华师版八年级数学下册期中测试卷(包含答案)
华师大版八年级下学期数学《期中考试题》及答案

[答案]
[解析]
[分析]
首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA.
[详解]解:直线 与x轴、y轴分别交于A、B两点,求出点 ,B(0,2),
8.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
[答案]B
[解析]
[详解]0.056用科学记数法表示为:0.056= ,故选B.
9.如图,平行四边形的对角线 与 相交于点 , ,若 , ,则 的长是( )
A. B. C. D.
[答案]B
[解析]
[分析]
由平行四边形对角线互相平分的性质可知OA长,根据勾股定理求出BO长可得BD长.
[详解]解: 四边形ABCD是平行四边形,
,
故选:B
[点睛]本题考查了平行四边形的性质及勾股定理,灵活应用平行四边形对角线互相平分求线段长是解题的关键.
10.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴, .∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数 的图象过点C.当以CD为边的正方形的面积为 时,k的值是()
故答案为1
[点睛]本题考查了分式的混合运算,熟练掌握运算法则和整体代换的思想是解题的关键.
13.对于函数 , 的值随 值的增大而_______.
[答案]减小
[解析]
[分析]
根据一次函数的性质可知.
华师大版八年级下册数学期中考试试题带答案

华师大版八年级下册数学期中考试试卷一、单选题1.下列方程不是分式方程的是()A .1x x-=B .21235x x -=C .21111x x+=-+D .263x x =-2.点P (1,-3)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.下列函数中,y 随x 的增大而增大的函数是()A .y=-5xB .y=-5x+1C .y=-x-5D .y=x-54.新冠病毒是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为()米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×10115.一次函数y x m =+的图象与反比例函数6y x=的图象的其中一个交点的横坐标为3-,则m 的值为()A .2-B .1-C .1D .26.方程21211x x =--的解为()A .1B .-1C .-2D .无解7.一次函数y=ax+b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是()A .B .C .D .8.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD的周长为28,则ABE的周长为()A.28B.24C.21D.149.在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从,A B两地同时出发,相向而行.快车到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图表示的是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算,a b的值分别为()A.39,26B.39,26.4C.38,26D.38,26.410.正比例函数y=x与反比例函数y=1x的图象相交于A、C两点,AB⊥x轴于点B,CD⊥x轴于点D(如图),则四边形ABCD的面积为()A.1B.32C.2D.52二、填空题11.在▱ABCD中,∠A=42°,则∠C=_____°.12.已知一次函数y=2x﹣1的图象经过A(x1,1),B(x2,3)两点,则x1_____x2(填“>”“<”或“=”).13.已知一次函数y 2x 6=-与y x 3=-+的图象交于点P ,则点P 的坐标为______.14.对于函数2y x=,当函数值y <﹣1时,自变量x 的取值范围是_______________.15.若关于x 的方程ax 41x 2x 2=+--无解,则a 的值是___.16.如图,反比例函数y =kx(k≠0)的图象经过△ABD 的顶点A ,B ,交BD 于点C ,AB 经过原点,点D 在y 轴上,若BD =4CD ,△OBD 的面积为15,则k 的值为_____.三、解答题17.计算:22012( 3.14)2π-⎛⎫-+- ⎪⎝⎭18.解方程7232(3)32x x -=++19.先化简,再求值22111211a a a a -⎛⎫÷+ ⎪-+-⎝⎭,其中a =2.20.如图,已知四边形ABCD 是平行四边形,点E ,F 是对角线BD 上的两点,且BE=DF ,连接AE ,CF .求证:AE ∥CF 且AE=CF .21.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.22.已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣mx>0的解集.23.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:21,11x x x x -+-这样的分式就是假分式;再如:232,11x x x ++这样的分式就是真分式.假分数74可以化成31+4(即314)带分数的形式,类似的,假分式也化为带分式.如:1(1)221111x x x x x -+-==-+++解决下列问题:(1)分式3x是填(“真分式”或“假分式”);假分式64x x ++化为带分式形式;(2)如果分式42x x --的值为整数,求满足条件的整数x 的值;(3)若分式22251x x ++的值为m ,则m 的取值范围是(直接写出答案).24.在如图的平面直角坐标系中,直线n过点A(0,﹣2),且与直线l交于点B(3,2),直线l与y轴交于点C.(1)求直线n的函数表达式;(2)若△ABC的面积为9,求点C的坐标;(3)若△ABC是等腰三角形,求直线l的函数表达式.25.如图1,函数y=﹣x+4的图象与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称.(1)填空:m=;(2)点P在平面上,若以A、M、N、P为顶点的四边形是平行四边形,直接写出点P的坐标;(3)如图2,反比例函数的图象经过N、E(x1,y1)、F(x2,y2)三点.且x1>x2,点E、F关于原点对称,若点E到直线MN的距离是点F到直线MN的距离的3倍,求E、F两点的坐标.参考答案1.B【解析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】解:A.10xx-=方程分母中含未知数x,所以是分式方程B.21235x x-=方程分母中不含未知数,故不是分式方程C.21111x x+=-+方程分母中含未知数x,所以是分式方程D.263x x=-方程分母中含未知数x,所以是分式方程故选:B.2.D【解析】根据各象限内点的坐标特征解答.【详解】点P(1,-3)所在的象限是第四象限.故选:D.3.D【解析】利用正比例函数的性质和一次函数的性质,对每个选项进行判断,即可得到答案.【详解】解:A、∵k=-5<0,∴y随x的增大而减小,选项A不符合题意;B、∵k=-5<0,∴y随x的增大而减小,选项B不符合题意;C、∵k=-1<0,∴y随x的增大而减小,选项C不符合题意;D、∵k=1>0,∴y随x的增大而增大,选项D符合题意.4.C 【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m =1×10﹣7m ,故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.5.C 【解析】把3x =-代入6y x=,得到y=2-,再把x 、y 的值代入y x m =+,即可求出m 的值.【详解】解:根据题意,把3x =-代入6y x=,∴236y =-=-,把3x =-,2y =-代入y x m =+,∴23m -=-+,∴1m =;故选:C .【点睛】本题考查了反比例函数的解析式,一次函数的解析式,解题的关键是熟练掌握待定系数法进行解题.6.D 【解析】【分析】先去分母转换为整式方程,求解验根即可.解:21211x x =--去分母得:12x +=,解得:1x =,将1x =代入(1)(1)0x x +-=,故1x =是分式方程的增根,故原分式方程无解,故选:D .【点睛】本题考查了解分式方程,熟知解分式方程的一般步骤是解题的关键,解分式方程注意验根.7.C 【解析】【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A.由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B.由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C.由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D.由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小8.D 【解析】【分析】根据平行四边形的性质和中垂线定理,再结合题意进行计算,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴OB OD =,AB CD =,AD BC =,∵平行四边形的周长为28,∴14AB AD +=∵OE BD ⊥,∴OE 是线段BD 的中垂线,∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=,故选D .【点睛】本题考查平行四边形的性质和中垂线定理,解题的关键是熟练掌握平行四边形的性质和中垂线定理.9.B 【解析】【分析】根据函数图象可得:速度和为:24(3018)÷-米/秒,由题意得:24333b b-=,可解得:b ,因此慢车速度为:243b -米/秒,快车速度为:20.8 1.2-=米/秒,快车返回追至两车距离为24米的时间:(26.424)(1.20.8)6-÷-=秒,可进一步求a 秒.【详解】速度和为:24(3018)2÷-=米/秒,由题意得:24333b b-=,解得:b=26.4,因此慢车速度为:240.83b -=米/秒,快车速度为:20.8 1.2-=米/秒,快车返回追至两车距离为24米的时间:(26.424)(1.20.8)6-÷-=秒,因此33639a =+=秒.故选B .【点睛】考核知识点:从函数图象获取信息.理解题意,从图象获取信息是关键.10.C 【解析】【分析】由正比例函数解析式与反比例函数解析式组成的方程组可得到A 点和C 点的坐标,然后根据题意即可求解.【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩得:1111x y =⎧⎨=⎩,2211x y =-⎧⎨=-⎩,即:正比例函数y=x 与反比例函数y=1x的图象相交于两点的坐标分别为A (1,1),C (﹣1,﹣1),所以D 点的坐标为(﹣1,0),B 点的坐标为(1,0)因为,AB ⊥x 轴于点B ,CD ⊥x 轴于点D 所以,△ABD 与△BCD 均是直角三角形则:S 四边形ABCD=12BD•AB+12BD•CD=12×2×1+12×2×1=2,即:四边形ABCD 的面积是2.故选:C .【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是理解反比例函数与一次函数的图形的交点坐标是其解析式联立而成的方程组的解11.42【解析】【分析】由平行四边形的性质对角相等,即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C=42°,故答案为:42.【点睛】本题主要考查平行四边形的性质,解答本题的关键是掌握平行四边形各种性质.12.<【解析】【分析】由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2.【详解】解:∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.13.(3,0)【解析】解方程组263y x y x =-⎧⎨=-+⎩,可得交点坐标.【详解】解方程组263y x y x =-⎧⎨=-+⎩,得30x y =⎧⎨=⎩,所以,P(3,0)故答案为(3,0)【点睛】本题考核知识点:求函数图象的交点.解题关键点:解方程组求交点坐标.14.﹣2<x <0.【解析】【详解】试题分析:∵当y=﹣1时,x=﹣2,∴当函数值y <﹣1时,﹣2<x <0.故答案为﹣2<x <0.考点:反比例函数的性质.15.1或2【解析】【详解】试题分析:方程去分母,得:ax=4+x ﹣2,①解得2x a 1=-,∴当a=1时,方程无解.②把x=2代入方程得:2a=4+2﹣2,解得:a=2.综上所述,当a=1或2时,方程无解.16.-6【解析】连接OC.作CE⊥x轴于E,BF⊥x轴于F.根据题意设C(m,km),则B(4m,k4m),证明S△OBC=S梯形CEFB,用k表示S△OBC,由BD=4CD,△OBD的面积为15,求得S△OBC,进而列出k的方程,即可解决问题.【详解】解:连接OC.作CE⊥x轴于E,BF⊥x轴于F.根据题意设C(m,km),则B(4m,k4m),∵S△OBC=S四边形OCBF﹣S△OBF=S四边形OCBF﹣S△OEC=S梯形CEFB,∴S△OBC=12(﹣km﹣k4m)•(4m﹣m)=﹣158k,∵BD=4CD,△OBD的面积为15,∴34544 OBC OBDS S==,∴1545 84k-=,∴k=﹣6.故答案为:﹣6.【点睛】本题考查反比例函数系数k的几何意义,三角形的面积、等高模型等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.17.1【解析】【分析】通过负指数幂、零指数幂和乘方的计算即可;解:原式=22=221-+=441-+=1【点睛】本题主要考查了实数的混合运算,熟练掌握负指数幂、零指数幂和乘方的计算法则,准确计算是解题的关键.18.2x =-【解析】【分析】先找出最简公分母,把原方程化为一元一次方程,再解一元一次方程,最后验根即可.【详解】解:去分母得:()74=33x -+去括号得:74=39x -+解得:=2x -经检验得=2x -是原方程的解.【点睛】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,不要忘记验根.19.1a a +;32.【解析】【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】解:原式=2(1)(1)(1)a a a +--÷1a a -=2(1)(1)(1)a a a +--•1a a -=1a a+,当a=2时,原式=3 2.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.证明见解析.【解析】【详解】试题分析:由平行四边形的性质得∠ABE=∠CDF,由已知条件和三角形全等的判定方法即可证明△ABE≌△CDF,得出∠AEB=∠DFC,进而可得∠AED=∠BFC,得出AE∥CF即可.试题解析:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,AB CD ABE CDFBE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS),∴∠AEB=∠DFC,AE=CF,∴∠AED=∠BFC,∴AE∥CF,∴AE∥CF且AE=CF.【点睛】本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质与三角形全等的判定方法是解题的关键.21.A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=700x,B型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:700x=500x-20,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.考点:分式方程的应用.22.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.【解析】【详解】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=﹣x﹣2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,2)代入,得m=2×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B (2,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣2;(2)y=﹣x﹣2中,令y=0,则x=﹣2,即直线y=﹣x﹣2与x轴交于点C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<2.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.23.(1)真分式,214x++;(2)0,1,3,4;(3)25<≤m【解析】【分析】(1)根据“真分式”的意义判断即可,根据“假分式”化成“带分式”的方法转化即可;(2)将42xx--化成1−22x-,只要22x-为整数即可求出x的值;(3)将22251xx++化为2+231x+,只需判断231x+的取值范围即可.【详解】解:(1)根据“真分式”的意义可得,3x是真分式,64xx++=4244xx x++++=214x++,故答案为:真分式,214x++;(2)42xx--=1−22x-,只要22x-为整数即可,又∵x为整数,∴x−2=±1,x−2=±2,∴x=3,x=1,x=4,x=0,因此x的值为0,1,3,4;(3)22251xx++=2+231x+,而0<231x+≤3,∴2<22251xx++≤5∴2<m≤5,故答案为:2<m≤5.【点睛】本题考查分式的加减运算,掌握计算法则是正确计算的前提,理解“假分式”“带分式”的意义和转化方法是解决问题的关键.24.(1)y=43x﹣2;(2)C(0,4)或(0,﹣8);(3)直线l的解析式为:y=﹣13x+3或y=3x﹣7或y=﹣43x+6或y=724x+98【解析】【分析】(1)用待定系数法求直线n的函数解析式;(2)根据△ABC的面积为9可求得AC的长,确定OC的长,可得结论;(3)分类讨论,分四种情况:①AB=AC时,②AB=AC=5,③AB=BC,④AC=BC,利用待定系数法可得结论.【详解】解:(1)设直线n的解析式为:y=kx+b,∵直线n:y=kx+b过点A(0,﹣2)、点B(3,2),∴232bk b=-⎧⎨+=⎩,解得:432kb⎧=⎪⎨⎪=-⎩,∴直线n的函数表达式为:y=43x﹣2;(2)∵△ABC的面积为9,∴9=12•AC•3,∴AC=6,∵OA=2,∴OC=6﹣2=4或OC=6+2=8,∴C(0,4)或(0,﹣8);(3)分四种情况:①如图1,当AB=AC时,∵A(0,﹣2),B(3,2),∴AB5,∴AC=5,∵OA=2,∴OC=3,∴C(0,3),设直线l的解析式为:y=mx+n,把B(3,2)和C(0,3)代入得:323m nn+=⎧⎨=⎩,解得:133mn⎧=-⎪⎨⎪=⎩,∴直线l的函数表达式为:y=13-x+3;②如图2,AB=AC=5,∴C(0,﹣7),同理可得直线l的解析式为:y=3x﹣7;③如图3,AB=BC,过点B作BD⊥y轴于点D,∴CD=AD=4,∴C(0,6),同理可得直线l的解析式为:y=43-x+6;④如图4,AC=BC,过点B作BD⊥y轴于D,设AC=a,则BC=a,CD=4﹣a,根据勾股定理得:BD2+CD2=BC2,∴32+(4﹣a)2=a2,解得:a=25 8,∴OC=258﹣2=98,∴C(0,9 8),同理可得直线l的解析式为:y=724x+98;综上,直线l的解析式为:y=13-x+3或y=3x﹣7或y=43-x+6或y=724x+98.【点睛】本题主要考察了一次函数的综合应用和等腰三角形的性质,掌握等腰三角形存在性的讨论方法是解题关键.25.(1)2;(2)点P的坐标为(0,0)、(8,0)或(﹣4,4);(3)E(1,﹣4),F(﹣1,4)或E(4,﹣1),F(﹣4,1)【解析】【详解】解:(1)∵点M(2,m)是直线AB:y=﹣x+4上一点,∴m=﹣2+4,解得:m=2.故答案为2;(2)连接AN,以A、M、N、P为顶点的平行四边形分三种情况,∵直线y=﹣x+4的图象与坐标轴交于A、B两点,∴A(4,0),B(0,4),∵点N与点M关于y轴对称,点M(2,2),∴N(﹣2,2).以A、M、N、P为顶点的平行四边形分三种情况:①当线段AN为对角线时,∵A(4,0)、M(2,2)、N(﹣2,2),∴点P的坐标为(4﹣2﹣2,0+2﹣2),即(0,0);②当线段AM为对角线时,∵A(4,0)、M(2,2)、N(﹣2,2),∴点P的坐标为(4+2﹣(﹣2),0+2﹣2),即(8,0);③当线段MN为对角线时,∵A(4,0)、M(2,2)、N(﹣2,2),∴点P的坐标为(2﹣2﹣4,2+2﹣0),即(﹣4,4).综上可知:若以A、M、N、P为顶点的四边形是平行四边形,点P的坐标为(0,0)、(8,0)或(﹣4,4).(3)∵反比例函数的图象经过N(﹣2,2)、E(x1,y1)、F(x2,y2)三点,∴k=﹣2×2=﹣4,∴反比例函数解析式为.∵点E、F关于原点对称,∴x1=﹣x2,y1=﹣y2,∵x1>x2,∴点E在第四象限,点F在第二象限.直线MN的关系式为y=2,点E到直线MN的距离是点F到直线MN的距离的3倍.①当点F在直线MN的上方时,点E到直线MN的距离是:2﹣y1,点F到直线MN的距离是:y2﹣2,∴3(y2﹣2)=2﹣y1,y1=﹣y2,∴y1=﹣4,y2=4,∴点E(1,﹣4),点F(﹣1,4);②当点F在直线MN的下方时,点E到直线MN的距离是:2﹣y1,点F到直线MN的距离是:2﹣y2,∴3(2﹣y2)=2﹣y1,y1=﹣y2,∴y1=﹣1,y2=1,∴点E(4,﹣1),点F(﹣4,1).综上所述:E(1,﹣4),F(﹣1,4)或E(4,﹣1),F(﹣4,1).。
华师大版八年级下册数学期中考试试题及答案

华师大版八年级下册数学期中考试试卷一、单选题1.在下列分式中,最简分式是()A .11a a --B .22a ba b -+C .-bab b D .1352-ab2.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 3.下列计算正确的是()A .3x x x =B .11a a b b +=+C .2+1﹣1=﹣1D .a ﹣3=(a 3)-14.若把分式2xy x y +的x.y 同时扩大3倍,则分式值()A .扩大3倍B .缩小3倍C .不变D .扩大9倍5.已知反比例函数y =21k x+的图上象有三个点(2,y 1),(3,y 2),(﹣1,y 3),则y 1,y 2,y 3的大小关系是()A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 16.函数y =m x与y =mx ﹣m (m≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .7.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是()A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣348.ABCD 中,∠A :∠B :∠C :∠D 的值可以是()A .1:2:3:4B .1:2:2:1C .2:2:1:1D .2:1:2:19.下列说法错误的是()A .平行四边形的对角相等B .平行四边形的对角互补C .平行四边形的对边相等D .平行四边形的内角和是360°10.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是()A .15000(120)0x -﹣1500x =2B .1500x =2+15000(120)0x -C .15000(1+20)0x ﹣1500x =2D .1500x =2+15000(1+20)0x 二、填空题1121()2--+(π﹣3.14)0=___.12.函数y =x 的取值范围是__________.13.已知点P(2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限,则点P 坐标为_____.14.若点A (a ,b )在反比例函数y =5x -的图象上,则代数式ab ﹣4的值为_____.15.一个y 关于x 的函数同时满足两个条件:图象过(2,1)点;当x >0时,y 随x 的增大而减小.这个函数解析式为_________________.(写出一个即可)三、解答题16.解下列方程:(1)11322x x x -+=--.(2)6123x x x =--+.17.先化简,再求值:2x 2x 1x 4xx 2x 4x 4+--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x 71+>的负整数解.18.已知y=y1+y2,其中y1与x成正比例,y2与x成反比例,并且当x=﹣1时,y=﹣1;当x=2时,y=5,求①y与x的函数关系式;②当x=﹣2时y的值.19.如图,甲、乙两人分别骑自行车和摩托车沿相同路线由A地到B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)______先出发,提前______小时;(2)______先到达B地,早到______小时;(3)A地与B地相距______千米;(4)甲乙两人在途中的速度分别是多少?20.某村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入此活动,并且该环保组织植树的速度是水源村植树速度的1.5倍,整个植树过程共用了13天,水源村每天植树多少亩?21.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E,(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.22.如图,一次函数y=ax+b的图象与反比例函数y=mx图象相交于点A(﹣1,2)与点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)在第二象限内,观察函数图像,直接写出不等式ax+b <m x 的解集.23.某商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件.(1)求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1.B【解析】根据最简分式的定义:分子,分母中不含有公因式,不能再约分的分式即可解答.【详解】解:A 、11111()--==----a a a a ,故A 选项不符合题意;B 、22a b a b -+是最简分式,故B 选项符合题意;C 、1(1)1==---b b ab b b a a ,故C 选项不符合题意;D 、1313521344-=-=-⋅a a a b b b,故D 选项不符合题意;故选:B .【点睛】此题考查最简分式的定义,分式的化简,首先要把分子、分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意.2.C【解析】【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法3.D【解析】【分析】分子和分母同乘以(或除以)一个不为0的数,分数的值不变.【详解】A 、32x x x=,故本选项错误;B 、11=11a a a b b b++≠++,故本选项错误;C 、1213-+=,故本选项错误;D 、()133a a --=,故本选项正确;故选D .【点睛】本题主要考查分式的性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变进行解答.4.A【解析】【分析】根据分式的性质即可化简判断.【详解】分式2xyx y+的x.y同时扩大3倍,变为2331823333()x y xy xyx y x y x y⨯⨯==⨯+++故选A.【点睛】此题主要考查分式的性质,解题的关键是把变化后的分式进行约分化简即可.5.A【解析】【分析】先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=21kx+的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y2<y1,y3<0,∴y3<y2<y1.故选A.【点睛】本题考查了反比例函数图象的性质,对于反比例函数y=kx(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内,本题先判断出比例系数k2+1是正数是解题的关键.6.C【解析】【分析】分别根据反比例函数及一次函数的图象在坐标系中的位置,对四个选项逐一分析,即可得到答案.【详解】解:A、由反比例函数的图象在可一、三象限知m>0时,-m<0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限∴A 错误,C 、由反比例函数的图象在可一、三象限知m >0时,-m <0,∴一次函数(0)y mx m m =-≠的图象经过一,三,四象限C 正确;B 、反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴B 错误,D 、由反比例函数的图象在二、四象限可知当m <0时,-m >0,∴一次函数(0)y mx m m =-≠的图象经过一,二,四象限,∴D 错误;故选C.【点睛】本题主要考查反比例函数和一次函数的图象比例系数的关系,掌握反比例函数和一次函数的比例系数的几何意义,是解题的关键.7.B【解析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m m x x++--=3的解为正数,所以﹣2m+9>0,解得m <92,当x=3时,x=292m -+=3,解得:m=32,所以m 的取值范围是:m <92且m≠32.故答案选B .8.D【解析】【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D.故选D.【点睛】本题主要考查了平行四边形的性质.其性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.9.B【解析】【分析】根据平行四边形性质逐项分析即可.【详解】解:A.平行四边形的对角相等,该选项正确;B.平行四边形的对角相等,该选项错误;C.平行四边形的对边相等,该选项正确;D.平行四边形的内角和是360°,该选项正确;故选B.10.D【解析】【分析】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,根据题意可知,实际比计划提前2天完成任务,列方程即可.【详解】设施工队原计划每天铺设管道x米,实际的工作效率为每天(1+20%)x,由题意得1500x=2+()1500120%x+.故选D.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.11.0【解析】【分析】根据算术平方根的性质、负指数幂和零指数幂计算即可;【详解】原式=3410-+=;故答案为0.【点睛】本题主要考查了实数的计算,结合负指数幂、零指数幂计算是解题的关键.12.x≥-2且x≠1【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.【详解】解:由题意可得2010 xx+≥⎧⎨-≠⎩解得x≥-2且x≠1故答案为:x≥-2且x≠1.【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.13.(﹣1,﹣1).【解析】【详解】试题分析:根据第三象限点的坐标性质得出a的取值范围,进而得出a的值:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴20270aa-<⎧⎨-<⎩,解得:2<a<3.5,因为a为整数,故a=3,代入计算,则点P坐标为:(﹣1,﹣1).故答案为(﹣1,﹣1).考点:点的坐标.14.-9【解析】【分析】由点A在反比例函数图象上,可得出ab=-5,将其代入代数式ab-4中即可得出结论.【详解】解:∵点A(a,b)在反比例函数y=5x-的图象上∴ab=-5∴ab-4=-5-4=-9.故答案为:-9.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是找出ab=2.本题属于基础题,难度不大,解决该题型题目时,由点在反比例函数图象上可以得出点的横纵坐标之积为定值,将其代入代数式即可.15.y=【解析】【详解】符合题意的函数解析式可以是y=,y=﹣x+3,y=﹣x2+5等,(本题答案不唯一)16.(1)无解;(2)43 x=-.【解析】【分析】(1)方程两边同时乘以(2)x -约去分母,化为整式方程,解出整式方程,然后检验是否是原方程的根;(2)方程两边同时乘以(2)(3)x x -+约去分母,化为整式方程,解出整式方程,然后检验是否是原方程的根.【详解】解:(1)11322x x x -+=--约去分母,得:13(2)1x x +-=-,解得:2x =,检验:当2x =时,2220x -=-=,∴2x =是增根,原分式方程无解;(2)6123x x x =--+约去分母,得:6(3)(2)(2)(3)x x x x x +=---+,解得:43x =-,检验:当43x =-时,4450(2)(3)(2)(3)0339x x -+=---+=-≠,∴原分式方程的解为43x =-.【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的基本步骤,特别注意要检验是否是原方程的根.17.x 2x-;3【解析】【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后解一元一次不等式求出负整数解,代x 的值求值.【详解】解:原式=()()()()2222x 2x 4x x x 4x 4x 2==x x 2x x 2x 4x x 2---+---÷⋅----解3x 71+>得x 2>-,负整数解为x=1-将x=1-代入原式=12=3 1---18.①y=3x-2x;②-5【解析】【分析】①设y1=kx,y2=nx则y=y1+y2=kx+nx,再把当x=-1时,y=-1,当x=2时,y=5代入求出k、n的值,进而可得答案;②把x=-2代入(1)所得的函数解析式即可.【详解】解:①设y1=kx,y2=nx则y=y1+y2=kx+nx,∵当x=-1时,y=-1,当x=2时,y=5,∴1522k nnk-=--⎧⎪⎨=+⎪⎩,解得:32 kn=⎧⎨=-⎩,∴y关于x的函数关系式为y=3x-2 x;②把x=-2代入y=3x-2x得:y=-6+1=-5.【点睛】此题主要考查了待定系数法求函数的解析式,关键是正确表示出函数解析式.19.(1)甲,3;(2)乙,3;(3)80;(4)10千米/小时,40千米/小时【解析】【分析】(1)由图象可得出甲先出发3小时;(2)乙在3小时后出发,且比甲先到终点3小时;(3)根据图象可得出A,B两地之间的距离;(4)根据路程除以时间等于速度,可得出答案.【详解】(1)由图象可得甲,3;(2)由图象可得乙,3;(3)由图象可得80;(4)甲:80÷8=10(千米/小时)乙:80÷2=40(千米/小时).故答案为甲,3;乙,3;80.【点睛】本题考查了函数的图象,利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.8【解析】【分析】根据整个植树过程共用了13天,以及环保组织植树的速度是全村植树速度的1.5倍表示出两者的植树天数得出等式求解即可.【详解】解:设全村每天植树x亩则由题意得4020040131.5x x x-+=+,即40160132.5x x+=∴10016013 2.5x+=∴解得8x=把8x=代入原分式方程中,方程左右两边相等∴8x=是方程的解答:水源村每天植树8亩.【点睛】本题主要考查了分式方程的实际应用,根据植树的天数得出等式是解题关键. 21.(1)详见解析;(2).【解析】【详解】试题分析:(1)由平行四边形的性质和角平分线易证∠BAE=∠BEA,根据等腰三角形的性质可得AB=BE;(2)易证△ABE是等边三角形,根据等边三角形的性质可得AE=AB=4,AF=EF=2,由勾股定理求出BF,再由AAS证明△ADF≌△ECF,即△ADF的面积=△ECF的面积,因此平行四边形ABCD 的面积=△ABE 的面积=12AE•BF ,即可得出结果.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB=CD ,∴∠B+∠C=180°,∠AEB=∠DAE ,∵AE 是∠BAD 的平分线,∴∠BAE=∠DAE ,∴∠BAE=∠AEB ,∴AB=BE ,∴BE=CD ;(2)解:∵AB=BE ,∠BEA=60°,∴△ABE 是等边三角形,∴AE=AB=4,∵BF ⊥AE ,∴AF=EF=2,∴BF=,∵AD ∥BC ,∴∠D=∠ECF ,∠DAF=∠E ,在△ADF 和△ECF 中,D ECF DAF E AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ECF (AAS ),∴△ADF 的面积=△ECF 的面积,∴平行四边形ABCD 的面积=△ABE 的面积=12AE•BF=12考点:全等三角形的判定与性质;平行四边形的性质.22.(1)y =﹣2x ,y=522x +(2)154(3)﹣5<x <﹣4或﹣1<x <0【解析】【分析】(1)将点A (-1,2)代入反比例函数解析式即可求得反比例函数解析式,将两点代入一次函数即可求得一次函数解析式.(2)求得C 点的坐标后利用S AOB S AOC S BOC =- 求面积即可.(3)根据图像即可得到结论.【详解】(1)将点A (﹣1,2)代入函数y =m x ,解得:m =﹣2,∴反比例函数解析式为y =﹣2x,将点A (﹣1,2)与点B (﹣4,12)代入一次函数y =ax+b ,解得:a =12,b =52∴一次函数的解析式为y =x 2+52;(2)C 点坐标(﹣5,0)∴S △AOB =S △AOC ﹣S △BOC =5﹣54=154;(3)由图象知,不等式ax+b <m x的解集为:﹣5<x <﹣4或﹣1<x <0.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握用待定系数法确定函数的解析式是解题的关键.23.(1)A ,B 两种纪念品的进价分别为20元、30元;(2)应进A 种纪念品30件,B 种纪念品l0件,才能使获得利润最大,最大值是220元.【解析】【详解】分析:(1)设A 种纪念品的进价为x 元、B 种纪念品的进价为y 元,件数×进价=付款,可得到一个二元一次方程组,解即可.(2)获利=利润×件数,设购买A 商品a 件,则购买B 商品(40﹣a )件,由题意可得到两个不等式,解不等式组即可.详解:(1)设A 种纪念品的进价为x 元、B 种纪念品的进价为y 元.由题意得:78380106380x y x y +=⎧⎨+=⎩,解得:2030x y =⎧⎨=⎩.答:A 种纪念品的进价为20元、B 种纪念品的进价为30元.(2)设商店准备购进A 种纪念品a 件,则购进B 种纪念品(40﹣a )件.由题意得:2030409005740216a a a a +-≤⎧⎨+-≥⎩()(),解得:30≤a≤32.设总利润为w .总获利w=5a+7(40﹣a )=﹣2a+280.∵w 是a 的一次函数,且w 随a 的增大而减小,∴当a=30时,w 最大,最大值w=﹣2×30+280=220,∴40﹣a=10,∴当购进A 种纪念品30件,B 种纪念品10件时,总获利不低于216元,且获得利润最大,最大值是220元.点睛:利用了总获利=A 利润×A 件数+B 利润×B 件数,件数×进价=付款,还用到了解二元一次方程组以及二元一次不等式组的知识.。
华东师大版八年级数学下册期中考试卷及答案【完美版】

华东师大版八年级数学下册期中考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.使x 2-有意义的x 的取值范围是________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程 (1)2250x x --= (2)1421x x =-+2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、D6、C7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、13、x 2≥4、20°.5、96、6三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、22x -,12-.3、(1)略(2)1或24、E (4,8) D (0,5)5、CD 的长为3cm.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
华师大版数学八年级下学期《期中考试题》附答案

华 东 师 大 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题有10小题,每小题4分,共40分。
)1. 0(2)-的结果是( ) A. 1-B. 2-C. 1D. 02. 下列各式中,是最简分式的是( )A .62x yB. 21x x-C. 2x x x+D.211x x -- 3. 计算()22333a a -的结果是( )A.313a B.313a - C.413a D.413a - 4. 使分式21xx -有意义的x 的取值范围是( ) A. x ≥12 B. x ≤12 C. x >12D. x ≠125. 对于函数y=﹣1x, 下列结论错误的是( )A. 当x >0时,y 随x 的增大而增大B. 当x <0时,y 随x 的增大而增大C. 当x=1时的函数值大于x=﹣1时的函数值D. 在函数图象所在的象限内,y 随x 的增大而增大6. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标( )A. (2,3)B. (-2,-3)C. (-3,2)D. (3,2)7. 汽车由A 地驶往相距120 km B 地,它的平均速度是30 km /h ,则汽车距B 地的路程s(km )与行驶时间t(h )的函数关系式及自变量t 的取值范围是( ) A. s =120-30t(0≤t≤4)B. s =120-30t(t >0)C. s =30t(0≤t≤4)D. s =30t(t <4)8. 关于x 的函数y =k (x +1)和y =kx(k ≠0)在同一坐标系中的图象大致是( ) A .B.C.D.9. 把分式方程2111x x --=+化为整式方程,正确的是( ) A. 2(1)1x x +-=- B. 2(1)(1)x x x x +-+=- C. 2(1)(1)1x x x +-+=-D. 2(1)x x x x -+=-10. 对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A. 1-2B. 2-2C. 1-212或D. 1+2-1二、填空题(每空3分,共33分。
华师大版八年级下册数学期中考试试题含答案

华师大版八年级下册数学期中考试试卷一、单选题1.分式方程111x mx x -=++有增根,则m 的值为()A .1B .2C .-2D .02.函数11y x =-的自变量x 的取值范围为()A .1x =B .1x =-C .1x ≠D .1x ≠-3.已知点()1,2P m m --在y 轴上,则m 的值是()A .1B .2C .-1D .-24.已知点()1,3A --在反比例函数ky x=的图象上,则k 的值为()A .3B .13C .-3D .13-5.下列变形从左到右错误的是()A .22y y x x x--=B .222b b a a ⎛⎫= ⎪⎝⎭C .am abm b=D .1y xx y y x+=--6.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为().A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣7.学校计划购买篮球和足球.若每个足球的价格比篮球的价格贵25元,且用800元购买篮球的数量与用1000元购买足球的数量相同.设每个足球的价格为x 元,则可列方程为()A .100080025x x=-B .100080025x x=+C .100080025x x =-D .100080025x x =+8.一次函数2y x m =-+与2y x =+图象的交点位于第二象限,则m 的值可能是()A .-4B .1C .2D .39.在平面直角坐标系xOy 中,点()4,0A ,点()0,3B -,点C 在坐标轴上,若ABC 的面积为12,则符合题意的点C 有()A .1个B .2个C .3个D .4个10.如图所示,一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,下列判断错误的是()A .关于x 的方程3kx x b -=-+的解是2x =B .关于x 的不等式3x b kx -+>-的解集是2x >C .当0x <时,函数3y kx =-的值比函数y x b =-+的值小D .关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩二、填空题11.计算:()02-=______________.12.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.13.若22x -的值为正数,则x 的取值范围为______________.14.将直线2y x =的图象沿y 轴向上平移1个单位后得到的一次函数的解析式为_______________.15.若正比例函数()1y m x =--的函数值y 随x 的增大而减小,且函数图像上的点到两坐标轴距离相等,则m 的值为______________.16.如图,过x 轴上的点P 作y 轴的平行线,与反比例函数m y x =、ny x=分别交于点A 、B ,若AOB 的面积为3,则m n -=______________.三、解答题17.解方程:1212 x x=-+.18.先化简,再求值:221224x x xx x x-⎛⎫-÷⎪---⎝⎭,其中1x=-.19.一水果经营户从水果批发市场批发了草莓和葡萄共60千克(每种水果不少于10千克),到市场去卖,草莓和葡萄当天的批发价和零售价如下表表示:品名草莓葡萄批发价/(元/千克)1610零售价/(元/千克)2214设全部售出60千克水果的总利润为y(元),草莓的批发量x(千克),请写出y与x的函数关系式,并求最大利润为多少?20.漳武高速公路南靖至永定段正在加速建设,高速全长40千米,预计2022年竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高60%,那么行驶40千米的高速公路比行驶同等长度的普通公路所用时间将会缩短14小时,求该汽车在高速公路上的平均速度.21.观察以下等式:第1个等式:131 1223⎛⎫-÷=⎪⎝⎭;第2个等式:241 1362⎛⎫-÷=⎪⎝⎭;第3个等式:353 14125⎛⎫-÷=⎪⎝⎭;第4个等式:462 15203⎛⎫-÷=⎪⎝⎭;第5个等式:575 16307⎛⎫-÷=⎪⎝⎭;……按照以上规律,解决下列问题:(1)写出第7个等式:_____________;(2)写出你猜想的第n个等式(n为正整数),并证明.22.如图,在平面直角坐标系xOy中,直线AB与反比例函数myx=交于()2,3A-,()4,B n两点.(1)求直线AB 和反比例函数的表达式;(2)连接AO ,求AOB 的面积.23.如图,在平面直角坐标系中,()1,4A ,()3,3B ,()2,1C .(1)作ABC 关于原点对称的111A B C △.(2)在y 轴上找一点P ,使得PB PC +最小,试求点P 的坐标.24.小琳根据学习函数的经验,对函数12y x =+-的图象与性质进行了探究,下面是小琳的探究过程,请你补充完整.x…-4-3-2-1012…y …1-1-2-1m…(1)列表:①m =_____________;②若()6,3A -,(),3B n 为该函数图象上不同的两点,则n =_________;(2)描点并画出该函数的图象;(3)①根据函数图象可得:该函数的最小值为______________;②观察函数12y x =+-的图象,写出该图象的两条性质__________;__________;③已知直线1112y x =--与函数12y x =+-的图象相交,则当1y y <时,x 的取值范围为是_____________.25.如图,直线l :y =﹣12x+2与x 轴,y 轴分别交于A ,B 两点,在y 轴上有一点C (0,4),动点M 从点A 出发以每秒1个单位的速度沿x 轴向左移动.(1)求A ,B 两点的坐标;(2)求△COM 的面积S 与点M 的移动时间t 之间的函数关系式;(3)当t =6时,①直接写出直线CM 所对应的函数表达式;②问直线CM 与直线l 有怎样的位置关系?请说明理由.参考答案1.C 【解析】将原式化为整式方程,根据分式方程111x mx x -=++有增根得出x 的值,将x 的值代入整式方程即可求得m 的值.【详解】解:方程两边都乘(1)x +,得:1x m -=,根据分式方程111x mx x -=++有增根,∴10x +=,∴1x =-,∴112m =--=-,故选:C .【点睛】本题考查了分式方程无解的情况,增根问题可按如下步骤进行:1、让最简公分母为0确定增根;2、化分式方程为整式方程;3、把增根代入整式方程即可求得相关参数的值.2.C 【解析】根据分式的分母不等于零列式解答.【详解】解:由题意得10x -≠,解得1x ≠,故选:C .3.A 【解析】根据在y 轴上的点的横坐标为0,求出m 的值即可.【详解】解:∵点()1,2P m m --在y 轴上,∴10m -=,∴1m =,故选A .【点睛】本题主要考查了在y 轴上点的坐标特征,解题的关键在于能够熟记y 轴上的点的横坐标为0.4.A 【解析】将点A 的坐标代入解析式计算即可;【详解】解:将点()1,3A --代入反比例函数解析式ky x=中,得:31k-=-,解得:3k =,故选择:A .【点睛】本题主要考查求反比例函数解析式,利用待定系数法求函数解析式时常用的方法.5.D 【解析】【分析】根据分式的基本性质对各选项进行判断.【详解】解:A 、22y y x x x--=,此选项正确,不符合题意;B 、222b b a a ⎛⎫= ⎪⎝⎭,此选项正确,不符合题意;C 、am abm b =,此选项正确,不符合题意;D 、1y x x y y x+=---,此选项错误,符合题意;故选:D .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的数或整式,分式的值不变.6.D 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.7.C 【解析】【分析】根据用800元购买篮球的数量与用1000元购买足球的数量相同列分式方程.【详解】解:设每个足球的价格为x 元,则每个篮球(x-25)元,根据题意得100080025x x =-,故选:C .【点睛】此题考查分式方程的实际应用,正确理解题意,找到等量关系列出方程是解题的关键.8.B 【解析】【分析】根据题意将两个函数联立方程组,再根据交点在第二象限列不等式组,即可求出m 的取值范围.【详解】解:∵一次函数y =-2x+m 和y =x+2图象相交,∴22y x m y x =-+⎧⎨=+⎩,解得2343m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∵交点位于第二象限,∴203403m m -⎧<⎪⎪⎨+⎪>⎪⎩①②,解不等式①得2m <,解不等式②得4m >-,∴不等式的解集为42m -<<,∴m 的值可能为1,故选B .【点睛】本题考查了解不等式及两直线相交:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.9.D 【解析】【分析】分类讨论:当C 点在y 轴上,设C (0,t ),根据三角形面积公式得到12|t+3|•4=12,当C 点在x 轴上,设C (m ,0),根据三角形面积公式得到12|m-4|•3=12,然后分别解绝对值方程求出t 和m 即可得到C 点坐标.【详解】解:分两种情况:①当C 点在y 轴上,设C (0,t ),∵三角形ABC 的面积为12,∴12•|t+3|•4=12,解得t =3或−9.∴C 点坐标为(0,3),(0,−9),②当C 点在x 轴上,设C (m ,0),∵三角形ABC 的面积为12,∴12•|m-4|•3=12,解得m =12或−4.∴C 点坐标为(12,0),(−4,0),综上所述,C 点有4个,故选:D .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长,也考查了三角形面积公式.10.B 【解析】【分析】根据条件结合图象对各选项进行判断即可.【详解】解:∵一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,∴关于x 的方程3kx x b -=-+的解是2x =,选项A 判断正确,不符合题意;∵由图可知,直线y x b =-+在直线3y kx =-上方时,都在点()2,1A 的左侧,∴关于x 的不等式3x b kx -+>-的解集是2x <,选项B 判断错误,符合题意;∵当x <0时,直线y x b =-+在直线3y kx =-上方,∴当x <0时,函数3y kx =-的值比函数y x b =-+的值小,选项C 判断正确,不符合题意;∵一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,∴关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,选项D 判断正确,不符合题意;故选:B .【点睛】本题考查了一次函数与二元一次方程(组),一次函数与一元一次不等式,一次函数的性质.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.11.1【解析】【分析】由于01(0)a a =≠,即任何不为0的0次幂为1,根据零指数幂的意义完成即可.【详解】()02-=1故答案为:1【点睛】本题考查了零指数幂的意义,这里要注意的是,底数不能为0.12.-2【解析】【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.13.x>2【解析】【分析】根据除法运算的符号法则:同号得正,异号得负,由分子为正,则分母也为正,可得关于x 得不等式,解不等式即可.【详解】∵202x >-,且2>0∴20x ->∴2x >故答案为:2x >【点睛】本题考查了解一元一次不等式,分式的值,除法的符号法则等知识,根据除法的符号法则得到关于x 的不等式是解题的关键.14.21y x =+【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象沿y 轴向上平移1个单位后得到的一次函数的解析式为:21y x =+,故答案为:21y x =+.【点睛】本题考查的是一次函数图像与几何变换,熟知“上加下减”的原则是解题的关键.15.2【解析】【分析】根据函数值y 随x 的增大而减小,可得出k 的正负,根据函数图像上的点到两坐标轴距离相等可得出m 的值.【详解】解:∵正比例函数()1y m x =--的函数值y 随x 的增大而减小,∴(1)0m --<,解得:1m >,∵函数图像上的点到两坐标轴距离相等,∴11m -=,解得:2m =,故答案为:2.【点睛】本题考查了一次函数的性质,熟知一次函数的性质是解题的关键.16.6【解析】【分析】设P 点的坐标为(t ,0),则A (t ,m t ),B (t ,n t ),即可得到111==222AOP m S OP AP t m t =g g △,111==222BOP n S OP BP t n t -=g g △,再根据3AOB AOP BOP S S S =+=△△△求解即可.【详解】解:设P 点的坐标为(t ,0),则A (t ,m t ),B (t ,n t),∴111==222AOP m S OP AP t m t =g g △,111==222BOP n S OP BP t n t -=g g △,∵3AOB AOP BOP S S S =+=△△△,∴11322m n ⎛⎫+-= ⎪⎝⎭,∴6m n -=,故答案为:6.【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握相关知识进行求解.17.x=4【解析】【分析】方程两边都乘最简公分母(1)(2)x x -+,化成一元一次方程,解一元一次方程即可.【详解】方程两边都乘最简公分母(1)(2)x x -+,得:22(1)x x +=-解方程得:x=4当x=4时,(1)(2)x x -+=18≠0所以原方程的解为x=4【点睛】本题考查了分式方程的解法,解分式方程时一定要检验.18.2x x+,-1【解析】【分析】先计算括号内的同分母分式减法,将除法化为乘法,再计算除法,最后将1x =-代入求值即可.【详解】解:原式=1(2)(2)2(1)x x x x x x -+-⋅--=2x x +,当1x =-时,原式=-1.【点睛】此题考查分式的化简求值,正确掌握分式的混合运算法则是解题的关键.19.2240y x =+;340【解析】【分析】根据题意可以求得y 与x 的关系式,进而可以求得y 的最大值.【详解】由题意可得,()()()22161410602240y x x x =-+-⨯-=+,1050x ≤≤ ,∴当50x =时,2240y x =+取得最大值,此时340y =,即y 与x 的函数关系式是2240y x =+,最大利润为340元.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.20.96千米/小时【解析】【分析】设汽车在普通公路上的平均速度为x 千米/小时,然后根据题意列出方程求解即可.【详解】解:设汽车在普通公路上的平均速度为x 千米/小时,由题意得:()40401160%4x x -=+,解得60x =,经检验,60x =是原方程的解集,∴汽车在高速公路上的平均速度=60×(1+60%)=96千米/小时,答:汽车在高速公路上的平均速度为96千米/小时.【点睛】本题主要考查了分式方程的应用,解题的关键在于准确找到等量关系列方程求解.21.(1)17978569⎛⎫-÷= ⎪⎝⎭;(2)121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++,证明见解析;【解析】【分析】(1)根据题目中的等式的规律,可以写出第7个等式;(2)根据题目中的等式的规律,猜想出第n 个等式,然后将等号左边的式子化简,即可证明猜想成立;【详解】解:(1)由第1个等式:1311223⎛⎫-÷= ⎪⎝⎭;第2个等式:24121=3624⎛⎫-÷= ⎪⎝⎭;第3个等式:35314125⎛⎫-÷= ⎪⎝⎭;第4个等式:4624152036⎛⎫-÷= ⎪⎝⎭;第5个等式:57516307⎛⎫-÷= ⎪⎝⎭;依次可得:第6个式子为:16867428⎛⎫-÷= ⎪⎝⎭;第7个式子为:17978569⎛⎫-÷= ⎪⎝⎭;故答案为:17978569⎛⎫-÷= ⎪⎝⎭;(2)根据每个式子结构相同,每一项的分子分母随项数的变化规律可猜想:第n 个等式为:121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++;证明如下:∵左边=21(11)n n n n n ⎛⎫-÷ ⎪+⎭+⎝+,=1(1)12n n n n +⨯++,=2n n +,=右边,∴121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++成立,【点睛】本题主要考查规律型:数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的式子.22.(1)直线AB :3342y x =-+;反比例函数:6y x -=(2)92【解析】【分析】(1)将点A 的坐标代入反比例函数解析式即可求得m 的值,即可得反比例函数解析式,将点B 的坐标代入反比例函数解析式求得n 的值,然后运用待定系数法求一次函数解析式即可;(2)设一次函数与x 轴的交点为D ,则AOB 的面积=AOD △的面积+BOD 的面积,计算即可.【详解】解:(1)∵直线AB 与反比例函数m y x =交于()2,3A -,()4,B n 两点,将()2,3A -代入m y x =中得:32m =-,解得:6m =-,∴反比例函数解析式为:6y x -=,将()4,B n 代入6y x-=中得:32n =-,∴34,2B ⎛⎫- ⎪⎝⎭,设一次函数解析式为:y kx b =+,则32342k b k b =-+⎧⎪⎨-=+⎪⎩,解得3432k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数的解析式为:3342y x =-+;(2)设一次函数与x 轴的交点为D,∵一次函数的解析式为:3342y x =-+,令0y =得:33042x =-+,解得:2x =,∴点D 的坐标为:(2,0),∴2OD =,∴113932222AOB AOD BOD S S S OD OD =+=+-= .【点睛】本题考查了反比例函数与一次函数的交点问题,解决此类问题中,三角形面积的问题时,尽可能选择与坐标轴平行的边为底边,有利于问题的解决.23.(1)见解析;(2)见解析,点P 的坐标为(90,5)【解析】【分析】(1)根据轴对称的性质分别找到三点的对应点1A ,1B ,1C ,连线即可解答;(2)根据轴对称的性质作点B 关于y 轴的对称点B 2,连接B 2C 交y 轴于一点,即为点P ,连接PB 、PC ,此时PB+PC 最小,再利用待定系数法求函数解析式.【详解】解:(1)如图:111A B C △即为所求;(2)如图,作点B 关于y 轴的对称点B 2,连接B 2C 交y 轴于一点,即为点P ,连接PB 、PC ,此时PB+PC 最小.则B 2(-3,3),设直线B 2C 的解析式为y=kx+b ,∴3321k b k b -+=⎧⎨+=⎩,解得2595k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线B 2C 的解析式为2955y x =-+,当x=0时,95y =,∴点P 的坐标为(90,5).【点睛】此题考查轴对称的性质,最短路径问题作图,作关于某点对称的图形,利用待定系数法求一次函数的解析式,熟记轴对称的性质确定特殊点的对称点是解题的关键.24.(1)①1;②4;(2)见解析;(3)①-2;②当31x -<<时,20y -≤<;当1x ≤-时,y 随x 的增大而减小;③0x >或4x <-【解析】【分析】(1)①把2x =代入12y x =+-即可得到答案;②把3y =代入12y x =+-即可得到答案;(2)根据表格中的点坐标,描点,连线,画出函数图像即可;(3)①根据(2)中所画的函数图像求解即可;②根据(2)中所画的函数图像写出相应的性质即可;③画出函数1112y x =--的图像,然后利用图像法求解即可.【详解】解:(1)①把2x =代入12y x =+-得2121y =+-=,∴1m =,故答案为:1;②把3y =代入12y x =+-得312x =+-,即15x +=,∴6x =-或4x =,∵()6,3A -,(),3B n 为该函数图象上不同的两点∴4n =,故答案为:4;(2)如图所示,即为所求:(3)①如图所示,由函数图像可知,该函数的最小值为-2,故答案为:-2;②由函数图像可知,当31x -<<时,20y -≤<;当1x ≤-时,y 随x 的增大而减小;③如图所示,画出函数1112y x =--,由图像可知,两直线的交点分别为(-4,1),(0-,1),∴当0x >或4x <-时1y y <.【点睛】本题主要考查了画函数图像,求函数的自变量和函数值,函数图像的性质,根据函数图像的交点解不等式等等,解题的关键在于能够熟练掌握相关知识进行求解.25.(1)A(4,0),B (0,2);(2)82,042t-8,t 4t t S -≤≤⎧⎪=⎨⎪⎩>;(3)①直线CM 的函数表达式为y=2x+4;②直线CM 与直线l 垂直,见解析.【解析】【分析】(1)令x=0和y=0,分别计算即可;(2)当0≤t≤4时,OM=4-t ;当t >4时,OM=t-4,按照三角形的面积公式分别计算即可;(3)当t =6时,确定M 的坐标为(-2,0);①利用待定系数法确定解析式;②利用三角形全等,垂直的定义判断即可.【详解】(1)∵y =﹣12x+2,∴当x=0时,y=2,∴点B 的坐标(0,2);∴当y=0时,﹣12x+2=0,∴x=4,∴点A 的坐标为(4,0);(2)当0≤t≤4时,AM=t ,∵OM+AM=OA ,∴OM+t=4,∴OM=4-t ,∵点C (0,4),∴OC=4,∴S=12OM OC ⨯⨯=1(4)42t ⨯-⨯=8-2t ;当t >4时,AM=t ,∵OA+AM=OM ,∴OM+4=t ,∴OM=t-4,∵点C (0,4),∴OC=4,∴S=12OM OC ⨯⨯=1(4)42t ⨯-⨯=2t-8;∴△COM 的面积S 与点M 的移动时间t 之间的函数关系式为:82,042t-8,t 4t t S -≤≤⎧⎪=⎨⎪⎩>;(3)①当t =6时,OM=t-4=2,∵M 在x 轴的负半轴,∴点M 的坐标为(-2,0),设直线CM 的解析式为y=kx+b ,把(-2,0)和(0,4)分别代入解析式,得204k b b -+=⎧⎨=⎩;解得24k b =⎧⎨=⎩,∴直线CM 的解析式为y=2x+4;②设直线CM 1与直线l 交于点D ,∵OB=O 1M =2,OA=OC=4,∠CO 1M =∠AOB=90°,∴△CO 1M ≌△AOB ,∴∠1M CO=∠BAO ,∵∠C 1M O+∠1M CO =90°,∴∠C 1M O+∠BAO =90°,∴∠1M DA =90°,∴AD ⊥C 1M .【点睛】本题考查了一次函数解析式的确定,坐标与线段的转换,三角形的全等,直线之间的位置关系,熟练运用待定系数法,坐标与线段的关系,三角形的全等是解题的关键.。
华师大版数学八年级下学期《期中检测卷》带答案

华师大版八年级下学期数学期中测试卷一.选择题(共10小题,满分30分,每小题3分)1.对于2y x +,213a +,13a ,x z y-+,(2)k n n -,2x x ,其中分式有( ) A .1个 B .2个 C .3个 D .4个2.有一种球状细菌的直径用科学记数法表示为32.1610-⨯米,则这个直径是( )A .216 000米B .0. 002 16米C .0. 000 216米D .0. 000 021 6米 3.平面直角坐标系中,点(1,)A a 和点(1,)B b -关于原点对称,则a b +的值分别是( )A .1B .1-C .0D .无法确定 4.化简分式277()a b a b ++的结果是( ) A .7a b + B .7a b + C .7a b - D .7a b- 5.化简211x x x x ---的结果是( ) A .1x + B .1x - C .x D .x -6.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是( )A .30︒B .36︒C .45︒D .60︒7.若正比例函数(4)y a x =-( )A .3a -B .3a -C .2(3)a -D .2(3)a -8.如下图所示,在直角坐标系内,原点O 恰好是ABCD 对角线的交点,若A 点坐标为(2,3),则C 点坐标为( )A .(3,2)--B .(2,3)-C .(2,3)--D .(2,3)- 9.已知反比例函数2k y x =的图象经过点(1,2),则k 的值为( ) A .1- B .0 C .1 D .2 10.如图所示,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC .若ABC ∆的面积为5,则k 的值为( )A .5B .5-C .10D .10-二.填空题(共5小题,满分15分,每小题3分)11.若式子21(1)(2)x x x --+的值为零,则x 的值为 . 12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(2,3)--,棋子B 的坐标为(1,2)-,那么棋子C 的坐标是 .13.方程3122x x x -=+-的解x = . 14.如图,在平行四边形ABCD 中,以顶点A 为圆心,AD 长为半径,在AB 边上截取AE AD =,用尺规作图法作出BAD ∠的角平分线AG ,若5AD =,6DE =,则AG 的长是 .15.如图,直线3y x =,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,⋯,按此做法进行下去,点4A 的坐标为 ,点n A .三.解答题(共8小题,满分75分)16.(8分)如图,一次函数122y x =-的图象与y 轴交于点A ,一次函数2y 的图象与y 轴交于点(0,6)B ,点C 为两函数图象交点,且点C 的横坐标为2.(1)求一次函数2y 的函数解析式;(2)求ABC ∆的面积;(3)问: 在坐标轴上,是否存在一点P ,使得2ACP ABC S S ∆∆=,请直接写出点P 的坐标.17.(9分)已知: 2320a a +-=,求代数235(2)22a a a a a -÷+---的值.18.(9分)如图,在ABCD 中,45ACB ∠=︒,AE BC ⊥于点E ,过点C 作CF AB ⊥于点F ,交AE 于点M .点N 在边BC 上,且AM CN =,连结DN .(1)若10AB 4AC =,求BC 的长;(2)求证: 2AD AM DN +=.19.(9分)4y +与3x +成正比例,且4x =-时2y =-;(1)求y 与x 之间的函数表达式(2)点11(,)P m y 、22(1,)Pm y +在(1)中所得函数的图象上,比较1y 与2y 的大小.20.(9分)某县为落实”精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成: 若乙队单独施工,则完成工程所需天数是规定天数的1. 5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?21.(10分)P 为ABCD 对角线BD 上一点,M 为边AD 上一点,PM CD =,AMP ABD ∠=∠,60ABC ∠=︒,5AB =,3BP =,求ABCD 的面积.22.(10分)如图,已知点(1,)A a 是反比例函数1m y x =的图象上一点,直线21122y x =-+与反比例函数1m y x=的图象的交点为点B 、D ,且(3,1)B -,求: (Ⅰ)求反比例函数的解析式;(Ⅱ)求点D 坐标,并直接写出12y y >时x 的取值范围;(Ⅲ)动点(,0)P x 在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.23.(11分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.(1)甲、乙二人每小时各做零件多少个?(2)甲做几小时与乙做4小时所做机械零件数相等?答案与解析一.选择题(共10小题,满分30分,每小题3分)1.对于2y x +,213a +,13a ,x z y-+,(2)k n n -,2x x ,其中分式有( ) A .1个 B .2个 C .3个 D .4个【解答】解: 213a +,x z y-+,(2)k n n -,2x x 是分式,共4个; 故选: D .2.有一种球状细菌的直径用科学记数法表示为32.1610-⨯米,则这个直径是( )A .216 000米B .0. 002 16米C .0. 000 216米D .0. 000 021 6米 【解答】解: 32.16100.00216-⨯=米故选: B .3.平面直角坐标系中,点(1,)A a 和点(1,)B b -关于原点对称,则a b +的值分别是( )A .1B .1-C .0D .无法确定 【解答】解: 点(1,)A a 和点(1,)B b -关于原点对称,a b ∴=-,0a b ∴+=.故选: C .4.化简分式277()a b a b ++的结果是( ) A .7a b + B .7a b + C .7a b - D .7a b- 【解答】解: 22777()7()()a b a b a b a b a b ++==+++, 故选: B .5.化简211x x x x ---的结果是( ) A .1x +B .1x -C .xD .x - 【解答】解: 原式(1)1x x x x -==-, 故选: C .6.若平行四边形其中两个内角的度数之比为1:4,则其中较小的内角是( )A .30︒B .36︒C .45︒D .60︒【解答】解: 设平行四边形的一个内角为x ︒,则另一个内角为(4)x ︒, 根据平行四边形对边平行,同旁内角互补,得(4)180x x ︒+︒=︒,解得36x =.故选: B .7.若正比例函数(4)y a x =-的图象经过第一、三象限,化简2(3)a -的结果是( )A .3a -B .3a -C .2(3)a -D .2(3)a -【解答】解: 若正比例函数(4)y a x =-的图象经过第一、三象限,则40a ->,解得: 4a >;2(3)|3|3a a a -=-=-.故选: A . 8.如下图所示,在直角坐标系内,原点O 恰好是ABCD 对角线的交点,若A 点坐标为(2,3),则C 点坐标为( )A .(3,2)--B .(2,3)-C .(2,3)--D .(2,3)- 【解答】解: 原点O 恰好是ABCD 对角线的交点,∴点C 与点A 关于原点对称,又关于原点对称的两个点的坐标,横纵坐标互为相反数,A 点坐标为(2,3), C ∴点坐标为(2,3)--.故选: C .9.已知反比例函数2k y x =的图象经过点(1,2),则k 的值为( ) A .1- B .0C .1D .2 【解答】解: 把(1,2)代入2k y x =得212k =⨯,解得1k =.故选: C . 10.如图所示,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B ,点C 为y 轴上的一点,连接AC 、BC .若ABC ∆的面积为5,则k 的值为()A .5B .5-C .10D .10- 【解答】解: 连结OA ,如图,AB x ⊥轴,//OC AB ∴,5OAB ABC S S ∆∆∴==,而1||2OAB S k ∆=,∴1||52k =,0k <,10k ∴=-.故选: D .二.填空题(共5小题,满分15分,每小题3分)11.若式子21 (1)(2)xx x--+的值为零,则x的值为1-.【解答】解: 式子21(1)(2)xx x--+的值为零,210x∴-=,(1)(2)0x x-+≠,解得: 1x=-.故答案为: 1-.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子A的坐标为(2,3)--,棋子B的坐标为(1,2)-,那么棋子C的坐标是(2,1).【解答】解: 由点A、B坐标可建立如图所示平面直角坐标系,则棋子C的坐标为(2,1),故答案为: (2,1).13.方程3122xx x-=+-的解x=25-.【解答】解: 去分母得: 222436x x x x--+=+,解得:25x=-,经检验25x=-是分式方程的解,故答案为:25-14.如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE AD=,用尺规作图法作出BAD ∠的角平分线AG ,若5AD =,6DE =,则AG 的长是 8 .【解答】解: 如图设AG 交BD 于H .由题意AG 垂直平分线线段DE ,3DH EH ∴==,四边形ABCD 是平行四边形,//CD AB ∴,AGD GAB ∴∠=∠,DAG GAB ∠=∠,DAG DGA ∴∠=∠,DA DG ∴=,DE AG ⊥,AH GH ∴=,在Rt ADH ∆中,2222534AH AD DH =-=-=,28AG AH ∴==.故答案为8.15.如图,直线3y x =,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于点3A ,⋯,按此做法进行下去,点4A 的坐标为 83(9,0) ,点n A .【解答】解: 由1A 坐标为(1,0),可知11OA =,把1x =代入直线3y x =中,得3y =,即113A B =, 111113tan A B B OA OA ∠==,所以,1130B OA ∠=︒,则2111cos3033OA OB OA OA ==÷︒==,232()33OA OA ==,343()33OA OA ==, 故点4A 的坐标为83(,0),点1(()3n n A -,0).故答案为: 83(,0),123(()n -,0). 三.解答题(共8小题,满分75分)16.(8分)如图,一次函数122y x =-的图象与y 轴交于点A ,一次函数2y 的图象与y 轴交于点(0,6)B ,点C 为两函数图象交点,且点C 的横坐标为2.(1)求一次函数2y 的函数解析式;(2)求ABC ∆的面积;(3)问: 在坐标轴上,是否存在一点P ,使得2ACP ABC S S ∆∆=,请直接写出点P 的坐标.【解答】解: (1)当2x =时,1222y x =-=,(2,2)C ∴,设2y kx b =+,把(0,6)B ,(2,2)C 代入可得622b k b =⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴一次函数2y 的函数解析式为226y x =-+.(2)一次函数122y x =-的图象与y 轴交于点A ,(0,2)A ∴-,1(62)282ABC S ∆∴=+⨯=;2ACP ABC S S ∆∆=,16ACP S ∆∴=当P 在y 轴上时, ∴1162C AP x =,即12162AP =,16AP ∴=,(0,14)P ∴或(0,18)-;当P 在x 轴上时,设直线122y x =-的图象与x 轴交于点D ,(1,0)D ∴,11||1622ACP ADP PCD C S S S PD y PD OA ∆∆∆∴=+=+=,∴1(22)162PD +=, 8PD ∴=,(7,0)P ∴-或(9,0),综上,在坐标轴上,存在一点P ,使得2ACP ABC S S ∆∆=,P 点的坐标为(0,14)或(0,18)-或(7,0)-或(9,0).17.(9分)已知: 2320a a +-=,求代数235(2)22a a a a a -÷+---的值. 【解答】解: 原式23(2)(2)5[]222a a a a a a a -+-=÷----2234522a a a a a ---=÷--32(2)(3)(3)a a a a a a --=-+-1(3)a a =+;2320a a +-=,232a a ∴+=,∴原式21132a a ==+.18.(9分)如图,在ABCD 中,45ACB ∠=︒,AE BC ⊥于点E ,过点C 作CF AB ⊥于点F ,交AE 于点M .点N 在边BC 上,且AM CN =,连结DN .(1)若10AB =,4AC =,求BC 的长;(2)求证: 2AD AM DN +=.【解答】(1)解: 45ACB ∠=︒,AE BC ⊥,90AEC AEB ∴∠=∠=︒,ACE ∆是等腰直角三角形,45EAC ∴∠=︒,2222AE CE ====由勾股定理得: 221082BE AB AE =-=-=BC BE CE ∴=+=(2)证明: 延长AD 至G ,使DG AM =,连接CG ,如图所示:AM CN =,DG CN ∴=,四边形ABCD 是平行四边形,AB CD ∴=,//AD BC ,B ADC ∠=∠,//DG CN ∴,∴四边形CGDN 是平行四边形,CG DN ∴=,CF AB ⊥,90CFB AEB CEA ∴∠=︒=∠=∠,BAE MCE ∴∠=∠,在ABE ∆和CME ∆中,AEB CEMBAE MCEAE CE∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CME AAS ∴∆≅∆,AB CM ∴=,B CME ∠=∠,CM CD ∴=,CME ADC ∠=∠,AMC GDC ∴∠=∠,在ACM ∆和GCD ∆中,AM DGAMC GDCCM CD=⎧⎪∠=∠⎨⎪=⎩, ()ACM GCD SAS ∴∆≅∆,45G MAC ∴∠=∠=︒,//AD BC ,45DAC ACB ∴∠=∠=︒,ACG ∴∆是等腰直角三角形,AG ∴=,AG AD DG AD AM =+=+,CG DN =, 2AD AM DN ∴+=.19.(9分)4y +与3x +成正比例,且4x =-时2y =-;(1)求y 与x 之间的函数表达式(2)点11(,)P m y 、22(1,)Pm y +在(1)中所得函数的图象上,比较1y 与2y 的大小. 【解答】解: (1)因为4y +与3x +成正比例,因此设4(3)y k x +=+,把4x =-,2y =-代入得;24(43)k -+=-+,解得,2k =-,42(3)y x ∴+=-+,即: 210y x =--, (2)20k =-<,y ∴随x 的增大而减小,又1m m <+,12y y ∴>.20.(9分)某县为落实”精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成: 若乙队单独施工,则完成工程所需天数是规定天数的1. 5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?【解答】解: (1)设这项工程的规定时间是x 天,则甲队单独施工需要x 天完工,乙队单独施工需要1.5x 天完工,依题意,得: 1551511.5x x ++=,解得: 30x =,经检验,30x =是原方程的解,且符合题意.答: 这项工程的规定时间是30天.(2)由(1)可知: 甲队单独施工需要30天完工,乙队单独施工需要45天完工, 111()183045÷+=(天).答: 甲乙两队合作完成该工程需要18天.21.(10分)P 为ABCD 对角线BD 上一点,M 为边AD 上一点,PM CD =,AMP ABD ∠=∠,60ABC ∠=︒,5AB =,3BP =,求ABCD 的面积.【解答】解: 在BD 上取点E ,连接AE ,使得AB AE =,过B 作BF AD ⊥,交DA 的延长线于点F则ABE AEB ∠=∠,AMP ABD ∠=∠,AMP AEP ∴∠=∠,DM P DEA ∴∠=∠,四边形ABCD 是平行四边形,AB CD ∴=,//AD BC ,CD PM =,AE PM ∴=,在ADE ∆和PDM ∆中,AED PMD ADE PDMAE PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE PDM AAS ∴∆≅∆,AD PD ∴=,设AD PD x ==,则3BD x =+,60ABC ∠=︒,//AD BC ,60BAF ABC ∴∠=∠=︒, 5sin6032BF AB ∴=︒=, 5cos 602AF AB =︒=,52DF AD AF x ∴=+=+,222DF BF BD +=∴22255()(3)(3)22x x ++=+,16x ∴=,ABCD ∴的面积为: 51634032AD BF =⨯=.22.(10分)如图,已知点(1,)A a 是反比例函数1m y x=的图象上一点,直线21122y x =-+与反比例函数1m y x=的图象的交点为点B 、D ,且(3,1)B -,求: (Ⅰ)求反比例函数的解析式;(Ⅱ)求点D 坐标,并直接写出12y y >时x 的取值范围;(Ⅲ)动点(,0)P x 在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.【解答】解: (Ⅰ)点(3,1)B -在1my x =图象上,∴13m =-,3m ∴=-,∴反比例函数的解析式为3y x =-; (Ⅱ)31122y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩ 31122x x ∴-=-+,即260x x --=,则(3)(2)0x x -+=,解得: 13x =、22x =-,当2x =-时,32y =,3(2,)2D ∴-;结合函数图象知12y y >时20x -<<或3x >;(Ⅲ)点(1,)A a 是反比例函数3y x =-的图象上一点3a ∴=-(1,3)A ∴-设直线AB 为y kx b =+,则331k b k b +=-⎧⎨+=-⎩∴14k b =⎧⎨=-⎩,∴直线AB 解析式为4y x =-令y=,则4x= (4,0)P∴.23.(11分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.(1)甲、乙二人每小时各做零件多少个?(2)甲做几小时与乙做4小时所做机械零件数相等?【解答】解: (1)设甲每小时做x个零件,则乙每小时做(8)x+个零件,依题意,得: 1201508x x=+,解得: 32x=,经检验,32x=是原方程的解,且符合题意,840x∴+=.答: 甲每小时做32个零件,乙每小时做40个零件.(2)404325⨯÷=(小时).答: 甲做5小时与乙做4小时所做机械零件数相等.。
华师大版八年级下学期数学《期中考试题》含答案

期中测 试 卷
学校________班级________姓名________成绩________
一、选择题:
1.在 , , , , ,中分式的个数有()
A.2个B.3个C.4个D.5个
2.(11·大连)在平面直角坐标系中,点P(-3,2)所在象限 ( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
3.对于函数y=2x﹣1,下列说法正确的是()
A.它的图象过点(1,0)B.y值随着x值增大而减小
C.它的图象经过第二象限D.当x>1时,y>0
4.若分式 值为0,则x的值为()
A 0B. 1C. ﹣1D. ±1
5.下列各式变形正确的是()
A. B.
C. D.
6.函数y= 自变量x的取值范围是( )
① ;
②当0<x<3时, ;
③如图,当x=3时,EF= ;
④当x>0时, 随x的增大而增大, 随x的增大而减小.
其中正确结论的个数是()
A. 1B. 2C. 3D. 4
[答案]C
[解析]
试题分析:对于直线 ,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴ (同底等高三角形面积相等),选项①正确;
二、填空题:
11.用科学记数法表示:0.0000002467=_______.
12.在平面直角坐标系中,把直线y=3x-3向上平移3个单位长度后,其直线解析式 ___________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册期中测试卷一、选择题(每小题3分,共30分)1. 当分式x x -2有意义时,x 的取值应满足( )A .x =0B .x ≠0C .x = 2D .x ≠ 22.某种计算机完成一次基本运算的时间约为0.000 000 001 s .把0.000 000 001 s 用科学记数法可表示为( ) A .0.1×10-8sB .1×10-9sC .1×10-8sD .0.1×10-9s3.解分式方程2x -1+x +21-x =3时,去分母后变形正确的是( )A .2-(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2+(x +2)=3(x -1)4.已知反比例函数的图象经过点(-2,4),当x >2时,所对应的函数值y 的取值范围是( ) A .-2<y <0B .-3<y <-1C .-4<y <0D .0<y <15.下面是嘉淇在学习分式运算时,解答的四道题,其中正确的是( )①2÷m×1m =2;②x 2x -1=x -x 2;③1x -y -1y -x =0;④1x -1-1x 2-x =x x (x -1)-1x (x -1)=1x . A .①B .②C .③D .④6.对于一次函数y =-2x +4,下列结论错误的是( ) A .函数值随自变量的增大而减小 B .函数的图象不经过第三象限C .函数的图象向下平移4个单位长度得到y =-2x 的图象D .函数的图象与x 轴的交点坐标是(0,4)7.某次列车平均提速v km/h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km.设提速前列车的平均速度为x km/h ,则列方程是( ) A.s x =s +50x +vB.s x +v =s +50xC.s x =s +50x -vD.s x -v =s +50x8.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人.若(x ,y)恰好是两条直线的交点坐标,则这两条直线的表达式是( )A.y =x +9与y =23x +3B .y =-x +9与y =3x +223C .y =-x +9与y =-23x +223D .y =x +9与y =-23x +2239.已知一次函数y =kx +b 的图象如图,那么正比例函数y =kx 和反比例函数y =bx 在同一坐标系中的图象大致是( )10.如图,在四边形ABCD 中,AD ∥BC ,∠A 为直角,动点P 从点A 开始沿A →B →C →D 的路径匀速前进到D ,在这个过程中,△APD 的面积S 随时间t 的变化过程可以用图象近似地表示为( )二、填空题(每小题3分,共15分)11.在函数y =2x +5中,自变量x 的取值范围是___________12.若点A(m +3,m +1)在x 轴上,则点A 的坐标为____________13.如图,已知反比例函数y =kx (k 为常数,k ≠0)的图象经过点A ,点B 在x 轴上,且满足AB =AO.若△AOB 的面积为4,则k =__________14.已知y 1=x +1,y 2=-2x +4,对任意一个x ,取y 1,y 2中的较大的值为m ,则m 的最小值是_______15.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =kx +b(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 3的坐标是____________,点B n 的坐标是__________________ 三、解答题(本大题共8个小题,满分75分) 16.(8分)计算:(1)(π-3)0-2-1+|-12|;(2)x -2x +1·(1+2x +5x 2-4).17.(8分)解方程:3x 2+2x -1x 2-2x =0.18.(8分)先化简,再求值:(x 2-1x 2-2x +1-x -1)÷x +1x -1,选一个你喜欢的数代入求值.19.(8分)函数y =6x的图象如图所示.(1)P n (x ,y)(n =1,2,…)是第一象限内图象上的点,且x ,y 都是整数.求出所有的点P n (x ,y);(2)若P(m ,y 1),Q(-3,y 2)是函数y =6x图象上的两点,且y 1>y 2,求实数m 的取值范围.20.(8分)在“母亲节”前夕,某花店用16 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用7 500元购进第二批礼盒鲜花.已知第二批所购礼盒鲜花的盒数是第一批所购礼盒鲜花的盒数的一半,且每盒礼盒鲜花的进价比第一批的进价少10元.问第二批礼盒鲜花每盒的进价是多少元?21.(10分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下: 普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(2)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.22.(12分)周末,小明骑自行车从家里出发到野外郊游,从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同的路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数表达式.八年级数学下册期中测试卷答案一、选择题1--5 D B A C D 6--10 D A C B B 填空11、x ≥-52 12、(2,0) 13、-4.14、2. 15、(7,4),()12,12--n n解答题16、(1) 解:原式=1-12+12=1.()()()()212211222++=-++•+-=x x x x x x x 解:原式17、解:原方程可化为()()02123=--+x x x x方程两边都乘以x(x +2)(x-2),得3(x -2)-(x +2)=0. 解这个整式方程得x =4.检验,把x =4代入x(x +2)(x-2)得:4×(4+2)(4-2)≠0所以x =4是原方程的解18、解:原式=[(x +1)(x -1)(x -1)2-(x +1)]·x -1x +1 =[x +1x -1-(x +1)]·x -1x +1 =1-(x -1) =2-x.当x =0时,原式=2.(注意:x ≠±1)19、解:(1)∵P n (x ,y)是第一象限内图象上的点,且x ,y 都是整数, ∴x 只能取1,2,3,6.当x =1时,y =6;当x =2时,y =3;当x =3时,y =2;当x =6时,y =1. ∴所有的点分别为P 1(1,6),P 2(2,3),P 3(3,2),P 4(6,1). (2)当P(m ,y 1)在第一象限时,均有y 1>y 2,此时m >0, 当P(m ,y 1)在第三象限时,当m <-3时,有y 1>y 2, ∴实数m 的取值范围为m >0或m <-3.20、解:设第二批礼盒鲜花每盒的进价是x 元,依题意,得 7 500x =12×16 000x +10,解得x =150. 经检验,x =150是原方程的解.答:第二批礼盒鲜花每盒的进价是150元. 21、解:(1)根据题意,得y 普通=35x.当x ≤12时,y 白金=280;当x >12时,y 白金=280+35(x -12)=35x -140.∴y 白金=⎩⎪⎨⎪⎧280(x ≤12),35x -140(x >12).(2)当x =18时,y 普通=35×18=630;y 白金=35×18-140=490.令y 白金=560,即35x -140=560,解得x =20. 当18≤x ≤19时,选择白金卡消费最合算;当x =20时,选择白金卡消费和钻石卡消费费用相同; 当x ≥21时,选择钻石卡消费最合算.22、解:(1)小明骑车的速度为20千米/小时,在南亚所游玩的时间为1小时. (2)设妈妈驾车的速度为x 千米/小时,则 2560x =20+1560×20.解得x =60. ∴点C 的坐标为(94,25),妈妈驾车的速度为60千米/小时.设直线CD 的表达式为y =kx +b ,则 ⎩⎪⎨⎪⎧116k +b =0,94k +b =25.解得⎩⎪⎨⎪⎧k =60,b =-110. ∴直线CD 的表达式为y =60x -110.23.(13分)如图,已知双曲线y =kx 经过点D(6,1),点C 是双曲线第三象限分支上的动点,过点C 作CA ⊥x 轴,过点D 作BD ⊥y 轴,垂足分别为A ,B ,连结AB ,BC. (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的表达式; (3)判断AB 与CD 的位置关系,并说明理由.解:(1)∵双曲线y =kx 经过点D(6,1),∴1=k6.解得k =6.(2)∵△BCD 的面积为12,∴12BD·(OB+AC)=12,即12×6×(1+AC)=12.解得AC =3. 令y =-3,则-3=6x .解得x =-2.∴C(-2,-3).设直线CD 的表达式为y =ax +b ,则⎩⎪⎨⎪⎧6a +b =1,-2a +b =-3.解得⎩⎪⎨⎪⎧a =12,b =-2.∴直线CD 的表达式为y =12x -2.(3)AB ∥CD.理由:由C(-2,-3),D(6,1)可知,A(-2,0),B(0,1). 设直线AB 的表达式为y =mx +n ,则⎩⎪⎨⎪⎧-2m +n =0,n =1.解得⎩⎪⎨⎪⎧m =12,n =1.∴直线AB 的表达式为y =12x +1.又∵直线CD 的表达式为y =12x -2,∴AB ∥CD.。