供了最基本的遗传信息。
而许多基因的功能仍需要阐明。
其中的关键就是要了解蛋白质翻译后的修饰,而蛋白质的糖基化便是最主要的翻译后修饰之一。
二本论蛋白质糖基化是蛋白质翻译后的一种加工过程,是蛋白质一种重要的翻译后修饰【1】。
2.1蛋白质糖基化定义蛋白质的糖基化是指在糖基转移酶作用下将糖转移至蛋白质,和蛋白质上的氨基酸残基形成糖苷键的过程。
糖基化是对蛋白的重要的修饰作用,有调节蛋白质功能作用。
具体过程:N-连接的糖链合成起始于内质网,完成与高尔基体。
在内质网形成的糖蛋白具有相似的糖链,由Cis面进入高尔基体后,在各膜囊之间的转运过程中,发生了一系列有序的加工和修饰,原来糖链中的大部分甘露糖被切除,但又被多种糖基转移酶依次加上了不同类型的糖分子,形成了结构各异的寡糖链。
糖蛋白的空间结构决定了它可以和那一种糖基转移酶结合,发生特定的糖基化修饰。
许多糖蛋白同时具有N-连接的糖链和O-连接的糖链。
O-连接的糖基化在高尔基体中进行,通常的一个连接上去的糖单元是N-乙酰半乳糖,连接的部位为Ser、Thr和Hyp的OH 基团【2】,然后逐次将糖基转移到上去形成寡糖链,糖的供体同样为核苷糖,如UDP-半乳糖。
糖基化的结果使不同的蛋白质打上不同的标记,改变多肽的构象和增加蛋白质的稳定性。
在高尔基体上还可以将一至多个氨基聚糖链通过木糖安装在核心蛋白的丝氨酸残基上,形成蛋白聚糖。
这类蛋白有些被分泌到细胞外形成细胞外基质或粘液层,有些锚定在膜上。
2.2蛋白质糖基化分类2.2.1N-连接的糖基化糖通过与蛋白质的天冬酰胺侧链的酰胺氮连接而修饰蛋白质,所以将这种糖基化称为N-连接的糖基化, N位糖基化根据其末端精细结构的不同又可分为高甘露糖型、复合型和杂合型。
这一过程是在内质网中进行的。
单细胞蛋白的生产现状及发展前景

单细胞蛋白的生产现状及发展前景摘要:随着世界人口的不断增长,粮食和饲料不足的情况日益严重.面对这一严峻的现实,单细胞蛋白的开发与生产为解决人类食品和饲料问题开辟了新的途径。
因此,本文就单细胞蛋白的生产现状与发展前景作一阐述。
关键词:单细胞蛋白生产前景单细胞蛋白(简称SCP)主要是从酵母菌、细菌、放线菌、霉菌、微型藻等单细胞生物和具有简单结构的多细胞生物中所提取的蛋白质,称为单细胞蛋白质,目前工业化生产的单细胞蛋白几乎都是来自酵母菌。
单细胞蛋白其粗蛋白含量可达45%~70%(而作物中蛋白质含量最高的大豆仅达35%~45%),且各种氨基酸搭配合理,维生素含量高。
成本低、产量高、原料广等特点,特别对于缓解世界面临食物短缺、环境污染和能源缺乏等问题尤其显得重要。
1、单细胞蛋白的特性1.1单细胞蛋白的生物特性单细胞蛋白是通过培养单细胞生物而获得的菌体蛋白质。
用于生产SCP的单细胞生物包括微型藻类、非病原细菌、酵母菌类和真菌。
1.1.1SCP营养丰富蛋白质含量高达40%~80%,比大豆高10%~20%,比肉、鱼、奶酪高20%以上;氨基酸的组成较为齐全,含有人体必需的8种氨基酸,尤其是谷物中含量较少的赖氨酸。
单细胞蛋白中还含有多种维生素、碳水化合物、脂类、矿物质,以及丰富的酶类和生物活性物质,如辅酶A、辅酶Q、谷胱甘肽、麦角固醇等。
[2]1.1.2 生产单细胞蛋白的原料来源极为广泛,成本较低。
一般分为四类:一是糖质原料,如淀粉或纤维素的水解液、亚硫酸纸浆废液、制糖的废蜜等;二是石油原料,如柴油、正烷烃、天然气等;三是石油化工产品,如醋酸、甲醇、乙醇等;四是氢气和碳酸气。
最有前途的原料是可再生的植物资源,如农林加工产品的下脚料、食品工厂的废水下脚料等。
这些资源数量多,而且用后可以再生,还可实现环境保护。
1.1.3 生产速率高一般蛋白质生产速度同猪、牛、羊等体重的倍增时间成正比。
微生物的倍增时间比牛、猪、鸡等快千万倍,如细菌、酵母菌的倍增时间为20~120h,霉菌和绿藻类为2~6h,植物1~2周,牛1~2个月,猪4~6周。
我国单细胞蛋白的开发利用现状与前景

我国单细胞蛋白的开发利用现状与前景 章练红 王翠娥 李运景 韩 琴(河南省农业科学院信息所 郑州 450002) (郑州畜牧专科学校) 提 要 以丰富的数据概述了我国近10年来以工业废液、农副产品加工下脚料,以及各类植物纤维素为原料研究与开发生产单细胞蛋白所取得的可喜进展,并详细论述了我国生产单细胞蛋白的潜力与开发前景。
关键词 单细胞蛋白 开发利用 单细胞蛋白(Single Cell Pratein,SCP)是指用各种基质大规模培养细菌、酵母菌、霉菌、藻类和担子霉获得的微生物蛋白(或菌体蛋白),是食品工业和饲料工业的重要蛋白质来源。
SCP营养丰富,蛋白质含量40%~80%,比大豆高33%,且含有18~20种氨基酸,组分齐全,富含多种维生素;SCP生产原料来源广、繁殖速度快、生产效率高、占地面积小、不受气候影响等优点;目前已发展成为一项具有巨大经济效益的生物工程产业。
1 单细胞蛋白的开发利用现状我国SCP生产始于1922年,但前期发展缓慢。
80年代以来,发展迅速,主要产品为酵母、饲料酵母(包括固体发酵产品,亦称固体酵母)。
1987年全国SCP(酵母)总产量1.55万t。
1990年SCP超过2万t,1991年总产量6万t,其中固体酵母达4.8万t,1992年固体酵母达8万t,1993年超过10万t,到2000年预计发展到15万t[1] 。
111 利用工业废液生产SCP1.1.1 造纸废液的利用 吉林省石砚造纸厂于60年代末期建成一套利用亚硫酸盐法将制浆废液连续发酵、生产饲料酵母的设备,生产能力1200t, 1991年生产800t[2] 。
11112 味精废液的利用 以味精废液为原料生产SCP的厂家有10个,总生产能力6500t/a,1991年生产3150t[2]。
江苏如东生物化学厂、常州味精厂等相继建成年产500t的车间,周口味精厂建成年产2000t的车间。
福州味精厂于1987年由西德引进4台套HDB-50型碟片离心机,首家用于分离谷氨酸菌体蛋白,制备SCP,年产量约500~600t。
(细胞生物学专业优秀论文)蛋白质...

知识水坝为您倾心整理(小店)如需格式转换服务请发豆丁站内信或联系QQ@2218108823知识水坝为您倾心整理(小店)如需格式转换服务请发豆丁站内信或联系QQ@2218108823所有功能蛋白质组学研究都包含了四个关键技术平台:样品制备操作:部分氨基酸序列信息分析;蛋白鉴定与定量;蛋白胞内功能分析(图1)。
分析相互作用蛋白的第。
步需要特异性地富集这些蛋白。
这需要我们至少了解其中一个蛋白的功能活性。
在非变性条件下,从蛋白混合物(如细胞裂解液)中分离富集相互作用蛋白复合物可以通过免疫共沉淀,Pul卜down图1.蛋白质组学中重要的四个技术平台,蛋白亲和层析(EinarsonandOrlJnick,2002)和生化分离完整的多蛋白复合物(例如核孔复合物)等方法实现(图1.9)。
分离得到的相互作用蛋白复合物经由SDS—PAGE或者2DSDS—PAGE展开,并可以电印迹到PVDF膜上。
蛋白可以通过直接的氨基端或羧基端测序鉴定,也可以通过质谱测定胶内或膜上蛋白酶切得到的多肽产物来间接鉴定。
这种基于质谱的方法并不是对蛋白进行直接鉴定,而是分析蛋白酶解的多肽片断。
它的优势在于酶切后的多肽能很容易的从胶里抽提出来,而整个蛋白却很困难。
此外,少量数目的多肽片断就能为鉴定蛋白提供足够的数据信息,通过肽指纹谱(peptidemassfingerprJnting,PMF)得到所有能检测到的肽段的大小,或者通过MS/MS测定单个肽段的氨基酸组成。
一般的质谱仪都分为三个主要部分。
离子源将固相或液相分子转换成气相离子;质量分析器把气化的离子按其质荷比进行分离;最后检测器检测到达的每个离子的质荷比。
常用的生物质谱一般为两种:基质辅助激光解吸附离子化质谱(MAHDI)和电喷雾质谱(ESI)。
MAHDI通过激光轰击与基质混合在一起的样品,图2细胞图谱蛋白质组学中的亲和捕获方法利用高能量激发晶体状的基质样品混合物使其气化。
单电荷离子被引导进入质量分析器,由检测器检测。
论文写作技巧——摘要

r a s P 2 1蛋 白表达 与 鼻 咽癌 临 床病 理 的关 系 比较 , 主要
针 对 患 者 的 临床 分 期 , 以及 病理 分 级进 行 比较 。临 床分 期
蛋 白表 达量 与 鼻 咽癌 患者 的恶化 程 度成 正 比的关 系 。 随 着 鼻 咽癌 的恶化 程 度 的加 深 , 患者 的 r a s P 2 1蛋 白表 达量 也 随
r a s P 2 1 蛋 白量 并 无 增加 。 但 在鼻 咽 癌 患者 中 进行 r a s P 2 1蛋
白检 测 , r a s P 2 1 蛋 白与患 者鼻 咽癌 的恶 化程 度成 正 比圈 。 在
本 次 研 究 中表 明鼻 咽 癌 患 者 与正 常鼻 咽 黏 膜 r a s P 2 1蛋 白 表 达 的 结果 , 鼻 咽癌 患 者 的 阳性 率 高 于 正常 鼻咽 膜 阳性 率 的3 2 %, P<0 . 0 5 , 差 异具 有 统计 学 意 义 。患有 鼻 咽癌 的患 者在 身 体 以及 心理 上 都有 一 定 的影 响 , 其 主 要 的临床 表 现 为呼 吸 不 畅 , 容 易 经 颅 内侵 入 眼 眶 , 使 患 者 的视 力 有 所 下 降, 因此 当有 患 者患 有 鼻 咽癌 时却 因 为视 力 有所 下 降从 而 诊断眼科 , 耽 误 了病 情 , 使 患 者 的治疗 效 果 降低 , 容 易耽 误
2 0 1 3年 5月第 2 0卷第 1 5期
・
医学检 验 ・
结果 , 鼻咽癌患者 r a s P 2 1蛋 白 的 阳性 表 达 率 为 8 0 %, 正 常 人 鼻咽 膜 r a s P 2 1蛋 白表 达 阳性 率 为 4 8 % ,两 者 差 距 达
3 2 %。 P<0 . 0 5 , 差异 具 有统 计学 意 义 。见表 1 。 ’
食品微生物论文
微生物食品——单细胞蛋白PS湛江师范学院生命科学与技术学院,湛江 524048摘要:微生物都是核酸和蛋白质的实体,大多是单细胞,用发酵法生产这些单细胞微生物就可以得到极为丰富的单细胞蛋白。
微生物的繁殖速度惊人,一头体重500千克的牛,每天只能合成0.5千克的蛋白质。
而500千克的活菌体,只要有合适的条件,在24小时内能够生产1250千克的单细胞蛋白质。
单细胞微生物制造出来的蛋白质可以制造人造肉、人造鱼、人造面粉等食品。
关键词:微生物、食品、单细胞蛋白、营养在日常生活中,我们不论有意无意,经常直接食用微生物或含有微生物的食品。
平常我们吃的蘑菇就是微生物的一种,令人难以置信,细菌和其他微生物含有和牛排一样多的蛋白质。
微生物食品在人类食谱中的比例越来越重。
目前,世界上还有2/3的人营养不良,缺少动物性蛋白,可见人类对蛋白质的需要越来越大。
毕竟地球上的动植物有限,产生的蛋白质更是有限的,因此需要在微生物方面做文章,势在必行。
(一)单细胞蛋白概念1966年,在麻省理工学院召开的会议上,第一次提出单细胞蛋白的概念。
单细胞蛋白又叫微生物蛋白、菌体蛋白。
按生产原料不同,可以分为石油蛋白、甲醇蛋白、甲烷蛋白等;按产生菌的种类不同,又可以分为细菌蛋白、真菌蛋白等。
1967年在第一次全世界单细胞蛋白会议上,将微生物菌体蛋白统称为单细胞蛋白。
(二)单细胞蛋白含丰富营养物质及其原料来源单细胞蛋白所含的营养物质极为丰富。
其中,蛋白质含量高达40%~80%,比大豆高10%~20%,比肉、鱼、奶酪高20%以上;氨基酸的组成较为齐全,含有人体必需的8种氨基酸,尤其是谷物中含量较少的赖氨酸。
一般成年人每天食用10~15 g干酵母,就能满足对氨基酸的需要量。
单细胞蛋白中还含有多种维生素、碳水化合物、脂类、矿物质,以及丰富的酶类和生物活性物质,如辅酶A、辅酶Q、谷胱甘肽、麦角固醇等。
而且单细胞蛋白质里氨基酸的种类比较齐全,有几种在一般食物里缺少的氨基酸,再单细胞蛋白里却大量存在.另外,还含有多种维生素,这也是一般食物所不及.正是由于单细胞蛋白具有这些突出的优点,现在人们用它加上相应的调味品做成鸡、鱼、猪肉的代替品,不仅外形相象,而且味道鲜美,营养也不亚于天然的鱼肉制品;用它掺和在饼干、饮料、奶制品中,则能提高这些产品的营养价值.在畜禽的饲料中,只要添加3-10%的单细胞蛋白,便能大大的提高饲料的营养价值和利用率.用来喂猪可增加瘦肉率;用来养鸡可多产蛋;用来饲养奶牛还可提高产奶量.在井冈霉素、肌苷、抗菌素等发酵它又可代替粮食原料.原料来源广泛:可作为单细胞蛋白生产原料的资源有:矿物(石油、液蜡、甲烷、泥炭等)、纤维资源(秸秆、木屑、糠稗、蔗渣等)、糖类资源(糖蜜、甘薯、木薯等)、工业有机废液(味精废液、淀粉废液、豆制品废液、酒精废液等)等。
单细胞蛋白在食品工业中生产应用论文
浅析单细胞蛋白在食品工业中的生产及应用【中图分类号】r155 【文献标识码】a 【文章编号】1672-3783(2011)11-0416-01单细胞蛋白(singlecellprotein简称scp)就是从酵母或细菌等微生物中获取的蛋白质。
酵母菌体中蛋白质含量占细胞干物质的45%-55%;细菌蛋白质占干物质的60%~80%;霉菌菌丝体蛋白质占干物质的30%~50%;单细胞藻类如小球藻等蛋白质占干物质的55%~60%。
同时微生物细胞中还有丰富的碳水化合物及脂类、维生素、矿物质,所以微生物菌体可以作为食品和饲料。
scp的生产在农业、畜牧、及渔业歉收时,可补充蛋白质供应的不足。
当今世界人口迅速增长,要确保充足的蛋白质供给是一个十分严峻的问题。
大力发展农业,增加粮食产量,至关重要。
同时有了粮食,可以提供饵料和饲料,使养殖业和畜牧业发展,促使蛋白质量增加。
因此发展scp生产工业,有极其重要的意义。
一生产单细胞蛋白的微生物生产scp的微生物应从食用安全性、加工难易、生产率和培养条件等方面进行选择。
其中实用安全是重要条件,首先,选用的微生物必须是无毒的,不致病的。
目前生产scp的微生物有四大类:即非致病和非产毒的酵母、细菌、真菌和藻类。
酵母菌千百年来,一直就用在烤制面包、酿酒等方面。
所以酵母菌是容易被接受生产scp的微生物。
同时酵母菌核酸含量较低,容易收获。
在偏酸环境下(ph4.5~5.5)能够生长,可减少污染。
常用的酵母菌有啤酒酵母和产脘假丝酵母。
啤酒酵母只能利用己糖,而产脘假丝酵母能利用戊糖和己糖,在营养贫脊的培养基中生长很快。
另外解脂假丝酵母可利用烷烃和汽油。
细菌的生产原料广泛,生产周期短但细菌个体小,收获分离难,核酸含量高,同时消化性差。
藻类的生产需要足够的阳关和一定的温度细胞壁不易被消化,食味不好,核酸含量高对人的健康不利。
真菌菌丝生产慢,易受酵母污染,必须在无菌条件下培养。
二在食品中的用途大批量的scp是以全细胞形式消费的,而且是用作饲料蛋白源。
南京农业大学食品院学科专题论文
发酵工程的研究进展食品质量与安全专业摘要:本学期的学科专题课在内容上较去年更加的专业化更具拓展型,其中有几个教授都提到了现代生物技术,的确,社会的必然趋势便是高科技化,因此在本次论文中我选取了现代生物科技中我最感兴趣的一个方面——发酵工程。
近年来,食品发酵的应用日趋广泛。
发酵食品是指人们利用有益微生物加工制造的一类食品,具有独特的风味,如酸奶、干酪、酒酿、泡菜、酱油、食醋、豆豉、黄酒、啤酒、葡萄酒等。
本文简要综述了现代发酵工程技术在食品领域的应用及其进展,包括改造传统的食品加工工艺、单细胞蛋白(SCP)的生产、开发功能性食品和微生物油脂的生产等。
关键词:发酵工程食品工业应用展望微生物广泛存在于自然界中,以微生物供应或制造食品并不是什么新的概念。
现在发酵食品已经成为食品王业中的重要分支,就广义而言,凡是利用微生物的作用制取的食品都可称为发酵食品。
现代科技中利用微生物生长速度快、生长条件简单以及代谢过程特殊等特点,在合适条件下,通过现代化工程技术手段,由微生物的某种特定功能生产出人类需要的产品称为发酵工程,亦称微生物工程。
微生物在食品中的应用有三种方式:(1)、微生物菌体发酵是以获得具有多种用途的微生物菌体细胞为目的的产品,包括用于面包工业的酵母发酵,单细胞蛋白,活性乳酸菌剂等。
(2)、微生物酶发酵,利用发酵法制备微生物酶是当今发酵工业的重要组成部分,包括α-淀粉酶、β-淀粉酶、糖化酶、碱性蛋白酶、中性蛋白酶、酸性蛋白酶、脂肪酶、凝乳酶等。
(3)、微生物代谢产物,包括初级代谢产物一供菌体利用、中级和级次产物如酒类、食醋、有机酸、维生素供人们利用。
近几年基因工程和细胞工程等现代生物技术为发酵工程的发展提供了新技术。
重组DNA技术和细胞融合技术,使微生物从来不能产生的一些物质变成了发酵产品,为发酵工程开辟了新的领域。
本文简要介绍发酵工程在食品工业中的应用。
一、传统发酵在食品工业中的历史发酵技术起源干古老的酿造食品工业,如:清酒、啤酒、葡萄酒、黄酒、白酒、酱油、醋、腐乳以及干酪等的制造。
单细胞蛋白及其在食品工业中的应用
工艺 技术单细胞蛋白及其在食品工业中的应用 郭小鹏 刘涛 徐慧 刘鑫 徐海涛 黄岛海关 青岛市食品药品检验研究院单细胞蛋白(Single cell protein 简称SCP)是指从酵母或细菌等微生物中获取的蛋白质。
酵母菌体中单细胞蛋白质含量占细胞干物质的45 %~55 %;细菌蛋白质占干物质的60 %~80 %;单细胞藻类如小球藻等蛋白质占干物质的55 %~60 %;霉菌菌丝体蛋白质占干物质的30 %~50 %。
此外,微生物细胞中含有丰富的碳水化合物及脂类、维生素、矿物质等营养物质,所以微生物菌体可以作为食品和饲料的原料。
单细胞蛋白的种类和特点真菌蛋白。
(1)酵母蛋白。
①菌种:酵母属中绝大多数菌种都能够用来生产SCP,主要包括:酵母属、假丝酵母属、球拟酵母属、红酵母属、圆酵母属等。
②特点:酵母属的特点是营养丰富。
如粗蛋白质45%~60%含有几乎所有的必需氨基酸,尤其是赖氨酸、亮氨酸、苏氨酸、苯丙氨酸等含量高,其中赖氨酸5%~7%,蛋氨酸+胱氨酸2%~3%,还含有丰富的VB1、Vnz、Ve6、VB12和泛酸、烟酸、糖类等。
(2)其他真菌蛋白。
①菌种:地霉属、根霉属、木霉属、曲霉属、镰刀菌属和伞菌目的霉菌等。
②特点:营养价值接近酵母蛋白,但没有酵母蛋白口感好和安全性高,大规模生产受到限制。
藻类蛋白。
(1)藻类种类:主要有小球藻属、栅列藻属和螺旋藻属等。
其中研究、利用最多的是螺旋藻。
(2)特点:小球藻为绿藻门自养型单细胞藻类,是第一种人工培养的微藻。
小球藻富含蛋白质、脂质、多糖、食用纤维、维生素、微量元素和活性代谢产物,具有很好的保健和药理作用。
细菌蛋白。
(1)菌种:常见的有甲烷极毛杆菌属、氢极毛杆菌属以及放线菌属中的分枝杆菌、小球菌、甲基极毛杆菌等非病原性细菌和光合细菌。
目前,生产细菌蛋白的菌种主要以光合细菌为主,包括似真细菌的红螺细菌、绿硫细菌、着色细菌及似藻的蓝细菌。
(2)特点:光合细菌能进行光合作用,营养丰富,含有60%以上的蛋白质以及多种维生素,特别是维生素B2、叶酸、生物素的含量是酵母的几十倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2单细胞蛋白2.1单细胞蛋白概述2.1.1单细胞蛋白单细胞蛋白(英文名Single-Cell-Protein,简称SCP)是生物化工高新技术产品又叫微生物蛋白、菌体蛋白。
一般是指大规模培养系统中生长的酵母、非致病性细菌、微型菌、真菌等单细胞生物体内所含蛋白质,其粗蛋白含量可达45%~70%(而作物中蛋白质含量最高的大豆仅达35%~45%),且各种氨基酸搭配合理,维生素含量高。
其按生产原料不同,可以分为石油蛋白、甲醇蛋白、甲烷蛋白等;按产生菌的种类不同,又可以分为细菌蛋白、真菌蛋白等。
1967年在第一次全世界单细胞蛋白会议上,将微生物菌体蛋白统称为单细胞蛋白。
2.1.2单细胞蛋白的特性(1)在理想情况下,菌种甚易使单细胞蛋白质产量倍加,而其所需时间要比使农作物蛋白质量倍增所消耗时间快500倍,比其他一般饲养家畜产量所耗的时间倍增快1000-5000倍。
(2)单细胞蛋白质研究发展的实验要比研究农作物或家畜的实验易於进行,而且在极短的时间内就可得到有价值的数据与结果。
(3)单细胞蛋白质的生产不受季节,空间,阳光的种种限制。
另外据单细胞蛋白质的原料主要来自石油,不仅价格低,稳定,而且蕴藏量丰富,我们也不用经常担心制造来源的匮乏酵母菌的占45%~65%,而且它们的生长繁殖速度很快。
因此,许多国家就利用淀粉或纤维素的水解液、制糖工业的废液、石化产品等为原料,通过发酵获得大量的微生物菌体。
这种微生物菌体就叫做单细胞蛋白。
2.2单细胞蛋白的生产2.2.1单细胞生物的定义及特点单细胞蛋白是通过培养单细胞生物而获得的菌体蛋白质。
用于生产SCP的单细胞生物包括微型藻类、非病原细菌、酵母菌类和真菌。
单细胞生物特性:(1)SCP营养丰富与黄豆粉相比,蛋白质含量高达15%,而可利用氮比大豆高20%,如添加蛋氨酸则可利用氮达95%以上。
(2)利用原料广可就地取材,廉价大量地解决原料问题。
生产单细胞蛋白的原料来源极为广泛,一般分为四类:一是糖质原料,如淀粉或纤维素的水解液、亚硫酸纸浆废液、制糖的废蜜等;二是石油原料,如柴油、正烷烃、天然气等;三是石油化工产品,如醋酸、甲醇、乙醇等;四是氢气和碳酸气。
最有前途的原料是可再生的植物资源,如农林加工产品的下脚料、食品工厂的废水下脚料等。
这些资源数量多,而且用后可以再生,还可实现环境保护。
(3)生产速率高一般蛋白质生产速度同猪、牛、羊等体重的倍增时间成正比。
微生物的倍增时间比牛、猪、鸡等快千万倍,如细菌、酵母菌的倍增时间为20~120h,霉菌和绿藻类为2~6h,植物1~2周,牛1~2个月,猪4~6周。
据估计,一头500kg公牛每天生产蛋白质0.4kg,而500kg酵母至少生产蛋白质500kg。
(4)劳动生产率高生产不受季节气候的制约,易于人工控制,同时由于在大型发酵罐中立体式培养占地面积少。
如年产10万t SCP工厂,以酵母计,按含蛋白质45%计算,一年所产蛋白质为45000t。
一亩大豆按亩产200kg计,含蛋白质40%,则一年为80kg蛋白质,所以,一个SCP工厂所产蛋白质相当于562500亩土地所产的大豆。
(5)可以完全工业化生产单细胞蛋白生产比农业生产需要的劳动力少,又不受地区、季节和气候条件的制约,可在占地有限的小设备上进行,不仅数量大,而且质量好,远远超过现有粮食品种的蛋白质。
许多国家单细胞蛋白的生产已具有很大的规模,取得了丰硕成果。
前苏联年产单细胞蛋白质达数百万吨以上,保加利亚也有几十万吨之多。
德国、美国、前苏联、加拿大等国早已用单细胞高活性生物饲料代替了鱼粉。
(6)单细胞生物易诱变,比动、植物品种容易改良可采用物理、化学、生物学方法定向诱变育种,获得蛋白质含量高、质量好、味美,并易于提取蛋白质的优良菌种。
2.2.2单细胞蛋白提取制备工艺技术及应用(1)菌糠单细胞蛋白饲料生产方法(2)单细胞蛋白质作为鱼类和贝类饲料的用途(3)利用皂素生产废水发酵生产单细胞蛋白的方法(4)单细胞蛋白材料的用途(5)一种单细胞蛋白饲料的生产方法(6)仅微溶于水或不溶于水的活性物质和单细胞蛋白质材料的混合物的水分散体(7)利用柑桔废渣生产单细胞蛋白(SCP)饲料的方法(8)利用提取甾体皂甙元的残渣生产单细胞蛋白的方法(9)一种单细胞蛋白质饲料及其加工工艺(10)冷法絮凝提取味精废液中单细胞蛋白质的方法(11)单细胞蛋白和蔗糖的生产方法(12)利用抗氨固氮菌生产富硒单细胞蛋白,维生素E和菌肥的方法(13)固态发酵生产单细胞蛋白(14)一种单细胞蛋白的生产方法(15)生产甜菜渣单细胞蛋白的新方法(16)利用啤酒废渣生产单细胞蛋白(17)粗淀粉一步法生产单细胞蛋白技术(18)固态法单细胞蛋白(SCP)塔式发酵机(19)糟渣原料生产单细胞蛋白饲料技术(20)一种利用浓醪酒糟生产单细胞蛋白的方法(21)一种利用海洋酵母菌生产单细胞蛋白的工艺(22)利用废糖蜜生产单细胞蛋白饲料的方法(23)用大豆乳清废水生产单细胞蛋白的复配酵母的制备方法2.3单细胞蛋白的应用2.3.1单细胞蛋白可作为饲料蛋白例如用假丝酵母及产朊酵母作为菌种,利用亚硫酸废液或石油生产酵母菌体,可用于牲畜饲料。
用它喂养家禽、家畜,效果好、生长快,奶牛产奶多,鸡产蛋率增高,并能增强机体免疫力。
以酵母菌和假丝酵母菌生产的单细胞蛋白,可直接用作人的食品。
由于单细胞蛋白氨基酸组成齐全,因此,常作为营养强化剂而添加到食品中,用以提高各类产品的蛋白质生物价。
由于单细胞蛋白中维生素、矿物质含量丰富,因此常用于补充许多食物所需全部或部分的维生素和矿物质。
此外,单细胞蛋白在食品加工中也有着重要作用。
它能提高食品的物理性能,例如:把活性干酵母加入意大利烘饼中可提高其延薄性能,把食用酵母以1%~3%的比例加入肉制品中可提高肉与水及脂肪的结合能力。
它还能提高食品的风味,例如:酵母的浓缩蛋白质具有显著的鲜味,已被广泛作为饲料、肉汁等食品的增香剂。
2.3.2单细胞蛋白是很好的饲料添加剂据分析,酵母单细胞蛋白中蛋白质含量为45%-55%,比大豆高30%以上;细菌的单细胞蛋白中蛋白质的含量高达70%,比大豆高50%,比鱼粉高20%。
因此,在各类饲料中加入单细胞蛋白添加剂,可以取得诸如使猪长得更快、牛产奶更多这样的效果。
人类自身也会直接从单细胞工业的发展中享受到巨大实惠。
一方面,微生物蛋白食品的开发可以缓解耕地减少、粮食紧缺的矛盾,另一方面,高蛋白的微生物蛋白食品的开发,也有利于改善人们的食品结构,满足我们既要吃饱、又要吃好的要求。
据专家分析,用微生物发酵法生产的单细胞蛋白与肉类食品一样具有人体必须的八种氨基酸,且价格便宜。
因此,单细胞蛋白可作为人造肉来补充人体所需的蛋白质。
此外,单细胞蛋白的味道也不错,可以用来作为食品的添加剂。
比如说,在做面包的时候,加入一些酵母培养物,不仅可使面包膨松可口,又可增加营养。
中国作为一个人口大国,人口多、耗地少,不仅粮食趋于紧张,而且人民的食品结构中存在着蛋白质供应不足的严重矛盾,因此发展单细胞蛋白产业对我国具有重大现实意义。
再说我们也有发展该产业的有利条件,要知道,我们每年有数千万吨的稻壳、棉籽壳、玉米芯等农业废弃物可以用来作为单细胞蛋白的生产原料。
据有人测算,仅仅利用这些废弃物的20%,就可形成年产100万吨单细胞蛋白的生产能力,这实在是一条变废为宝的好途径。
鉴于此,近年来我国十分重视发展单细胞蛋白产业,全国有数十家的工厂和研究单位,投入到单细胞蛋白的生产和开发中去。
除了农作物废弃物之外,我们在利用糖蜜、酒精废液、甘蔗渣等作为原料生产单细胞蛋白的研究方面,均取得了很大的进展。
总之,微生物单细胞工业在我国大有潜力可挖,也更适合我国的国情,一但进入大规模的商品化生产,必将对缓解蛋白饲料紧张、促进养殖业的迅速发展、增强人民的体质发挥重要的作用。
2.3.3单细胞蛋白的其他应用微生物工程目前已经广泛应用于农牧业,在促进作物生长、防治疫病等方面作用很大。
此外,它还可以用于农产品的深加工。
例如,赤霉素的使用已经证明是杂交水稻制种中控制花期的一项重要举措。
玉米赤霉烯酮用于北京鸭和肉牛,可以获得增重的效果。
利用微生物发酵,在农业上还可以生产单细胞蛋白、畜用抗生素、氨基酸、维生素等,用来作为饲料的添加剂。
农作物的秸杆、谷壳、木屑、糖渣、木薯等经过微生物发酵就可以转化成高效再生能源,例如酒精、甲烷等,这种生物能源有一个形象的称呼:绿色石油。
另外,利用微生物工程可以生产微生物肥以及各种制剂,被广泛应用于农作物种植和家禽家畜的饲养上。
1988年,巴西农民在1000万公顷的土地上收获了1800万吨土豆,共占全年总出口量的13%,从国际市场上赚取了30.5亿美元。
这其中的原因就是巴西的科学家找到了一种固氮菌作为氮肥的代用品。
固氮茵不仅能够在热性和酸性的土壤中生活,而且还能够抵抗大豆根茎里的其他细菌,固氮菌保证了当年巴西土豆的大丰收。
3单细胞蛋白的开发和发展前景3.1单细胞蛋白的开发3.1.1单细胞蛋白在饲料和食品工业中有着极重要的作用单细胞蛋白具有如此奇妙的功能,其开发和生产在我国更具有广阔的前景。
我国现在单细胞蛋白年产仅数千吨。
上海酵母厂通过特异生物技术培育成能富积微量元素的微生物,如硒酵母、锌酵母等。
我国是农业大国,食物结构以植物蛋白为主,动物蛋白的摄入量与欧美各国相差悬殊,为了提高人民群众的体质,SCP单细胞蛋白的开发与生产为解决人类食品和饲料问题开辟了新的途径。
3.1.2单细胞蛋白也是很好的饲料添加剂据分析,酵母单细胞蛋白中蛋白质含量为45%-55%,比大豆高30%以上;细菌的单细胞蛋白中蛋白质的含量高达70%,比大豆高50%,比鱼粉高20%。
因此,在各类饲料中加入单细胞蛋白添加剂,可以取得诸如使猪长得更快、牛产奶更多这样的效果。
人类自身也会直接从单细胞工业的发展中享受到巨大实惠。
一方面,微生物蛋白食品的开发可以缓解耕地减少、粮食紧缺的矛盾,另一方面,高蛋白的微生物蛋白食品的开发,也有利于改善人们的食品结构,满足我们既要吃饱、又要吃好的要求。
据专家分析,用微生物发酵法生产的单细胞蛋白与肉类食品一样具有人体必须的八种氨基酸,且价格便宜。
因此,单细胞蛋白可作为人造肉来补充人体所需的蛋白质。
此外,单细胞蛋白的味道也不错,可以用来作为食品的添加剂。
比如说,在做面包的时候,加入一些酵母培养物,不仅可使面包膨松可口,又可增加营养。
中国作为一个人口大国,人口多、耗地少,不仅粮食趋于紧张,而且人民的食品结构中存在着蛋白质供应不足的严重矛盾,因此发展单细胞蛋白产业对我国具有重大现实意义。
再说我们也有发展该产业的有利条件,要知道,我们每年有数千万吨的稻壳、棉籽壳、玉米芯等农业废弃物可以用来作为单细胞蛋白的生产原料。
据有人测算,仅仅利用这些废弃物的20%,就可形成年产100万吨单细胞蛋白的生产能力,这实在是一条变废为宝的好途径。