一元一次方程应用题能力拓展
解一元一次方程应用题的方法与技巧

一元一次方程是初等数学中最基本的概念之一,解一元一次方程应用题则是数学中常见的问题类型之一。
本文将带领读者深入了解解一元一次方程应用题的方法与技巧,帮助读者更好地掌握这一知识点。
一、了解一元一次方程的概念在解一元一次方程应用题之前,我们首先需要了解一元一次方程的概念。
一元一次方程是指方程中只含有一个未知数,并且该未知数的最高次数为一。
一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。
解一元一次方程就是要找到使得该方程成立的未知数的值。
二、掌握解一元一次方程的基本方法在解一元一次方程应用题时,我们可以通过以下基本方法来求解。
1. 移项当方程中含有未知数的项和已知数的项时,我们可以通过移项的方法将未知数的项移到一个侧,以便进行下一步计算。
对于方程2x+3=7,我们可以通过移项将3移到等号的右侧,得到2x=7-3。
2. 消元如果方程中包含多个未知数的项,我们可以通过消元的方法化简方程。
消元的方法通常是通过加减乘除的运算,将未知数的系数相消,从而得到一个简化的方程。
对于方程3x-2y=5和2x+y=7,我们可以通过消元的方法将y的系数相消,从而仅含有一个未知数x的方程。
3. 求解通过移项和消元的方法,我们最终可以得到一个只含有一个未知数的简单方程,然后可以通过解方程的方法求解未知数的值。
解方程的方法包括凑平方、分式法、代入法等。
通过这些方法,我们可以得出未知数的值,从而求解一元一次方程。
三、应用题解题技巧在解一元一次方程应用题时,我们常常面临各种实际问题,而这些问题往往可以用一元一次方程来进行建模和求解。
以下是一些解一元一次方程应用题的常用技巧。
1. 建立方程在解题时,我们首先需要根据实际问题建立方程。
这就需要我们理解问题,将问题中的已知条件和未知量用数学符号表示出来,建立起方程模型。
2. 明确未知数在建立方程时,我们需要明确未知数代表的是什么,只有明确了未知数,才能建立准确的方程模型。
一元一次方程应用题知识点

一元一次方程应用题知识点一、知识概述《一元一次方程应用题知识点》①基本定义:一元一次方程应用题就是在实际生活场景里,有着各种各样关系的事情,我们可以用含有一个未知数(还这个未知数的次数是1呢)的方程来表示,然后求出这个未知数来解决问题。
就像是我们去猜一个神秘数字,但这个数字跟别的一些数字有着特定关系,我们把这些关系用方程写出来,就能找到这个神秘数字啦。
②重要程度:在数学学科里,这可谓相当重要哦。
把实际问题变成数学方程来解,是我们把数学运用到生活中的关键一步。
能帮我们搞定很多现实生活里跟计算有关的事儿,像计算买卖东西的价钱、工程多久完成等等。
③前置知识:要掌握它首先基本的四则运算得很熟练,加、减、乘、除不能出错。
然后得很清楚一元一次方程本身的概念,比如方程的一般形式这些。
④应用价值:在生活中应用超广泛。
就比如说算自己买东西怎么组合花的钱最少。
商家也可以用来算成本、利润等。
工程队用它计算工程进度、需要的人力啥的。
二、知识体系①知识图谱:在数学的方程这部分内容里可是基础中的基础啊。
是从单纯的方程知识迈向解决实际问题的第一步,和很多后续知识像二元一次方程应用题都有联系。
②关联知识:跟代数部分其他知识关系紧密,像整式的运算,你要是整式运算都搞不定,方程里那些式子的变形就难搞。
还有跟函数也有点沾边,一些函数问题也能转化成一元一次方程的应用题形式。
③重难点分析:- 掌握难度:有时候把实际遇到的场景转化成数学语言列方程对不少人来说挺难的。
比如说像水流问题,水速船速搞在一起很容易迷糊。
- 关键点:找准等量关系是关键。
就好像一个拼图,等量关系就是那块能嵌入中心,让整个图完整起来的关键碎片。
④考点分析:在考试里很受出题人的青睐呢。
出题方式很多样,可以直接让你根据某个场景列方程求解,或者给一个方程让你根据情境解释方程的意义。
三、详细讲解(属于方法技能类)①基本步骤:- 先读题好好理解这个情景。
我以前就老想跳着读题,结果经常没搞清楚事情全貌就开始做,最后错得一塌糊涂。
初一数学一元一次方程应用题(提高)

初一数学——一元一次方程应用题(提高)一、考点、热点回顾列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.解方程的一般步骤:①审题,弄清题意.即全面分析已知数与已知数、已知数与未知数的关系.特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等.②引进未知数.用x表示所求的数量或有关的未知量.在小学阶段所遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数.③找出应用题中数量间的相等关系,列出方程.④解方程,找出未知数的值.⑤检验并写出答案.检验时,一是要将所求得的未知数的值代太原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.二、典型例题1.五羊中学数学竞赛,满分120分,规定不少于100分的获金牌,80至99分的获银牌,统计得金牌数比银牌数少8,奖牌数比不获奖人数少9,后来改为不少于90分的获金牌,70至89分的获银牌,那么金、银牌都增加了5块,而且金牌选手和银牌选手的总分刚好相同,平均分分别是95分和75分,则参赛总人数是多少?2.把99拆成四个数,使得第一个数加上2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,那么这四个数是多少?3.在公路上,汽车A,B,C分别以80km/h,70km/h,50km/h的速度匀速行驶,A从甲站开往乙站,同时,B,C从乙站往甲站。
A在与B相遇2小时又与C相遇,则甲、乙两站相距多少公里?4.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6km/h,骑车人速度为10.8km/h,如果有一列火车从他们背后开过来,它通过行人用了22s,通过骑车人用了26s,问这列火车的车身长为多少米?5.一项工程甲做40天完成,乙做50天完成。
七年级数学上册《列一元一次方程解应用题和差倍分问题》教案、教学设计

a.让学生回顾本节课所学的内容,总结一元一次方程的应用方法。
b.强调解题过程中的关键步骤,如找出等量关系、列方程、解方程等。
c.鼓励学生提出疑问,解答学生在学习过程中遇到的问题。
d.引导学生认识到数学在生活中的重要作用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本章节所学知识,培养学生的独立思考能力和实践操作技能,特布置以下作业:
2.在将实际问题抽象为数学方程时,可能存在困难,需要进一步培养等量关系的理解和运用能力。
3.学生在差倍分问题的解题思路上可能不够清晰,需要引导和训练。
4.部分学生对数学学习的兴趣不足,需要激发学习热情,提高学习积极性。
因此,在教学过程中,教师应关注学生的个体差异,因材施教,通过生动有趣的教学方法,激发学生的学习兴趣,帮助他们克服困难,逐步提高解决实际问题的能力。同时,注重培养学生的团队合作精神,提高他们的沟通与交流能力,使学生在轻松愉快的氛围中掌握知识。
b.差倍分问题的解题步骤是什么?
c.你们在解题过程中遇到了哪些困难?如何克服?
2.教师巡回指导:在小组讨论过程中,教师巡回指导,解答学生疑问,引导学生深入思考。
3.小组汇报:各小组汇报讨论成果,分享解题经验,教师给予点评和指导。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生独立完成。
2.教学步骤:
七年级数学上册《列一元一次方程解应用题和差倍分问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的应用背景,掌握列一元一次方程解决实际问题的基本方法。
2.能够运用等量关系和代数符号准确表达现实生活中的问题,提高将实际问题转化为数学问题的能力。
3.熟练掌握和、差、倍、分等基本数学概念,并能够运用这些概念解决实际问题。
一元一次方程的解的应用拓展

一元一次方程的解的应用拓展一元一次方程是数学中最基本的方程形式之一,它解决了许多实际问题。
本文将探讨一元一次方程解的应用拓展,旨在帮助读者更好地理解和运用这种方程。
一元一次方程的一般形式为:ax + b = 0,其中a和b是已知系数,x是未知数。
解这个方程即是找到x的值,使得等式成立。
在实际问题中,一元一次方程的解可以用来解决各种应用题。
1. 市场销售问题假设一个公司在某一时期内售卖一种产品,每个单位的售价是p元,销售量是x单位。
该公司的总收入可以表示为R = px。
如果我们知道单位售价和总收入,可以利用一元一次方程来计算销售量。
例如,如果总收入为5000元,售价为5元,我们可以设立方程5x = 5000来求解销售量x。
2. 财务收支问题一元一次方程也可以应用于财务收支的问题。
例如,某个人月工资是s元,每个月的开销是k元。
假设该人存储m个月,可以通过方程ms - mk = d来计算存款d的金额。
在这个方程中,左侧表示总收入,右侧则表示总开销,通过解方程可以得到存款金额。
3. 速度和时间问题速度与时间的关系可以通过一元一次方程来解决。
假设一个人以v km/h的速度驾驶,行驶了t小时后到达目的地。
可以通过方程vt = d来计算距离d。
在这个方程中,左侧表示速度乘以时间的乘积,右侧则表示距离。
通过解方程可以求出距离的数值。
4. 比例问题一元一次方程还可以应用于比例问题。
例如,某个图书馆有m本书和n个读者,已知每个读者平均可以借阅b本书。
为了使每个读者都能借到平均数目的书籍,我们可以设立方程mb = n来计算需要的书籍总数。
通过解方程可以得到所需的书籍总数。
5. 几何问题在几何学中,一元一次方程也有广泛的应用。
例如,在一幅平面直角坐标系中,假如一条直线过点(x1, y1)和(x2, y2),我们可以根据这两个点的坐标得到直线的方程式。
对于直线的方程,我们可以通过解一元一次方程来计算与坐标轴的交点等相关信息。
一元一次方程的实际应用题(含详细答案)

一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。
它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。
本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。
问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。
已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。
解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。
根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。
将方程化简得:8x + 30 = 72。
再继续化简得:8x = 72 - 30 = 42。
最后得到:x = 42 ÷ 8 = 5.25。
由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。
问题二:小明用某种运算规则将这个数x变为y,其中x = 5。
若x × y = 60,求y的值。
解答二:根据问题可列出一元一次方程:5 × y = 60。
将方程化简得:y = 60 ÷ 5 = 12。
所以小明用这种运算规则将5变为12。
问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。
解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。
根据题意,可列出一元一次方程:x + 2 = 25。
将方程化简得:x = 25 - 2 = 23。
所以小明爸爸今年的年龄是23岁。
通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。
无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。
总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。
在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。
七年级一元一次方程应用题8种类型归类

七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。
这类问题比较简单,适合入门阶段的学生练习。
第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。
这类问题往往需要学生较高的抽象思维能力来解决。
第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。
这类问题对学生的逻辑思维和数学应用能力有一定要求。
第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。
第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。
第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。
第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。
这类题目较为灵活,需要学生综合考虑多个变量间的关系。
第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。
这类题目旨在培养学生的实际应用能力和经济思维。
以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。
希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。
采购烟花,爆竹,年货的初一一元一次方程应用题

采购烟花,爆竹,年货的初一一元一次方程应用题
春节即将来临,某公司计划采购烟花、爆竹和年货。
为了解这个问题,我们可以用一元一次方程来建立数学模型。
假设公司计划采购的烟花数量为x 箱,爆竹数量为y 箱,年货数量为z 箱。
根据题目,我们可以建立以下方程:
1. 采购烟花的总费用是 20x 元(因为每箱烟花20元)。
2. 采购爆竹的总费用是 30y 元(因为每箱爆竹30元)。
3. 采购年货的总费用是 50z 元(因为每箱年货50元)。
4. 公司计划的总预算是 1000 元。
因此,总预算方程可以表示为:20x + 30y + 50z = 1000。
由于采购的烟花、爆竹和年货的数量都是整数,我们需要找到满足这些条件的整数解。
现在我们要来解这个方程,找出 x、y 和 z 的值。
计算结果为: [{x: 10 - y - z/2, z: 2y}]
所以,公司应该采购的烟花数量为:10 - y - z/2 箱,爆竹数量为:y 箱,年货数量为:2y 箱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“ “ “ “一元一次方程应用题能力拓展1.2007 年中超联赛共有 15 个队参加,每队要进行 28 场比赛,比赛的记分规则是胜一场得 3 分,平一场得 1 分,输一场得 0 分。
某球队在第一阶段的 12 场比赛中输了 2 场共得 22 分,请问:(1)第一阶段的 12 场 比赛中这支球队共胜了几场?(2)这支球队打完全部比赛最高能得多少分?(3)据分析 2007 年中超比赛 要冲进前三甲,至少要 60 分,问这支队要冲进前三甲,在后面的比赛中最少要胜几场?2. 某市百货商店元月 1 日搞促销活动,购物不超 200 元不予优惠,超过 200 元而不足 500 元的优惠 10%; 超过 500 元,其中 500 元按 9 折优惠,超过部分按 8 折优惠,某人两次购物分别用了 134 元和 466 元,问: (1)此人两次购物其物品不打折值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将这两次购 物合同一次购买是否更省?为什么?3. 有人问一男孩:“你家兄弟有几个?姊妹有几个?”他回答:“我有几个兄弟就有几个姊妹”,这人又问 男孩的姐姐,她回答说:“我的兄弟数是我姊妹数的 2 倍”请问他家兄弟,姊妹各有几人?4. 西北某地区为改造沙漠,决定 2005 年起进行“治沙种草”,的过程中,每一年新增草地达 10 亩的农户, 当年可得生活补贴费 1500 元,且每超过一亩,政府还给予每亩a 元的奖励,另外经治沙种草后的土地从下 一年起,每亩每年可有 b 元的收入,下表是某农户在头两年通过“治沙种草”每年的总收入情况年份20052006 新增草地的亩数20 亩26 亩 年总收入2006 元5060 元注:年总收入=生活补贴费+政府奖励费+种草收入(1)试根据以上提供的数据确定 a ,b 的值。
(2)从 2006 年起,如果该农户每年新增草地的亩数均能 比前一年按相同的增长率增长,那么 2008 年该农户通过“治沙种草”获得的年总收入将达到多少 元?5. 小明沿公路前进,对面来了一辆汽车,他问司机: 后面有一辆自行车吗?”司机回答: 10 分钟前我超 过一辆自行车。
”小明又问: 你的车速是多少?”司机回答: 75 千米/小时”小明继续走了 20 分钟就遇到 了这辆自行车。
小明估计自己步行的的速度是 3 千米/小时,这样小明就算出了这辆自行车的速度是多少?6. 某商品的进价是 3000 元,标价是 4500 元。
(1)商店要求利润不低于 5%的售价打折出售,最低可以打 几折出售此商品?(2)根据市场情况,这种商品销售已进入淡季,商店要求不赔本的售价打折出售,最低 可以打几折出售此商品?(3)如果此商品已造成大量库存,商店要求在赔本不多于 5%的前提下打折出售, 最低可以打几折出售此商品?7. 梅林中学租用两辆小汽车(设速度相同)同时送 1 名带队老师及 7 名九年级的学生到县城参加数学竞赛, 每辆限坐 4 人(不包括司机),其中一辆小汽车在距离考场 15 千米的地方出现故障,此时离截止进考场的 时间还有 42 分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是 60 千米/小时,人 步行的速度是 5 千米/时(上车时间忽略不计)(1)若小汽车送 4 人到达考场,然后再回到出现故障处接其 他人,请你通过计算说明他们能否在截止进考场的时间前到达考场。
(2)假如你是带队的老师,请你设计 一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性。
8. 2001 年以来,我国曾五次实施药品降价,累计降价的总金额为 269 亿元,五次药品降价的年份与相应降 价金额如表所示,表中缺失了 2003 年,2007 年相关数据,已知 2007 年药品降价金额是 2003 年药品降价 金额的 6 倍,结合表中信息,求 2003 年和 2007 年的药品降价金额年份 2001 2003 20042005 2006降价金额(亿 54 3540元)(20,公司第二次改装同样多的车辆后,所有改装后9.现在两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏,另一种是40瓦(即0.04千瓦)的白炽灯,售价18元//盏。
假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚所在地的电价是每千瓦时0.5元。
(1)设照明时间是x小时,请用含x的式子分别表示用一/盏节能灯的费用和用一/盏白炽灯的费用。
(2)小刚想在这两种灯中选购一/盏。
1)当照明时间是多少时,使用两种灯的费用一样多?2)试用特殊值判断照明时间在什么范围内时,选用白炽灯费用低?照明时间在什么范围内时,选用节能灯费用低?(3)小刚想在这两种灯中选购两/盏,假定两种/盏灯总的照明时间是3000小时,每种灯的使用寿命是2800小时,请你帮他设计一种费用最低的选购方案,并说明理由.10.某商场用2500元购进A,B两种新型节能台灯共50盏,这两种台灯的进价,标价如下表所示进价(元/盏)标价(元/盏)A4060B65100(1)这两种台灯各购进多少盏?(2)若A型台灯按标价的9折出售,B型台灯按标价的8折出售,那么这批台灯全部售完后,商场共获利多少元?11.为庆祝儿童节,某市中小学组织文艺汇演,甲乙两所学校共有92名学生准备参加演出,其中甲校准备参加演出的学生人数多于乙校准备参加演出的学生人数,甲校准备参加演出的学生人数不够90名,下面是服装厂给出的演出服装的价格表购买服装的套数每套服装的价格1套至45套60元46套至90套50元91套及以上40元两所学校单独购买服装,一共应付5000元。
1)如果甲乙两校联合起来购买服装,那么比各自购买服装共节省多少钱?(2)甲乙两校各有多少名学生准备参加演出?12.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。
你认为哪种方案获利最多,为什么?13.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分的印刷费可按8折收费。
(1)如果该单位要印刷2400份,在甲乙两印刷的费用分别是多少元?(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料所用费用低?14.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫CNG的改烧汽油为天然气的装置,每辆车改装价格为4000元,公司第一次改装了部分车辆后核算,已改装的车辆每天的燃料费占剩下的未改装车辆费用的3的车辆每天的燃料费占剩下车辆每天燃料费用的25,问:(1)公司共改装了多少辆出租车,改装后的每辆出租车平均每天的燃料费用比改装前的燃料费下降了百分之几?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?⎧ 。
2008(答案:1. 解:(1)设第一阶段的比赛中,这支球队共胜了 x 场,则平了(12-2-x )场,根据题意得 3x+(10-x ) =22,解得 x=6,10-6=4(场) 2)若后面的比赛全胜,则得分最高,所以最高得分为 22+(28-12)⨯ 3=70 (3)由题意可知,要冲进三甲,则后面的比赛至少要得分 38 分,若胜 13 场则得 39 分,冲甲成功, 若胜 12 场平 2 场,冲甲也成功,要胜 11 场平 5 场同样冲甲成功,若胜 10 场平 6 场,则得分为 58 分, 则不能冲进三甲,所以至少要胜 11 场。
2.解:(1)因为 200 ⨯ 90%=180 〉134 。
故购 134 元的商品未优惠。
又 500 ⨯ 0.9 = 450〈466 ,故购466 元的商品有两项优惠,设其售价为 x 元,依题意,得 500 ⨯ 0.9 + ( x - 500) ⨯ 0.8 = 466 解得x=520,由此可知如果商品不打折,则分别值134 元和 520 元,共值 654 元。
(2)节省 654-(134+466)=54(元)。
(3)654 元的商品优惠价为 500 ⨯ 0.9 + (654 - 500) ⨯ 0.8 = 573.2 (元),故更节省(134+466)-573.2=26.8(元)。
3.解:设姊妹有 x 人,则兄弟有(x+1)人。
X+1=2(x-1),x=3。
4.解:(1)由题意可得 ⎨1500 + (20 - 10)a = 2600 ⎩1500 + (26 - 10)a + 20b = 5060得 a=110,b=90。
(2)该农户每年新增地亩 数 的 增 长 率 为26 - 20 20⨯ 100% = 30%,2008 年 该 农 户 的 种 草 收 入 为90 ⨯ (20 + 26 + 26(1 + 30%)) = 7182年 该 农 户 新 增 草 地 面 积 为26(1 + 30%) 2 = 43 .9。
可获利政府奖励110 ⨯ (43 - 10) = 3630 ∴ 2008 年该农户在“治沙种草”中总收入将达到 1500+7182+3630=123125.设这辆自行车速度是 x 千米/小时根据题意可列方程为20 10 + 20 10⨯ 3 + x = 75 ⨯ 解得 x=23 60 60 606.(1)设最低 x 折出售,4500x=3000(1+5%),解得 x=0.7(2)最低打 x 折出售,4500x=3000。
X=0.67 (3)设最低 x 折出售,4500x=3000(1-5%),X=0.637.(1)不能到达, 提示:小汽车需要走 3 个 15 千米。
15 3⨯ 3 = (h ) = 45 min 45〉 42 ∴不能。
60 4(2)方案:先将 4 人用车送到考场,另外 4 人同时步行前往考场,汽车到考场后,然后返回到与另外 4 人的相遇处,再载他们到考场。
先将 4 人用车送到考场所需时间为 15/60=0.25 小时=15 分钟。
在 0.25 小时内另外 4 人步行了 1.25 千米,此时他们与考场的距离为 15-1.25=13.75 千米,设汽车返回 T 小时 后与步行的 4 人相遇,则有 5T+60T=13.75。