2018年浙教版中考数学模拟试卷及答案
浙教版2018-2019学年中考数学模拟试卷含答案

∵S△ABC=?AB ?BC=×2×2 =4,∴S△ADC=2,∵= 2 ,∵△DEF∽△DAC,∴GH =BG=,∴BH=,又∵EF=AC=2,∴S△BEF=?EF?BH=×2×=,应选 C.方法二: S△BEF= S 四边形ABCD﹣ S△ABE﹣ S△BCF﹣ S△FED,易知 S△ABE+ S△BCF=S 四边形ABCD=3, S△EDF=,∴S△BEF= S 四边形ABCD﹣ S△ABE﹣ S△BCF﹣ S△FED=6﹣3﹣=.应选: C.【点评】此题主要考察了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.11 .如图,将半径为 2 ,圆心角为 120 °的扇形OAB 绕点A逆时针旋转60 °,点,B的对应点分别O为 O′,B′,连接BB′,那么图中阴影局部的面积是〔〕A.B.2﹣C.2﹣D.4﹣【分析】连接 OO ′,BO′,根据旋转的性质得到∠OAO ′=60°,推出△OAO ′是等边三角形,得到∠AOO ′=60 °,推出△OO′B是等边三角形,得到∠AO′B= 120 °,得到∠O′B′B=∠O′BB′=30 °,根据图形的面积公式即可得到结论.【解答】解:连接 OO ′,BO′,∵将半径为 2,圆心角为120 °的扇形OAB绕点A逆时针旋转60 °,∴∠OAO ′=60°,∴△OAO ′是等边三角形,∴∠AOO ′=60°,OO′=OA ,∴点 O′中⊙O 上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO ′B 是等边三角形,∴∠AO ′B=120°,∵∠AO ′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影局部的面积=S△B′O′B﹣〔 S 扇形O′OB﹣ S△OO′B〕=×1×2﹣〔﹣×2×〕=2﹣.【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,【点评】此题考察了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12 .如图,正方形ABCD 的边长是3, BP= CQ,连接 AQ , DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,以下结论:①AQ ⊥ DP;② OA 2=OE?OP;③ S△AOD= S 四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是〔〕A.1B.2C.3D.4【分析】由四边形ABCD 是正方形,得到AD = BC,∠DAB =∠ABC=90°,根据全等三角形的性质得到∠ P=∠Q,根据余角的性质得到AQ ⊥ DP ;根据相似三角形的性质得到AO 2= OD ?OP ,由OD ≠OE,得到OA 2≠OE?OP;根据全等三角形的性质得到CF= BE, DF= CE,于是得到S△ADF ﹣ S△DFO= S△DCE﹣ S△DOF,即 S△AOD= S 四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形 ABCD 是正方形,∴AD = BC,∠DAB=∠ABC =90°,∵BP= CQ,。
浙教版2018-2019学年度九年级中考数学模拟试卷C

浙教版2018-2019学年度九年级中考数学模拟试卷C一.选择题(共10小题,满分30分,每小题3分)1.若一个数的倒数是﹣2,则这个数是()A.B.﹣C.D.﹣2.2017年中秋小长假长沙县的旅游收入约为1900万,将1900万用科学记数法表示应为()A.19×104B.1.9×104C.1.9×107D.0.19×1083.下列运算正确的是()A.2x+3y=5xy B.5x2•x3=5x5C.4x8÷2x2=2x4D.(﹣x3)2=x54.在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160B.中位数为158C.众数为158D.方差为20.35.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块6.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.57.如图,正方形ABCD中,E为CD的中点,F为BC边上一点,且EF⊥AE,AF的延长线与DC的延长线交于点G,连接BE,与AF交于点H,则下列结论中不正确的是()A.AF=CF+BC B.AE平分∠DAF C.tan∠CGF=D.BE⊥AG8.有下列六个命题:①两条直线被第三条直线所截,同位角相等;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③从直线外一点到这条直线的垂线段,叫做这点到直线的距离;④负数没有平方根;⑤无限小数都是无理数;⑥算术平方根等于它本身的数只有0.其中正确的命题有()A.2个B.3个C.4个D.5个9.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③二.填空题(共6小题,满分18分,每小题3分)11.函数y=的自变量x的取值范围为.12.分解因式:a3﹣a=.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.若x2﹣2x=1,则2x2﹣4x+3=.15.如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=度.16.如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA2=2为边长画等边△AA2C2;以AA3=4为边长画等边△AA3C3,…,按此规律继续画等边三角形,则点A n的坐标为.三.解答题(共4小题,满分23分)17.(5分)计算:2﹣1﹣3tan30°+(﹣1)0++cos60°.18.(6分)先化简,再求值÷(﹣a﹣2),其中a=﹣.19.(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状,并证明你的猜想.20.(6分)如图,直线y=mx+n交坐标轴分别于A,B(0,1)两点,交双曲线y=于点C(2,2),点D在直线AB上,AC=2CD.过点D作DE⊥x轴于点E,交双曲线y=于点F,连接CF.(1)求反比例函数y=和直线y=mx+n的表达式;(2)求△CDF的面积.四.解答题(共4小题,满分30分)21.(6分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.22.(8分)在成都“白环改建工程中,某F罕轿建设将由甲,乙两个工程队共同施工完成,据调查得知:甲,乙两队单独完成这项上程所需天数之比为4:5,若先由甲,乙两队合作40天,剩下的工程再乙队做10天完成,(1)求甲.乙两队单独完成这取工程各需多少天?(2)若此项工程由甲队做m天,乙队n天完成,①请用含m的式子表示n;②已知甲队每天的施工费为15万元,乙队每天的施工费用为10万元,若工程预算的总费用不超过1150万元,甲队工作的天数与乙队工作的天数之和不超过90天.请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?23.(8分)某校的教室A位于工地O的正西方向,且OA=200m,一台拖拉机从O点出发,以每秒5m的速度沿北偏西53°的方向行驶,设拖拉机的噪声污染半径为130m,则教室A是否在拖拉机的噪声污染范围内?若不在,请说明理由;若在,求出教室A 受噪声污染的时间有几秒.(参考数据:sin53°≈0.80,sin37°≈0.60,tan37°≈0.75)24.(8分)已知菱形ABCD中,∠A=72°,请你用两种把该菱形分成四个等腰三角形,并标出每个等腰三角形的顶角度数(要求在图中直接画出图形,不要求写作法和证明).五.解答题(共1小题,满分9分,每小题9分)25.(9分)如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.(1)求证:直线EF是⊙O的切线;(2)若点C是弧AB的中点,sin∠DAB=,求△CBD的面积.六.解答题(共1小题,满分10分,每小题10分)26.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.参考答案与试题解析1.解:若一个数的倒数是﹣2,即﹣,则这个数是﹣,故选:B.2.解:将1900万用科学记数法表示应为:1.9×107.故选:C.3.解:A、不是同类项,不能合并,选项错误;B、正确;C、4x8÷2x2=2x6,选项错误;D、(﹣x3)2=x6,选项错误.故选:B.4.解:A、平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B、按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C、数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D、这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选:D.5.解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.6.解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.7.解:由E为CD的中点,设CE=DE=2,则AD=AB=BC=4,∵EF⊥AE,∴∠AED=90°﹣∠FEC=∠EFC,又∵∠D=∠ECF=90°,∴△ADE∽△ECF,∴=,即=,解得FC=1,A、在Rt△ABF中,BF=BC﹣FC=4﹣1=3,AB=4,由勾股定理,得AF=5,则CF+BC=1+4=5=AF,本选项正确;B、在Rt△ADE,Rt△CEF中,由勾股定理,得AE=2,EF=,则AE:EF=AD:DE=1:2,又∠D=∠AEF=90°,所以,△AEF∽△ADE,∠FAE=∠DAE,即AE平分∠DAF,本选项正确;C、∵AB∥DG,∴∠CGF=∠BAF,∴tan∠CGF=tan∠BAF==,本选项正确;D、∵AB≠AE,BF≠EF,∴BE与AG不垂直,本选项错误;故选:D.8.解:①两条平行线被第三条直线所截,同位角相等,错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,错误;④负数没有平方根,正确;⑤无限不循环小数是无理数,错误;⑥算术平方根等于它本身的数有0,1,错误;故选:A.9.解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.10.解:①当x=1时,结合图象y=a+b+c<0,故此选项正确;②当x=﹣1时,图象与x轴交点负半轴明显小于﹣1,∴y=a﹣b+c>0,故本选项错误;③由抛物线的开口向上知a>0,∵对称轴为0<x=﹣<1,∴2a>﹣b,即2a+b>0,故本选项错误;④对称轴为x=﹣>0,∴a、b异号,即b<0,图象与坐标相交于y轴负半轴,∴c<0,∴abc>0,故本选项正确;∴正确结论的序号为①④.故选:C.11.解:根据题意得:3﹣x≥0,解得:x≤3.故答案为:x≤3.12.解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).13.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.14.解:当x2﹣2x=1时,原式=2(x2﹣2x)+3=2×1+3=5,故答案为:5.15.解:∵弧AB=弧BC,且弧AB:弧AmC=3:4,∴弧ABC:弧AmC=6:4,∴∠AOC的度数为(360°÷10)×4=144°.16.解:∵点A1的横坐标为0.5=1﹣0.5,点A2的横坐标为0.5+1=1.5=2﹣0.5,点A3的横坐标为0.5+1+2=3.5=4﹣0.5,点A4的横坐标为0.5+1+2+4=7.5=8﹣0.5,…∴点A n的横坐标为2n﹣1﹣0.5,纵坐标都为0,∴点A n的坐标为(2n﹣1﹣0.5,0).故答案为:(2n﹣1﹣0.5,0).17.解:原式=﹣3×+1+2+=2+.18.解:÷(﹣a﹣2)====,当a═﹣时,原式=﹣=.19.解:(1)如图1,连接BD,∵点E、H分别为边AB、AD的中点,∴EH∥BD、EH=BD,∵点F、G分别为BC、DC的中点,∴FG∥BD、FG=BD,∴EH=FG、EH∥FG,∴中点四边形EFGH是平行四边形;(2)四边形EFGH是菱形,如图2,连接AC、BD,∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵,∴△APC≌△BPD(SAS),∴AC=BD,∵点E、F、G分别为AB、BC、CD的中点,∴EF=AC、FG=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形;(3)四边形EFGH是正方形,设AC、BD交点为O,AC与PD交于点M,AC与EH交于点N,∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD、AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.20.解:(1)∵直线y=mx+n经过B(0,1),C(2,2)两点,∴,解得,∴直线的表达式为y=;∵点C(2,2)在双曲线y=上,∴2=,解得k=4,∴反比例函数的解析式为y=;(2)作CH⊥x轴于H,∵C(2,2),∴CH=2,∵DE⊥x轴于点E,∴CH∥DE,∴==,由直线y=x+1可知A(﹣2,0),∴OA=2,AH=4,∵AC=2CD,∴=,∴==,∴DE=3,AE=6,∴D(4,3),把x=4代入y=得,y=1,∴F(4,1),∴DF=3﹣1=2,∴△CDF的面积=×2×(4﹣2)=2.21.解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为:50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为=.22.解:(1)设甲.乙两队单独完成这取工程各需4x,5x天,由题意得:(+)×40+=1,解得:x=20,经检验:x=20是原方程的根,∴4x=80,5x=100,答:甲.乙两队单独完成这取工程各需80,100天;(2)①由题意得:n=(1﹣)÷=100﹣,②令施工总费用为w万元,则w=15m+10×(100﹣)=m+1000.∵两队施工的天数之和不超过90天,工程预算的总费用不超过1150万元,∴m+1000≤1150,m+(100﹣)≤90,∴40≤m≤60,∴当m=40时,完成此项工程总费用最少,∴n=100﹣=50,w=1100元,答:甲、乙两队各工作40,50天,完成此项工程总费用最少,最少费用是1100元.23.解:如图,过点A作AB⊥OM于点B,∵∠MON=53°,∴∠AOM=90°﹣53°=37度.在Rt△ABO中,∠ABO=90°,∵sin∠AOB=,∴AB=AO•sin∠AOB=200×sin37°≈120(m).∵120m<130m.∴教室A在拖拉机的噪声污染范围内.根据题意,在OM上取C,D两点,连接AC,AD,使AC=AD=130m,∵AB⊥OM,∴B为CD的中点,即BC=DB,∴BC==50(m),∴CD=2BC=100(m).即影响的时间为=20(s).24.解:如图所示:25.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°即∠ADC+∠CDB=90°,∵∠ADC=∠ABC,∠CBF=∠CDB,∴∠ABC+∠CBF=90°即∠ABF=90°,∴AB⊥EF∴EF是⊙O的切线;(2)解:作BG⊥CD,垂足是G,在Rt△ABD中∵AB=10,sin∠DAB=又∵sin∠DAB=∴BD=6∵C是弧AB的中点,∴∠ADC=∠CDB=45°,∴BG=DG=BD×sin45°=6×=3,∵∠DAB=∠DCB∴tan∠DCB==,∴CG=∴CD=CG+DG=4+3=7,=CD•BG==21.∴S△CBD26.解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=(0﹣3)2+(﹣3a﹣0)2=9a2+9、CD2=(0﹣1)2+(﹣3a+4a)2=a2+1、AD2=(3﹣1)2+(0+4a)2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1即,抛物线的解析式:y=﹣x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2(﹣x2+2x+3)=x+1,化简,得:2x2﹣3x﹣5=0解得:x1=﹣1、x2=∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q(1,b),则QD=4﹣b,QB2=QG2=(1+1)2+(b﹣0)2=b2+4;∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:(4﹣b)2=2(b2+4),化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).。
浙江省杭州市2018年中考数学模拟试题(1)及答案

2018年杭州市初中毕业升学文化考试数学试题一考生须知:1. 本试卷满分120分,考试时间100分钟.2. 答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明.4. 如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5. 考试结束后,试题卷和答题纸一并上交.参考公式:二次函数:y=ax2+bx+c(a≠0)图象的顶点坐标公式:(-b2a,4ac-b24a).试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列实数中,结果最大的是()A. |-3|B. -(-π)C. 7D. 32. 下列运算正确的是()A. a8÷a2=a4B. b3+b3=b6C. a2+ab+b2=(a+b)2D. (a+b)(4a-b)=4a2+3ab-b23. 某学习报经理通过对几种学习报订阅量的统计(如下表),得出应当多印刷《数学天地》报,他是应用了统计学中的()A. 平均数B. 众数C. 中位数D. 方差4. 下列几何体中,三视图有两个相同而另一个不同的是()第4题图A. (1)(2)B. (2)(3)C. (2)(4)D. (3)(4)5. 如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为( )第5题图A. 13B. 22C. 3D. 26. 现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③正八边形的每个内角度数为45°;④一组数据2,5,4,3,3的中位数是4,众数是3,其中假命题的个数是( )A. 1个B. 2个C. 3个D. 4个7. 如图,在平面直角坐标系中,正方形的中心在原点O 处,且正方形的一组对边与x 轴平行,点P (2a ,a )是反比例函数y =2x 的图象与正方形的一个交点,则图中阴影部分的面积是( )A. 2B. 3C. 4D. 5第7题图第9题图第10题图8. 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x套,则根据题意可得方程为()A. 160x+400-160(1+20%)x=18 B.160x+400(1+20%)x=18C. 160x+400-16020%x=18 D.400x+400-160(1+20%)x=189. 如图,直线y=nx+3n(n≠0)与y=-x+m的交点的横坐标为-1,则关于x的不等式-x+m>nx+3n>0的整数解为()A. -2B. -5C. -4D. -110. 如图,在Rt△ABC中,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A 顺时针旋转90°,得到△AFB,连接EF,则()A. ∠AED=∠AFEB. △ABE∽△ACDC. BE+DC=DED. BE2+DC2=DE2二、填空题:本大题有6个小题,每小题4分,共24分.11. 计算:4812=________.12. 为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是________个.13. 若随机向一个边长分别为3,4,5的三角形内投一根针,则针尖落在三角形的内切圆内的概率为________.14. 已知二次函数y=(x-h)2+1(h为常数),在自变量x的值满足1≤x≤4的情况下,若其对应的函数值y的最小值为5,则h的值为________.第15题图15. 如图,点C是⊙O上一点,⊙O的半径为22,D、E分别是弦AC、BC上的点,且OD=OE=2,则AB的最大值为________.16. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在和谐四边形ABCD中,AB=AD=BC,∠BAD=90°,若AC是四边形ABCD的和谐线,则∠BCD=____________.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分6分)以下是小华同学做的整式运算一题的解题过程:计算:2b2-(a+b)(a-2b).解:原式=2b2-(a2-2b2)…………第①步=2b2-a2+2b2……………第②步=4b2-a2…………………第③步老师说:“小华的过程有问题”.请你指出计算过程中错误的步骤,并改正.18. (本小题满分8分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的点.(1)求证:△ACE≌△BCD;(2)若DE =13,BD =12,求线段AB 的长.第18题图19. (本小题满分8分)第十三届全国学生运动会将于2017年9月4日— 9月16日在杭州市举办,是首次将大、中学生运动会合并后举行的一次全国性学校体育重大活动.某校组织了主题为“我是运动会志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按A ,B ,C ,D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求此次抽取的作品中等级为B 的作品数,并补全条形统计图; (2)求扇形统计图中等级为D 的扇形圆心角的度数;(3)该校计划从抽取的这些作品中选取部分作品参加市区的作品展.已知其中所选取的到市区参展的A 类作品比B 类作品少4份,且A 、B 两类作品数量和正好是本次抽取的四个等级作品数量的15,求选到市区参展的B 类作品有多少份.第19题图20. (本小题满分10分)如图,甲、乙两只捕捞船同时从A 港出海捕鱼,甲船以152千米/小时的速度沿北偏西60°方向前进,乙船以15千米/小时的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶乙船,结果两船在B 处相遇.(1)甲船从C 处追赶上乙船用了多少时间? (2)求甲船追赶乙船时的速度.(结果保留根号)第20题图21. (本小题满分10分)已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.如图,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .(1)求证:OC PD =OPAP;(2)若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.第21题图22. (本小题满分12分)过反比例函数y =kx (k <0)的图象上一点A 作x 轴的垂线交x 轴于点B ,O 为坐标原点,且S △ABO =4.(1)求k 的值;(2)若二次函数y =ax 2与反比例函数y =kx (k <0)的图象交于C (-2,m ).请结合函数图象写出满足ax 2<kx的x 的取值范围.23. (本小题满分12分)如图,已知▱ABCD 中,AC ⊥CD ,点E 在射线CB 上,点F 在射线DC 上,且∠EAF =∠B .(1)当∠BAD =135°时,若点E 在线段CB 上,点F 在线段DC 上,求证:BE +22DF =AD ;(2)当∠BAD =120°时,若点E 在线段CB 上,点F 在线段DC 上,求AD 、BE 、DF 之间有怎样的数量关系?并证明你的结论;(3)当∠BAD =120°时,连接EF ,设直线AF 、直线BC 交于点Q ,当AB =3,BE =2时,请分别求出EQ 和EF 的长.第23题图答案三、解答题17. (本小题满分6分)解:错误的步骤是第①步,(2分)改正:原式=2b2-(a2-2ab+ab-2b2)=2b2-a2+2ab-ab+2b2=4b2+ab-a2.(6分)18. (本小题满分8分)(1)证明:∵△aCb 与△E CD 都是等腰直角三角形, ∴C E =CD ,aC =bC ,∠aCb =∠E CD =90°,∠b =∠baC =45°,∴∠aC E =∠bCD =90°-∠aCD ,在△aC E 和△bCD 中,⎩⎪⎨⎪⎧CE =CD ∠ACE =∠BCD AC =BC, ∴△aC E ≌△bCD (SaS );(4分) (2)解:∵△aC E ≌△bCD , ∴a E =bD ,∠E aC =∠b =45°, ∵bD =12, ∴∠E aD =45°+45°=90°,a E =12, 在Rt △E aD 中,∠E aD =90°,D E =13,a E =12, 由勾股定理得:aD =5,∴ab =bD +aD =12+5=17.(8分) 19. (本小题满分8分) 解:(1)30÷25%=120(份).(2分)此次抽取的作品中等级为b 的作品数为120-36-30-6=48(份),补全条形统计图,如解图,第19题解图(4分)(2)扇形统计图中等级为D 的扇形圆心角的度数为6120×360°=18°;(6分)(3)设b 类作品共x 份,则a 类作品共(x -4)份, 根据题意得(x -4)+x =120×15,解得x =14,答:选到市区参展的b 类作品有14份.(8分) 20. (本小题满分10分)解:(1)如解图,过点a 作aD ⊥bC 于D ,第20题解图由题意得: ∠b =30°,∠baC =60°+45°=105°,则∠bCa =45°,aC =302千米, 在Rt △aDC 中,aD =CD =aC ·cos 45°=30(千米), 在Rt △abD 中,ab =2aD =60千米,t =6015=4(时).4-2=2(时),答:甲船从C 处追赶上乙船用了2小时;(5分)(2)由(1)知:bD =ab ·cos 30°=303千米, ∴bC =30+303(千米),甲船追赶乙船的速度v =(30+303)÷2=(15+153)千米/时. 答:甲船追赶乙船时的速度为:(15+153)千米/小时.(10分) 21. (本小题满分10分)(1)证明:∵四边形abCD 是矩形,∴aD =bC ,DC =ab ,∠Dab =∠b =∠C =90°,由折叠可得:a P =ab ,PO =b O ,∠P a O =∠ba O ,∠a PO =∠b . ∴∠a PO =90°. ∴∠a P D =90°-∠C PO =∠PO C . ∵∠D =∠C ,∠a P D =∠PO C . ∴△O C P ∽△P Da , ∴OC PD =OPAP ;(4分) (2)解:∵△O C P 与△P Da 的面积比为1∶4, ∴OC PD =OP PA =CP DA=14=12.∴P D =2O C ,P a =2OP ,Da =2C P ,∵aD =8,∴C P =4,bC =8.设OP =x ,则O b =x ,C O =8-x.在Rt △P C O 中,∵∠C =90°,C P =4,OP =x ,C O =8-x ,∴x 2=(8-x)2+42.解得:x =5.∴ab =a P =2OP =10.∴边ab 的长为10.(10分)22. (本小题满分12分)解:(1)设点a 的坐标为(n ,k n), ∵ab ⊥x 轴,∴O b =|n |,ab =|k n|, ∵△ab O 的面积S △ab O =12O b ·ab =|k|2=4,k <0, ∴k =-8;(4分)(2)依照题意画出图形,如解图所示.第22题解图令x =-2,y =-8-2=4, 即点C 的坐标为(-2,4).(7分)∵点C (-2,4)在二次函数y =a x 2的图象上,∴4=(-2)2·a ,解得:a =1.(9分)结合图象可知,:当-2<x <0时,y =-8x的图象在y =x 2的图象的上方, ∴满足x 2<-8x的x 的取值范围为:-2<x <0.(12分) 23. (本小题满分12分)(1)证明:∵∠baD =135°,且∠baC =90°,∴∠CaD =45°,即△abC 、△aDC 都是等腰直角三角形;∴aD =2aC ,且∠D =∠aCb =45°;又∵∠E aC =∠Da F =45°-∠F aC ,∴△a E C ∽△a F D ,∴AE AF =EC FD =AC AD =12,即E C =22F D ; ∴bC =b E +22D F ,即b E +22D F =aD ;(4分) (2)解:2b E +D F =aD ;理由如下:第23题解图①如解图①,取bC 的中点G ,连接a G ;易知:∠DaC =∠bCa =30°,∠b =∠D =60°;在Rt △abC 中,G 是斜边bC 的中点,则:∠a GE =60°,aD =bC =2a G ;∵∠G aD =∠a GE =60°=∠E a F ,∴∠E a G =∠F aD =60°-∠G a F ;又∵∠a GE =∠D =60°,∴△a GE ∽△aD F ,得:AG AD =EG FD =12; 即F D =2EG ;∴bC =2b G =2(b E +EG)=2b E +2EG =2b E +D F ,即aD =2b E +D F ;(7分)第23题解图② 第23题解图③(3)解:在Rt △abC 中,∠aCb =30°,ab =3,则bC =aD =6,E C =4.①当点E 、F 分别在线段bC 、CD 上时,如解图②,过F 作FH ⊥b Q 于H ;同(2)可知:D F =2EG =2,C F =CD -D F =1;在Rt △C FH 中,∠F C H =60°,则:C H =12,FH =32; 易知:△aD F ∽△Q C F ,由D F =2C F ,可得C Q =12aD =3; ∴EQ =E C +C Q =4+3=7;在Rt △EFH 中,EH =E C +C H =92,FH =32; 由勾股定理可求得:EF =21;(9分)②当点E 、F 分别在Cb 、DC 的延长线上时,如解图③;分别过点a 、F 作bC 的垂线,垂足分别为m 、n ,∵∠E a F =∠G aD =60°,∴∠E a G =∠F aD =60°+∠F a G ,又∵∠EG a =∠D =60°,∴△E a G ∽△F aD ,得:EG FD =AG AD =12; 即F D =2EG =10,F C =10-CD =7;在Rt △F Cn 中,∠F Cn =60°,易求得F n =732,nC =72,G n =12; 在等边△ab G 中,am ⊥b G ,易求得am =332,m G =32,mn =m G -G n =1; 由△am Q ∽△F n Q ,得:AM FN =MQ NQ =37,即Q n =710,m Q =310; EQ =E b +bm +m Q =2+32+310=195; 由勾股定理,得:EF =57;综上可知:EQ =7或195,EF =21或57.(12分)。
浙江省杭州市萧山区2018届数学中考模拟试卷(6月份)及参考答案

一、单选题 1. 相反数不大于它本身的数是( ) A . 正 数 B . 负数 C . 非正数 D . 非负数 2. 由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是(
)
A.3B.4C.5D.6 3. 下列计算中,不正确的是( )
(3) 应用拓展: 如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC 的 倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.
三、填空题
18. 某同学期中考试数学考了100分,则他期末考试数学考100分属于________事件.(选填“不可能”“可能”或“必然”) 19. 如图,已知∠1=∠2,∠3=65°,则∠4=________ .
通过学习,同学们已经体会到灵活运用整式乘法公式给计算和化简带来的方便、快捷.相信通过下面材料的学习、探 究,会使你大开眼界,并获得成功的喜悦.
(例)用简便方法计算995×1005.
解:995×1005
=(1000﹣5)(1000+5)① =10002﹣52②
=999975.
(1) 例题求解过程中,第②步变形是利用(填乘法公式的名称); (2) 用简便方法计算: ①9×11×101×10 001; ②(2+1)(22+1)(24+1)…(232+1)+1.
(1) 概念理解: 如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2) 问题探究: 如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线B C于点D.若点B是△AA′C的重心,求 的值.
最新-2018年中考数学模拟试卷及答案【浙江省】 精品

2018年初中毕业生中考模拟试卷(浙江省)数学试题卷考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
一. 仔细选一选 (本题有10个小题, 每小题4分, 共40分) 下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1、-2的倒数是(▲) A.-2 B.-21 C.21D.2 2、据统计,2018年“超级男生”短信投票的总票数约327 000 000张,将这个数写成科学数法是(▲) A.3.27×118 B.3.27×118 C.3.27×118 D.3.27×118 3、如图所示的图案中是轴对称图形的是(▲)4、已知α为等边三角形的一个内角,则cosα等于(▲) A.21 B.22 C.23 D.335、已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36º,则该圆锥的母线长为(▲)A.100cmB.10cm cm 6、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是(▲)A B C D7、为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。
如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m1.4141.732)是(▲)A.0.62mB.0.76mC.1.24mD.1.62m 8、若反比例函数ky x=的图象经过点(–1,2),则这个函数的图象一定经过点(▲) A 、(2,-1) B 、(12-,2) C 、(-2,-1) D 、(12,2)9、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是(▲)A.14B.15C.16D.32010、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1,x 2是方程x 2+6x ++3=0的两实数根,则21x x +12x x 的值为(▲) A. 4 B. 6 C. 8 D. 10二. 认真填一填 (本题有6个小题, 每小题5分, 共30分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11、分解因式:x 3-4x = . 12、函数函数12-+=x x y 中自变量x 的取值范围是 . 13、要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值是 .14、如图有一直角梯形零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm , ∠D =120︒,则该零件另一腰AB 的长是 m . 15、某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是 吨. 16、在数学中,为了简便,记1nk k =∑=1+2+3+…+(n -1)+ n .1!=1,2!=2×1,3!=3×2×1,…,n !=n ×(n -1)×(n -2)×…×3×2×1.则20061k k =∑-20071k k =∑+2007!2006!=___. A B C D三. 全面答一答(17~19题每题8分,20~22每题10分,23每题12分,24题14分,共80分) 解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17、(本小题满分8分)化简求值:a a a a a a a ÷--++--22121222,其中12+=a ;18、(本小题满分8分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90 ,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(要求写出画法). 19、(本小题满分8分)在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查. 如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)请问:甲商场的用户满意度分数的众数为 ;乙商场的用户满意度分数的众数为 .(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).(3)请你根据所学的统计知识,判断哪家商场的用户满意度较高,并简要说明理由.20、(本小题满分10分)如图,小丽在观察某建筑物AB.(1)请你根据小亮在阳光下的投影,画出建筑物AB 在阳光下的投影. (2)已知小丽的身高为1.65m ,在同一时刻测得小丽和建筑物AB 的投影长分别为1.2m 和8m ,求建筑物AB 的高.AB C很不满不满意 较满意很满10020021、(本小题满分10分)温度与我们的生活息息相关,你仔细观察过温度计吗?如图12是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(°F ),设摄氏温度为x (℃),华氏温度为y (°F),则y 是x 的一次函数. (1)仔细观察图中数据,试求出y 与x 之间的函数表达式; (2)当摄氏温度为零下15℃时,求华氏温度为多少? 22、(本小题满分10分) 如图,已知△ABC ,∠ACB=90º,AC=BC ,点E 、 F 在AB 上,∠ECF= 45º, (1)求证:△ACF ∽△BEC (5分) (2)设△ABC 的面积为S ,求证:AF·BE=2S (5分)23、(本小题满分12分)如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为5个单位(每个单位为5cm ),设铁环中心为O ,铁环钩与铁环相切点为M ,铁环与地面接触点为A ,∠MOA=α,且sin α=35. (1)求点M 离地面AC 的高度BM (单位:厘米); (2)设人站立点C 与点AMF 的长度(单位:厘米).24、(本小题满分14分)如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线x =1交x 轴于点B 。
2018浙教版杭州下城中考数学二模真题卷答案

2018年中考模拟测试(二)数学参考评分一、选择题:本大题有10个小题,每小题3分,共30分. 1. A 2. D 3. C 4.D 5. C 6. B 7. A 8. C 9. C 10. B二、填空题:本题有6个小题,每小题4分,共24分. 11.0.8, 0 12. 40 13. 014. x ≤-2或x ≥1 15. 7∶2 16. (22-2c )(c -2)或-2c 2+26c -44三、解答题:本大题有7个小题,共66分. 17.(本小题满分6分)解∵mn =-4a 2+1, m +n =-2 ……2分 ∴mn +m +n +1=-4a 2 ……2分 当a =14时,原式=-14……2分 (其它解法只要有步骤,答案正确也给全分)18.(本小题满分8分) 解(1) (4)分 (2)P =19……4分B AC B A C A B C CBA19.(本小题满分8分)证明:∵AB =AC ,D ,E 分别为两腰AB ,AC 的中点 ∴DB =EC ,∠B =∠C ……2分 又∵BF =CG ∴BG =CF∴△BDG ≌△CEF ……3分 ∴∠DGB =∠EFC∴HF =GH ……3分20.(本小题满分10分)解(1)由题意可知:221410k k k k ≠⎧⎨--+>⎩()()……3分∴k <18,且k ≠0. ……2分 (缺k ≠0,共扣1分)(2)把x =1代数二次函数表达式得a =2, ∴点A (1,2),又∵y =x +b +2的图象过点A (1,2) ……3分∴2=1+b +2∴b =-1 ……2分21.(本小题满分10分) 解(1)连结BC ∵AB 为直径∴∠ACB =90° ……1分 又∵AB =6cm , ∠CAB =60°BADC E GF H (第19题)ABPCQ∴AC =AB ▪ cos ∠CAB =3cm ……3分(2)①过O 作OD ⊥PQ 于D ,连结OQ ∵PQ ∥AC ,AP =1cm ,OA =3cm∴PD =OP cos 60°=1cm ,OD……2分 ∴DQcm∴PQ =(1)cm ……2分 ② t =3……2分22.(本小题满分12分) 解(1)由题意可知4211a b a b +=⎧⎨+=⎩或4211a b a b +=⎧⎨+=-⎩∴1232a b ⎧=-⎪⎪⎨⎪=⎪⎩或3252a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴y =12-x 2+32x 或y =32x 2-52x ……4分 (2)由题意可知A (m ,m )或(m ,-m )∴m =32m 2-52m 或-m =32m 2-52m ∴m =73或1 ……4分(3)当x ≥56时,对于y =32x 2-52x 有“y 随x 的增大而增大”当x ≤32时,对于y =12-x 2+32x 有“y 随x 的增大而增大”∴56≤x ≤32∴t1的最小值为56,t2的最大值为32……4分23.(本小题满分12分)解(1)连结BD在菱形ABCD中∠C=60°,∴△BCD为正三角形……2分∵∠C=60°,AB=4,BE=EC∴DE⊥BC∴DE=……2分(2)∵∠DAG=∠FEG,∠DGA=∠FGE ∴△AGD∽△EGF……2分∴AG GE DG GF=又∵∠AGE=∠DGF∴△AGE∽△DGF ……2分(3)过A作AM⊥CD于M∵△AGE∽△DGF∴∠AED=∠GFD又∵BC∥AD,DE⊥BC∴AD⊥DE∴△ADE∽△AFM ……2分∴AD AM DE MF=∴MF=3∴DF=MF-MD=1 ……2分(其它解法请酌情给分)(第23题)AGFEDBC。
最新-2018年中考模拟数学试题[下学期]浙教版 精品
A D CB abb b b a ab 2018年中考模拟数学试题(时间:120分钟 满分:150分)学校_____________________ 考号_____________________ 姓名______________________第Ⅰ卷(选择题,共30分)39℃,最低气温为零下3℃,则计算2018年温差列式正确的是( )A 、(+39)+(-3) B 、(+39)+(+3)C 、(+39)-(-3)D 、(+39)-(+3)2、鸡兔同笼,若有鸡x 只,兔y 只,则鸡兔共有脚()A、(2x +2y +2)只 B 、(4x +4y -2)只 C 、(2x +4y)只 D 、(4y -2x)只3、一双旅游鞋标价285元,若以8折出售,仍可获利20%,则这种旅游鞋每双进价为( )A 、190元B 、185元C 、170元D 、228元 4、如图,矩形ABCD 是由一些小矩形和正方形拼成的,下列各式表示矩形ABCD 的面积S 错误的是( )A 、S =a 2+3b 2+4abB 、S =(a +b)(a +3b)C 、S =(a +b)2+2ab +2b 2D 、S =3b(a +b)+a 2 5、若不等式组⎩⎨⎧≥4x mx 无解则 m 的取值范围是( )A 、m ≥4B 、m ≦4C 、m>4D 、m<46、货架上摆放同一种盒装巧克力,其三视图如图所示,则货架上共摆放巧克力为( )A 、15盒B 、16盒C 、18盒D 、20盒7、在直角坐标系中,⊙O 的圆心在原点,半径为2,⊙P 的圆心为(-4,-4),半径为1,将⊙P 向左平移5个单位,再向上平移4个单位后,它与⊙O 的位置关系是( )A 、外切B 、内切C 、相交D 、外离 8、“龟兔赛跑”讲的是:领先的兔子看到乌龟缓慢爬行,骄傲起来,睡了一觉,醒来发现乌龟已快到终点,于是急忙追赶,但为时已晚,乌龟还是先到了终点,用s 表示所行路程,t 表示时间,下列图中与故事情节相吻合的是( )9、用0~9这10个数字组成一个两位数(首位可以为零),若数字可以重复使用,则可以组成102个不同的两位数,同样组成由三个数字排列的数,有103个,以此类推,2018年的有奖明信片编号共有六位数字组成,头等奖为后五位数是36186,那么今年购买明信片中头等奖的概率是( )A 、11000B 、110000C 、1100000D 、1100000010、已知二次函数y =ax 2+bx +c(a ≠0),若a +b +c =0,且a<b<c ,则它的大致图象是( )一、选择题:(本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一个符合题目要求,把它选出来。
浙教版2018-2019学年中考数学模拟试卷含答案
绝密★启用前、题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共12小题,3*12=36)1.在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣22.下列四个图案中,是中心对称图形的是()A.B.C.D.3.移动支付被称为中国新四大发明之一,据统计我国目前每分钟移动支付金额达3.79亿元,将数据3.79亿用科学记数法表示为()A.3.79×108B.37.9×107C.3.79×106D.379×1064.下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x25.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=96.下列说法中,正确的是()A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C.抛掷一个正方体骰子,点数为奇数的概率是D.“打开电视,正在播放广告”是必然事件7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.809.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1 B.0 C.1 D.210.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.311.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,4*6=24)13.因式分解:4a3﹣16a=.14.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.15.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是.16.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为.17.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A 的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE=.18.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为.(用含n的代数式表示,n为正整数)评卷人得分三.解答题(共7小题,60分)19.(6分)(1)计算6sin60°﹣()﹣2﹣(2)化简:﹣20.(6分)(1)解方程:x2﹣4x﹣3=0(2)解不等式组:21.(8分)2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表组别成绩分组(单位:分)频数频率A80≤x<85 50 0.1B85≤x<90 75C90≤x<95 150 cD95≤x≤100 a合计b 1根据以上信息解答下列问题:(1)统计表中,a=,b=,c=;(2)扇形统计图中,m的值为,“C”所对应的圆心角的度数是;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?22.(8分)如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.(1)求证:四边形ADCE是矩形;(2)①若AB=17,BC=16,则四边形ADCE的面积=.②若AB=10,则BC=时,四边形ADCE是正方形.23.(10分)“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?24.(10分)如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C 重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD的长度;(3)证明:无论点P在弧上的位置如何变化,CP•CQ为定值.25.(12分)在平面直角坐标系中,已知点B的坐标是(﹣1,0),点A的坐标是(4,0),点C 的坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线的解析式.(2)点N是抛物线上的一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N的坐标.(3)设抛物线的对称轴为直线L,顶点为K,点C关于L的对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣2【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,0,﹣2是有理数,是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列四个图案中,是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答】解:A、该图形是轴对称图形,不是中心对称图形,故本选项错误;B、该图形是轴对称图形,不是中心对称图形,故本选项错误;C、该图形是中心对称图形,故本选项正确;D、该图形既不是轴对称图形,也不是中心对称图形,故本选项错误;故选:C.【点评】此题主要考查了中心对称图形,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.移动支付被称为中国新四大发明之一,据统计我国目前每分钟移动支付金额达3.79亿元,将数据3.79亿用科学记数法表示为()A.3.79×108B.37.9×107C.3.79×106D.379×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3.79亿=3.79×108,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x2【分析】根据同底数幂的乘法,可判断A,根据合并同类项,可判断B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相乘,故C错误;D、底数不变指数相减,故D错误;故选:B.【点评】本题考查了幂的运算,根据法则计算是解题关键.5.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=9【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选:D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.下列说法中,正确的是()A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B.两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C.抛掷一个正方体骰子,点数为奇数的概率是D.“打开电视,正在播放广告”是必然事件【分析】根据调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,再根据随机事件定义和概率公式分别分析即可.【解答】解:A.为检测我市正在销售的酸奶质量,此事件调查难度较大破坏性强,应该采用抽样调查的方式,故此选项正确;B.两名同学连续五次数学测试的平均分相同,方差较小的同学数学成绩更稳定,故此选项错误;C.抛掷一个正方体骰子,点数为奇数的概率是,故此选项错误;D.“打开电视,正在播放广告”是随机事件,故此选项错误;故选:A.【点评】本题考查的是调查方法的选择以及方差的意义和概率求法、随机事件等知识;熟练掌握区分这些知识是解题关键.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案.【解答】解:,由①得:x≤1,由②得:x>﹣3,则不等式组的解集是﹣3<x≤1;故选:D.【点评】此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,掌握不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线是解题的关键.8.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.9.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1 B.0 C.1 D.2【分析】根据根的判别式即可求出a的范围.【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC 的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC 为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2∵S△ABC=•AB•BC=×2×2=4,∴S△ADC=2,∵=2,∵△DEF∽△DAC,∴GH=BG=,∴BH=,又∵EF=AC=2,∴S△BEF=•EF•BH=×2×=,故选C.方法二:S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED,易知S△ABE+S△BCF=S四边形ABCD=3,S△EDF=,∴S△BEF=S四边形ABCD﹣S△ABE﹣S△BCF﹣S△FED=6﹣3﹣=.故选:C.【点评】此题主要考查了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.11.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论.【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∴△OAO′是等边三角形,∴∠AOO′=60°,OO′=OA,∴点O′中⊙O上,∵∠AOB=120°,∴∠O′OB=60°,∴△OO′B是等边三角形,∴∠AO′B=120°,∵∠AO′B′=120°,∴∠B′O′B=120°,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.故选:C.【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;根据相似三角形的性质得到AO2=OD•OP,由OD≠OE,得到OA2≠OE•OP;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF ﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;根据相似三角形的性质得到BE=,求得QE=,根据△QOE∽△POA,即可得到===,进而得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP,故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴=,即AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP,故②错误;在△CQF与△BPE中,,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF,故③正确;∵BP=1,AB=3,∴AP=4,∵△PBE∽△PAD,∴==,∴BE=,∴QE=,∵∠QOE=∠POA,∠P=∠Q,∴△QOE∽△POA,∴===,即tan∠OAE=,故④错误,故选:B.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义的综合运用,熟练掌握全等三角形、相似三角形的判定和性质是解题的关键.二.填空题(共6小题)13.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸出白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次都摸出白球的有9种情况,∴两次都摸出白球的概率是:.故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是﹣4<x<2 .【分析】直接利用二次函数对称性得出图象与x轴的另一个交点,再画出图象,得出y>0成立的x 的取值范围.【解答】解:如图所示:∵图象经过点(2,0),且其对称轴为x=﹣1,∴图象与x轴的另一个交点为:(﹣4,0),则使函数值y>0成立的x的取值范围是:﹣4<x<2.故答案为:﹣4<x<2.【点评】此题主要考查了二次函数的性质,正确利用数形结合得出x的取值范围是解题关键.16.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为9 .【分析】要求△AOC的面积,已知OB为高,只要求AC长,即点C的坐标即可,由点D为三角形OAB斜边OA的中点,且点A的坐标(﹣6,4),可得点D的坐标为(﹣3,2),代入双曲线可得k,又AB⊥OB,所以C点的横坐标为﹣6,代入解析式可得纵坐标,继而可求得面积.【解答】解:∵点D为△OAB斜边OA的中点,且点A的坐标(﹣6,4),∴点D的坐标为(﹣3,2),把(﹣3,2)代入双曲线,可得k=﹣6,即双曲线解析式为y=﹣,∵AB⊥OB,且点A的坐标(﹣6,4),∴C点的横坐标为﹣6,代入解析式y=﹣,y=1,即点C坐标为(﹣6,1),∴AC=3,又∵OB=6,∴S△AOC=×AC×OB=9.故答案为:9.【点评】本题考查反比例函数系数k的几何意义及其函数图象上点的坐标特征,体现了数形结合的思想.17.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A 的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE=4:3 .【分析】先证明DA′=CB′,由DA′∥CB′,得==即可解决问题.【解答】证明:∵∠BAC=90°,A′是△ABC重心,∴BD=DC=AD,DA′=AA′=AD=BC,∵△A′CB′S是由△ABC旋转得到,∴CA′=CA,BC=CB′,∠ACB=∠A′CB′=∠DAC,∠CA′B′=90°,∴∠CAA′=∠CA′A=∠DAC,∠DA′B′+′CA′A=90°,∠B′+∠A′CB′=90°,∴∠DA′B′=∠B′∴DA′∥CB′,∴==,设DE=k,则EC=6k,BD=BC=7k,BE=8k,∴BE:CE=8k:6k=4:3.故答案为4:3.【点评】本题考查三角形重心、旋转平行线分线段成比例定理等知识,解题的关键是发现DA′=CB′,记住三角形的重心把中线分成1:2两部分,属于中考常考题型.18.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为24n﹣5.(用含n的代数式表示,n 为正整数)【分析】根据直线解析式判断出直线与x轴的夹角为45°,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果的规律解答即可.【解答】解:∵函数y=x与x轴的夹角为45°,∴直线y=x与正方形的边围成的三角形是等腰直角三角形,∵A(8,4),∴第四个正方形的边长为8,第三个正方形的边长为4,第二个正方形的边长为2,第一个正方形的边长为1,…,第n个正方形的边长为2n﹣1,由图可知,S1=×1×1+×(1+2)×2﹣×(1+2)×2=,S2=×4×4+×(4+8)×8﹣×(4+8)×8=8,…,S n为第2n与第2n﹣1个正方形中的阴影部分,第2n个正方形的边长为22n﹣1,第2n﹣1个正方形的边长为22n﹣2,S n=•22n﹣2•22n﹣2=24n﹣5.故答案为:24n﹣5.【点评】本题考查了正方形的性质,三角形的面积,一次函数图象上点的坐标特征,依次求出各正方形的边长是解题的关键,难点在于求出阴影S n所在的正方形和正方形的边长.三.解答题(共7小题)19.(1)计算6sin60°﹣()﹣2﹣(2)化简:﹣【分析】(1)根据实数运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=6×﹣9﹣2=﹣9(2)原式=+===【点评】本题考查学生的运算能力,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.(1)解方程:x2﹣4x﹣3=0(2)解不等式组:【分析】(1)利用配方法解方程;(2)分别解出两个不等式的解集,然后确定解集的公共部分就可以求出不等式的解集.【解答】解:(1)x2﹣4x﹣3=0x2﹣4x+4=3+4(x﹣2)2=7x=2±;(2),由①得:x<﹣1.由②得:x<,所以原不等式组的解集为:x<﹣1.【点评】考查了解一元二次方程﹣﹣配方法和解一元一次不等式组.不等式组解集确定的法则是:同大取大、同小取小、大小小大取中间,大大小小是无解.在数轴上的反映就是取它们都含有的公共部分.21.2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表组别成绩分组(单位:分)频数频率A80≤x<85 50 0.1B85≤x<90 75C90≤x<95 150 cD95≤x≤100 a合计b 1根据以上信息解答下列问题:(1)统计表中,a=225 ,b=500 ,c=0.3 ;(2)扇形统计图中,m的值为45 ,“C”所对应的圆心角的度数是108°;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?【分析】(1)由A组频数及其频率求得总数b=500,根据各组频数之和等于总数求得a,再由频率=频数÷总数可得c;(2)D组人数除以总人数得出其百分比即可得m的值,再用360°乘C组的频率可得;(3)总人数乘以样本中D组频率可得.【解答】解:(1)b=50÷0.1=500,a=500﹣(50+75+150)=225,c=150÷500=0.3;故答案为:225,500,0.3;(2)m%=×100%=45%,∴m=45,“C”所对应的圆心角的度数是360°×0.3=108°,故答案为:45,108°;(3)5000×0.45=2250,答:估计成绩在95分及以上的学生大约有2250人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.(1)求证:四边形ADCE是矩形;(2)①若AB=17,BC=16,则四边形ADCE的面积=120 .②若AB=10,则BC=10时,四边形ADCE是正方形.【分析】(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可.②利用等腰三角形的性质和正方形的性质解答即可.【解答】(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)①∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD==15,∴四边形ADCE的面积是AD×DC=15×8=120.②当AB=10,BC=10时,四边形ADCE是正方形,理由如下:∵AB=AC=10,BC=10,∴AD==DC,∵AD⊥BC,∴四边形ADCE是正方形;故答案为:120;10.【点评】本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解此题的关键,比较典型,难度适中.23.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?【分析】(1)设平均增长率为x,根据1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆列出方程,再求解即可;(2)设购进A型车m辆,则购进B型车100﹣m辆,根据不超过70000元的资金再购进A,B两种规格的自行车100辆,列出不等式,求出m的取值范围,然后求出利润W的表达式,根据一次函数的性质求解即可.【解答】解:(1)设平均增长率为x,根据题意得:640(x+1)2=1000,解得:x=0.25=25%或x=﹣2.25(不合题意,舍去),则四月份的销量为:1000(1+25%)=1250辆,答:该公司4月份在深圳市新投放共享单车1250辆;(2)设购进A型车m辆,则购进B型车100﹣m辆,根据题意得:500m+1000(100﹣m)≤70000,解得:m≥60.利润W=(700﹣500)m+(1300﹣1000)(100﹣m)=200m+300(100﹣m)=﹣100m+30000,∵﹣100<0,∴W随着m的增大而减小.当x=60时,利润最大=﹣100×60+30000=24000,答:为使利润最大,该商城应购进60辆A型车和40辆B型车.【点评】本题考查了一元二次方程、一元一次不等式和一次函数的应用,解题关键是读懂题意,根据题意列出方程或不等式.24.如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,(1)若PD∥BC,求证:AP平分∠CAB;(2)若PB=BD,求PD的长度;(3)证明:无论点P在弧上的位置如何变化,CP•CQ为定值.【分析】(1)连接OP,根据切线的性质得到OP⊥PD,根据垂径定理得到CP=BP,证明结论;(2)证明△BOP是等边三角形,根据勾股定理计算;(3)证明△ACP∽△QCA,根据相似三角形的性质计算即可.【解答】证明:(1)如图,连接OP,∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴CP=BP,∴∠PAC=∠PAB,∴AP平分∠CAB;(2)∵PB=BD,∴∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴在Rt△OPD中,PD==6;(3)∵AC=BC,∴∠BAC=∠ABC,∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2=72,即CP•CQ为定值.【点评】本题考查的是圆的知识的综合运用,掌握圆周角定理、相似三角形的判定定理和性质定理、切线的性质定理是解题的关键.25.在平面直角坐标系中,已知点B的坐标是(﹣1,0),点A的坐标是(4,0),点C的坐标是(0,4),抛物线过A、B、C三点.(1)求抛物线的解析式.(2)点N是抛物线上的一点(点N在直线AC上方),过点N作NG⊥x轴,垂足为G,交AC于点H,当线段ON与CH互相平分时,求出点N的坐标.(3)设抛物线的对称轴为直线L,顶点为K,点C关于L的对称点J,x轴上是否存在一点Q,y轴上是否一点R使四边形KJQR的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据对角线互相平分的四边形是平行四边形,可得NH与OC的关系,根据解方程,可得m的值,根据自变量与函数值的对应关系,可得答案;(3)根据线段垂直平分线上的点到线短两端点的距离相等,可得DR与DK的长,QJ与QE的关系,根据两点之间线段最短,可得KR+RQ+QJ=ED,根据勾股定理,可得DE的长,KJ的长.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+3x+4;(2)如图1,设AC的解析式为y=kx+b,将A、C点坐标代入,得,解得,AC的解析式为y=﹣x+4,设N(m,﹣m2+3m+4),H(m,﹣m+4).NH=﹣m2+4m.由线段ON与CH互相平分,得NH=OC=4,即﹣m2+4m=4,解得m=2,﹣m2+3m+4=6,即N(2,6),当线段ON与CH互相平分时,点N的坐标为(2,6);(3)如图2,作K点关于y轴的对称点D,作J点关于x轴的对称点E,连接DE交y轴于R交x轴于Q点,y=﹣x2+3x+4=﹣(x﹣)2+,顶点K(,).由点C关于对称轴L=的对称点J,C(0,4),得J点坐标为(3,4).由K点关于y轴的对称点D,K(,),得D点坐标为(﹣,).由J点关于x轴的对称点E,J(3,4),得E点的坐标为(3,﹣4).由勾股定理,得KJ==;DE==,KJQR的周长最小=KR+RQ+QJ+KJ=DE+KJ=+.【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用平行四边形的判定与性质得出关于m的方程是解题关键,利用线段垂直平分线的性质得出DR与DK的长,QJ与QE的关系是解题关键.。
2018年杭州市中考数学模拟试卷(含答案)
2018年杭州市中考数学模拟试卷(含答案)一、填空题(每题3分)1.(3分)(2018•杭州)=()A.2 B.3 C.4 D.52.(3分)(2018•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.(3分)(2018•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.4.(3分)(2018•杭州)如图是某市2018年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃5.(3分)(2018•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+6.(3分)(2018•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)7.(3分)(2018•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C.D.8.(3分)(2018•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.(3分)(2018•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 10.(3分)(2018•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分)11.(4分)(2018•黔东南州)tan60°=.12.(4分)(2018•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.13.(4分)(2018•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).14.(4分)(2018•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.15.(4分)(2018•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.16.(4分)(2018•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是.三、解答题17.(6分)(2018•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.。
2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)
2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。
在上,顶点C在。
的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。
以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学模拟卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在0,2,(-3)0,-5这四个数中,最大的数是( ) A .0 B .2 C .(-3)0 D .-5 2.如图中几何体的俯视图是( )第2题图3.中国人口众多,地大物博,仅领水面积就约为370000km 2,将“370000”这个数用科学记数法表示为( )A .3.7×106B .3.7×105C .37×104D .3.7×104 4.下列各式的变形中,正确的是( ) A .(-x -y )(-x +y )=x 2-y 2 B.1x -x =1-x xC .x 2-4x +3=(x -2)2+1D .x ÷(x 2+x )=1x+15.如图,在△ABC 中,∠ACB =90°,分别以点A 和B 为圆心,以相同的长⎝⎛⎭⎫大于12AB 为半径作弧,两弧相交于点M 和N ,作直线MN 交AB 于点D ,交BC 于点E ,连结CD ,下列结论错误的是( )A .AD =BDB .BD =CDC .∠A =∠BED D .∠ECD =∠EDC第5题图 第6题图 第9题图6.如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40°B.45°C.60°D.70°7.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到博物馆;丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是() A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走600米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米8.某文具店的学习用品计算器、钢笔、笔记本,已知一台计算器的价钱比6支钢笔的价钱多6元,一本笔记本的价钱比2支钢笔的价钱少2元.则下列判断正确的是() A.一台计算器的价钱是一本笔记本的3倍B.若一台计算器降价4元,则其价钱是一本笔记本的3倍C.若一台计算器降价8元,则其价钱是一本笔记本的3倍D.若一台计算器降价12元,则其价钱是一本笔记本的3倍9.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,小明将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,此时甲尺的刻度21会对准乙尺的刻度m,则m的值是()A.24 B.28 C.31 D.3210.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水.四位班长购买的数量及总价如表所示.若其中一人的总价算错了,则此人是谁()A.甲B.乙C.丙D.丁二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:m 3-m = .12.不等式组⎩⎪⎨⎪⎧2x +2>3x -2,3x<-6的解是 .13.在“直通春晚”总决赛中,选手小王、小张、小李、小刘组合要经过抽签进行终极PK ,工作人员准备了4个签,签上分别写有A 1,B 1,A 2,B 2的字样.规定:抽到A 1和B 1,A 2和B 2的选手分两组进行终极PK.小张第一个抽签,抽到了A 1,小王第二个抽签,则小王和小张进行PK 的概率是 .14.如图,点A 在双曲线y =3x 上,点B 在双曲线y =kx (k ≠0)上,AB ∥x 轴,过点A作AD ⊥x 轴于D.连结OB ,与AD 相交于点C ,若AC =2CD ,则k 的值为 .第14题图15.在矩形ABCD 中,AD =5,AB =4,点E ,F 在直线AD 上,且四边形BCFE 为菱形.若线段EF 的中点为点M ,则线段AM 的长为 .16.如图,在Rt △ABC 中,∠C =90°,BC =4,BA =5,点D 是边AC 上的一动点,过点D 作DE ∥AB 交边BC 于点E ,过点B 作BF ⊥BC 交DE 的延长线于点F ,分别以DE ,EF 为对角线画矩形CDGE 和矩形HEBF ,则在D 从A 到C 的运动过程中,当矩形CDGE 和矩形HEBF 的面积和最小时,AD 的长度为____________________.第16题图三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(-1)2018+⎝⎛⎭⎫12-1-4sin30°+16; (2)解方程组:⎩⎪⎨⎪⎧2x -3y =1,x +2y =4.18.某校新生入学后,对校服款式情况抽取了部分新生问卷调查,调查分为款式A ,B ,C ,D 四种,每位新生只能选择一种款式.现将调查统计结果制成了如下两幅不完整的统计图,请结合这两幅统计图,回答下列问题:(1)在本次调查中,一共抽取了多少名新生,并补全条形统计图; (2)若该校有3000名新生,请估计该校新生选择款式B 的人数.第18题图19.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯端点B 可绕点A 旋转作出圆.已知OA =OB =10cm.第19题图(1)当∠AOB =18°时,求所作圆的半径;(结果精确到0.01cm )(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm) (参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)20.在探究“面积为常数的△ABC,边BC与BC边上高线AD的关系”的活动中,探究小组测得BC的长为x(cm),AD的长为y(cm)的一组对应值如下表:x(cm) 5 7 8 10 12 14y(cm)12 8.6 7.5 6 5 4.3第20题图(1)在右图坐标系中,用描点法画出相应的函数图象;(2)求出y关于x的函数关系式;(3)如果三角形BC边的长不小于15cm,求高线AD的范围.21.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:第21题图(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?22.△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的伴侣分割线.第22题图(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.23.在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE 于点G,交BD于点F.第23题图(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系;明明发现,AF与BE分别在△AOF和△BOE中,可以通过证明△AOF和△BOE全等,得到AF与BE的数量关系;请回答:AF与BE的数量关系是;(2)如图2,若四边形ABCD是菱形,∠ABC=120°,请参考明明思考问题的方法,求的值.24.如图,平面直角坐标系中,已知A(0,4),B(5,0),D(3,0),点P从点A出发,沿y轴负方向在y轴上以每秒1个单位长度的速度匀速运动,过点P作PE∥x轴交直线AD 于点E.第24题图(1)设点P的运动时间为t(s),DE的单位长度为y,求y关于t的函数关系式,并写出t 的取值范围;(2)当t 为何值时,以EP 为半径的⊙E 恰好与x 轴相切?并求此时⊙E 的半径; (3)在点P 的运动过程中,当以D ,E ,P 三点为顶点的三角形是等腰三角形时,求此时t 的值.参考答案2018年中考数学模拟卷一、1—5.BABAD 6—10.AADDD二、11.m(m +1)(m -1) 12.x<-2 13.13 14.9 15.5.5或0.5 16.32三、17.(1)5 (2)⎩⎪⎨⎪⎧x =2,y =1.18.(1)设抽取了x 名新生,则40%x =20,∴x =50,∴抽取了50名新生.选择款式C 的新生50-10-20-5=15人,∴补全条形统计图如下: (2)3000×40%=1200人,∴估计该校新生选择款式B 的人数为1200名.第18题图19.(1)作OC ⊥AB 于点C ,如图1所示,由题意可得,OA =OB =10cm ,∠OCB =90°,∠AOB =18°,∴∠BOC =9°,∴AB =2BC =2OB·sin 9°≈2×10×0.1564≈3.13cm ,即所作圆的半径约为3.13cm ; (2)作AD ⊥OB 于点D ,作AE =AB ,如图2所示,∵保持∠AOB =18°不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE ,∵∠AOB =18°,OA =OB ,∠ODA =90°,∴∠OAB =81°,∠OAD =72°,∴∠BAD =9°,∴BE =2BD =2AB·sin 9°≈2×3.13×0.1564≈0.98cm ,即铅笔芯折断部分的长度是0.98cm .第19题图 第20题图20.(1)函数图象如图所示. (2)根据图象的形状,选择反比例函数模型进行尝试.设y =k x (k ≠0),选点(5,12)的坐标代入,得k =60,∴y =60x .∵其余点的坐标代入验证,近似符合关系式y =60x ,∴所求的函数解析式是y =60x(x >0). (3)由题意得:x ≥15,∴由图象知:0<y ≤4.即高线AD 的范围是0cm <AD ≤4cm .21.(1)40 (2)v 1=1.5v 2=1.5×40=60(米/分),60÷60=1(分钟),a =1,d 1=⎩⎪⎨⎪⎧-60t +60(0≤t <1),60t -60(1≤t ≤3); (3)d 2=40t ,当0≤t<1时,d 2+d 1>10,即-60t +60+40t >10,解得0≤t <1;当1≤t ≤3时,d 2-d 1>10,即40t -(60t -60)>10,解得1≤t <52时.综上所述:当0≤t <52时,两遥控车的信号不会产生相互干扰.22.(1)如图1所示;(2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图2,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC =90°,如图3,此时y =90°+12(90°-x)=135°-12x.若∠ABD =90°,如图4,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图5,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图6,此时x =45°,45°<y <135°.第22题图23.(1)AF =BE (2)AFBE = 3.理由如下:∵四边形ABCD 是菱形,∠ABC =120°,∴AC ⊥BD ,∠ABO =60°.∴∠FAO +∠AFO =90°.∵AG ⊥BE ,∴∠EAG +∠BEA =90°.∴∠AFO =∠BEA.又∵∠AOF =∠BOE =90°,∴△AOF ∽△BOE.∴AF BE =AOOB .∵∠ABO =60°,AC ⊥BD ,∴AO OB =tan 60°= 3.∴AFBE= 3.24.(1)在Rt △AOD 中,OA =4,OD =3,则AD =5.①当点P 在AO 上运动时,∵PE ∥x 轴,AE =5-y ,∴AP AO =AE AD ,则t 4=5-y 5,即y =-54t +5(0≤t ≤4).②当点P 在y 轴负半轴上运动时,∵PE ∥x 轴,AE =5+y ,∴AP AO =AE AD ,则4t =55+y ,即y =54t -5(t >4). (2)由题意以EP 为半径的⊙E 恰好与x 轴相切,设切点为M ,则EM =EP.故分别作第一、四象限角的平分线交直线AD 于点E 1,E 2.由A(0,4),D(3,0)得到直线y AD =-43x +4.解方程组⎩⎪⎨⎪⎧y =x ,y =-43x +4,得⎩⎨⎧x =127,y =127,即E 1(127,127).∴t 1=4-127=167.此时圆的半径是127.解方程组⎩⎪⎨⎪⎧y =-x ,y =-43x +4,得⎩⎪⎨⎪⎧x =12,y =-12,即E 2(12,-12).∴t 2=4+12=16,此时圆的半径是12.综上:当t =167或t =16时,以EP 为半径的⊙E 恰好与x 轴相切,此时⊙E 的半径分别是127和12.(3)当点P 在AO 上运动时,等腰△DEP 中只有EP =ED 这一种情况.∵EP =34t ,∴34t =-54t+5,∴t =52.当点P 在y 轴负半轴上运动时:①若PD =DE ,则PD 2=32+(t -4)2,DE 2=(54t-5)2,从而32+(t -4)2=(54t -5)2,解得t 1=0,t 2=8.(t =0舍去);②若PD =PE ,则PD 2=32+(t -4)2,PE 2=(34t)2,从而32+(t -4)2=(34t)2,解得t 1=1007,t 2=4.(t =4舍去);③若DE。