立体几何表面积、体积 PPT课件
空间几何体的表面积与体积

V柱 = pR2·2R
面积, 再减去渗水孔的面积.
组合体的体积怎样计算?
柱体、锥体、台体 京沪铁路全长1462 km,
球的表面积公式是怎样的? 是用什么方法得到的?
京沪高铁全长1318 km. 0230568 (kg),
的表面积与体积
∴ h(a+c)>bh,
≈1197 (cm2).
球的体积和表面积
柱体、锥体、台体 的表面积与体积
12
解: 这个零件的表面积为
S = S棱柱表+S圆柱侧
p = 2 [ 6 3 ( 2 + 1 4 )+ 6 2 ] 1 5 + 2 6 25
≈1579.485 (mm2),
10000个零件的表面积约为15794850 mm2,
约合15.795平方米.
2. 如图是一种机器零件, 零件
下面是六棱柱 (底面是正六边形, 侧
种零件需要用锌, 已知每平方米用锌 0.
某街心花园有许多钢球(钢的密度是7.
在△SBC中, 边长为 a,
五棱台的上、下底面均是正五边形, 边长分别是 8 cm 和 18 cm, 侧面是全等的等腰梯形, 侧棱长是 13 cm, 求它的侧面面积.
≈2956 (mm3)
圆柱、圆锥、圆台的表面积
当半球切得的片数无限多,
2. 圆柱、圆锥、圆台的表面积 底面积加侧面积.
底面积: S底=p r2. 圆柱侧面积: S柱侧=2p rh. 圆锥侧面积: S锥侧=p rl. 圆台侧面积: S台侧=p l (r+r).
【课时小结】
3. 柱体、锥体、台体体积
柱体体积: V柱 = Sh.
锥体体积:
V锥
=
高二数学必修2课件-空间几何体的表面积和体积

步骤三
如果计算正确,则可以庆祝问题 的解决,并享受数学带来的成就 感。
其他的空间几何体常识
名称
圆锥体 圆柱体 球 正方体
特点
底面为圆形,侧面为三角形 底面为圆形,侧面为矩形 表面积为4πr²,体积为(4πr³)/3 6个面组成,每个面积为a²
小结
知识点
• 空间几何体的表面积 • 空间几何体的体积 • 解题方法和步骤
高二数学必修2课件-空间 几何体的表面积和体积 ppt
本课程将带领大家深入理解空间几何体的表面积和体积,掌握重要的公式和 概念,并提供多个实例进行演示。
为什么要学习空间几何体的表面积和 体积?
1 实际应用广泛
几何体是我们日常生活中常见的物体,如箱子、瓶子、汽车等,熟练掌握空间几何体的 表面积和体积可以应用于各种实际计算中。
技能
• 应用公式解决实际问题 • 掌握计算技巧和策略 • 提高自我学习和思考能力
效果
• 成为数学大师 • 提高应对数学竞赛能力 • 在各种实际计算和操作
中表现更加出色
矩形的体积
面积×高:bh
三角形的体积
底面积之和×高的一半:(ah)/2
立体几何体的体积
1
圆柱体的体积
2
பைடு நூலகம்
πr²h
3
球的体积
(4πr³)/3
圆锥体的体积
(πr²h)/3
解题示例:如何计算球的体积?
步骤一
根据题目提供的半径长度,计算 球的表面积公式:4πr³/3
步骤二
把计算结果与题目所需体积相比 较,如相等则问题解决;如不相 等需检查计算过程是否正确。
2 提高数学水平
对于数学专业的学生,掌握空间几何体的表面积和体积是必不可少的,是数学基础中不 可或缺的一部分。
2第2课时 球的体积和表面积PPT课件(人教版)

第八章 立体几何初步
球的表面积与体积
(1)已知球的体积是323π,则此球的表面积是( )
A.12π
B.16π
C八章 立体几何初步
(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两 条互相垂直的半径,若该几何体的体积是283π,则它的表面积是 ()
角度五 球的内接直棱柱问题
设三棱柱的侧棱垂直于底面,所有棱的长都为 a,顶点
都在一个球面上,则该球的表面积为( )
A.πa2
B.73πa2
C.131πa2
D.5πa2
栏目 导引
第八章 立体几何初步
【解析】 由题意知,该三棱柱为正三棱柱,且侧
棱与底面边长相等,均为 a.如图,P 为三棱柱上
底面的中心,O 为球心,易知 AP=23× 23a= 33a,
A.17π C.20π
B.18π D.28π
栏目 导引
第八章 立体几何初步
【解析】 (1)设球的半径为 R,则由已知得 V=43πR3=323π,解得 R=2. 所以球的表面积 S=4πR2=16π. (2)由三视图可得此几何体为一个球切割掉18后剩下的几何体, 设球的半径为 r, 故78×43πr3=238π, 所以 r=2,表面积 S=78×4πr2+34πr2=17π,选 A. 【答案】 (1)B (2)A
栏目 导引
第八章 立体几何初步
该圆锥的体积为 13×π× 23r2×32r=38πr3,球体积
为
4 3
πr3
,
所
以
该
圆
锥
的
体
积
和
此
球
体
积
的
比
值
为
3843ππrr33=392.
苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件

栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.
【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册

设圆台的上底面面积为S',下底面面积为S
r O
1
1
2
2
2
2
V圆台 (r r r r )h ( S S S S )h
3
3
1
这和V棱台 ( S S S S )h是一致的。
3
1
因而得 V台体 = ( S S S S )h
3
【练习】 如图,在直角梯形 ABCD 中,BC∥AD,∠ABC=90°,AB=5,
1
V锥体 Sh
3
1 2
r h
3
1
V台体 = ( S SS S )h
3
1
= h(r 2 rr r 2 )
3
2
感谢聆听
S圆柱 =πr +πr +2πrl 2πr (r l )
2
2
(1)圆柱的表面积、体积
圆柱的侧面展开图是什么?如何计算它的表面积?
r O
l
2 r
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2rl 2r (r l ).
2
V圆柱 = πr h
2
例1 将一个边长分别为4π,8π的矩形卷成一个圆柱的侧面,则
圆台的表面积为(
A.81π
)
B.100π
C.168π
D.169π
解 圆台的轴截面如图所示,
设上底面半径为 r,下底面半径为 R,则它的母线长为
l= h2+R-r2= 4r2+3r2=5r=10,
所以 r=2,R=8。
故 S 侧=π(R+r)l=π(8+2)×10=100π,
S 表=S 侧+πr2+πR2=100π+4π+64π=168π。故选 C。
圆柱、圆锥、圆台的表面积和体积课件-高一数学人教A版(2019)必修第二册

3
球的表面积与体积
问题六
设球的半径为R,你能类比圆的面积公式
推导方法,推导出球的体积公式吗?
提示
分割、求近似和,再由近似和转化为准确和,
得出球的体积公式.
知 识 梳 理
1.球的表面积公式S= 4πR2(R为球的半径).2.球Biblioteka 体积公式V=4 3πR
3
.
例3
(1)一个球的表面积是16π,则它的体积是
3
解析 设圆台较小底面的半径为r,则另一底面的半径为3r.
由S侧=7π(r+3r)=84π,解得r=3.
反思
感悟
圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面
展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.
跟踪训练1
若一个圆柱的轴截面是面积为9的正方形,则这个圆柱的侧面积为
A.9π
直角三角形中列出方程并求解.
跟踪训练2
若一个圆锥的轴截面是等边三角形,其面积为 3,
3
则这个圆锥的体积为________.
3π
解析
画出示意图,如图所示,设圆锥的母线长为 a,
1
3
则由 ·a· a= 3,得 a=2.
2
2
故圆锥的底面圆直径为 2,圆锥的高为 3,
1
3
2
圆锥的体积 V=3π×1 × 3= 3 π.
A.64π
解析
64π
B. 3
C.32π
32π
D. 3
√
设球的半径为 R,则由题意可知 4πR2=16π,故 R=2.
4 3 32π
所以球的体积 V= πR =
.
3
3
例3
(2)长、宽、高分别为 2, 3, 5的长方体的外接球的表面积为
第8讲立体几何计算(几何体的表面积与体积)

第8讲立体几何计算(几何体的表面积与体积)一.基础知识回顾1.多面体的表面积:(1)设直棱柱高为h ,底面多边形的周长为c ,则S 直棱柱侧=______.(2)设正n 棱锥底面边长为a ,底面周长为c ,斜高为h ′,则S 正棱锥侧=____________(3)设正n 棱台下底面边长为a ,周长为c ,上底面边长为a ′,周长为c ′,斜高为h ′,则 S 正棱台侧=__________(4)设圆柱的母线长为l ,底面圆的半径为r,则S 圆柱侧= (5)设圆锥的母线长为l ,底面圆的半径为r,则S 圆锥侧= (6)设圆台的母线长为l ,上底面圆的半径为r 1, 下底面圆半径为r 2 则S 圆台侧=(4)设球的半径为R ,则S 球=____________.2.几何体的体积公式(1)柱体的体积V 柱体=______(其中S 为柱体的底面面积,h 为高). 特别地,底面半径是r ,高是h 的圆柱体的体积V 圆柱=πr 2h.(2)锥体的体积V 锥体=________(其中S 为锥体的底面面积,h 为高).特别地,底面半径是r ,高是h 的圆锥的体积V 圆锥=13πr 2h. (3)台体的体积V 台体=______________(其中S ′,S 分别是台体上、下底面的面积,h 为高).特别地,上、下底面的半径分别是r ′、r ,高是h 的圆台的体积V 圆台=13πh(r 2+rr ′+r ′2). (4)球的体积V 球=__________(其中R 为球的半径).二.典例精析探究点一:空间中的平行与体积计算例1:如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.变式迁移1:如图四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.探究点二:空间中的垂直与体积计算例2:如图四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°,已知PB =PD =2,PA = 6.(1)证明:PC ⊥BD ;(2)若E 为PA 的中点,求三棱锥P -BCE 的体积.变式迁移2:如图所示,四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2 3,BC =CD =2,∠ACB =∠ACD =π3. (1)求证:BD ⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.探究点三:空间几何体证明计算其他问题例3:如图所示,直四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AD ⊥AB ,AB =2,AD =2,AA1=3,E 为CD 上一点,DE =1,EC =3.(1)证明:BE ⊥平面BB 1C 1C ;(2)求点B 1到平面EA 1C 1的距离.变式迁移3:如图所示,四棱锥P —ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.三.课后作业练习1.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( )A.72πB. 56πC. 14πD.64π2.已知两平行平面α,β间的距离为3,P∈α,边长为1的正三角形ABC 在平面β内,则三棱锥P —ABC 的体积为( )A .14B .12C .36D .343.从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A —BCD ,则它的表面积与正方体表面积的比为( ) A .3∶3 B .2∶2 C .3∶6 D .6∶64.若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:165.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π6.某几何体的三视图如下,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π37.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.9.一个立方体的棱长为a ,则该立方体的外接球表面积为 ,内切球体积为 。
圆柱、圆锥、圆台、球的表面积和体积 课件-高一下学期数学人教A版(2019)必修第二册

1
= h(r 2 rr r 2 )
3
(五)布置作业
1、课本P119练习1-4题
2、阅读121-123探究与发现,思考如何利用祖暅原理
推导球的体积
(1)如何根据圆柱的展开图,求圆柱的表面积?
圆柱的侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母
线).设圆柱的底面半径为r,母线长为l,
则S圆柱侧=2πrl,S圆柱表=2πr(r+l),其中r为圆柱底面半径,l为母线长.
(2)如何根据圆锥的展开图,求圆锥的表面积?
圆锥的侧面展开图为一个扇形,半径是圆锥的母线长,弧长等于圆锥底面
.
答案:20π
1
2
2×3=20π.
解析:圆柱的底面半径是2,高为4,圆锥底面半径是2,高为3,则V=π×2 ×4+ ×π×2
3
3、球的表面积、体积
设球的半径为R,它的表面积只与半径R有关,是以R为自变量的函数.
事实上,如果球的半径为R,那么它的表面积是
问题8:小学,我们学习了圆的面积公式,你还记得是如何求得的吗?类比这种方法
1
周长,侧面展开图扇形面积为 2×2πrl=πrl,
∴S圆锥侧=πrl,S圆锥表=πr(r+l),其中r为圆锥底面半径,l为母线长.
(3)如何根据圆台的展开图,求圆台的表面积?
圆台的侧面展开图是一个扇环,内弧长等于圆台上底周长,外弧长
l'
等于圆台下底周长
xl r
x r'
r'
x
l
r r'
体”,则它的体积是
VO ABCD
1
S ABCD R .
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的直观图的面积 S′之间的关系是 S′= 42S,本题中直观图的 面积为 a2,所以原平面四边形的面积 S= a22=2 2a2.
4
(2)(2014·山东潍坊一模)等腰梯形 ABCD,上底 CD=1,腰 AD=CB= 2,下底 AB=3,以下底所在直线为 x 轴,则由斜二 测画法画出的直观图 A′B′C′D′的面积为________.
②画几何体的高
在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的 z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线 段,在直观图中仍平行于z′轴且长度________.
[答案] 1.相等 互相平行 相同 互相平行 公共顶点 平行 形状相同 等比例缩放
2.矩形 一条直角边 平行 直径 3.正投影 正视图 侧视图 俯视图 长对正 高平齐 宽相等 斜二测 已知 45°(或 135°) 不变 原来的一半 不变
[解析] 当正方体的俯视图是Fra bibliotek积为 1 的正方形时,其正视 图的最小面积为 1,最大面积为 2.因为 22-1<1,因此所给选项 中其正视图的面积不可能为 22-1,故选 C.
考点三:空间几何体直观图的讲算技巧
[调研 3] (1)(2014·济南模拟)一个平面四边形的斜二测画法
的直观图是一个边长为 a 的正方形,则原平面四边形的面积等于
错解档案:三视图的易错点 [典例 1] (2013·课标全国Ⅱ)一个四面体的顶点在空间直角 坐标系 O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0), 画该四面体三视图中的正视图时,以 zOx 平面为投影面,则得到 的正视图可以为( )
[答案] A
[解析] 设 O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以 O, A,B,C 为顶点的四面体补成一正方体后,由于 OA⊥BC,所以 该几何体以 zOx 平面为投影面的正视图为 A.
2.简单几何体的识图规律一般为正视图和侧视图的形状确 定原几何体为柱体、锥体还是台体;俯视图确定原几何体为多面 体还是旋转体.
(2013·湖南)已知棱长为 1 的正方体的俯视图是一个面积为 1
的正方形,则该正方体正视图的面积不可能等于( )
A.1
B. 2
2-1 C. 2
2+1 D. 2
[答案] C
④若四棱柱有两个过相对侧棱的截面都垂直于底面,则该四
棱柱为直四棱柱;
⑤存在每个面都是直角三角形的四面体;
⑥棱台的侧棱延长后交于一点.
其中正确命题的序号是( )
A.①②③④
B.②③④⑤
C.③④⑤⑥
D.①②③④⑤⑥
[解题指导] 根据棱柱、棱锥、棱台的定义或借助几何体的 模型逐一判断求解.
[答案] C
B. 200+18π D. 140+18π
[答案] A
[解析]该几何体的直观图是由一个长方体和圆柱的一半所 组成的(如图).其中长方体的长、宽、高分别为 10,4,5,圆柱的 底面半径为 3,高为 2.从而该几何体的体积 V=10×5×4+12 π×32×2=200+9π,故选 A.
(2)(2014·甘肃西宁二模)将长方体截去一个四棱锥,得到的几 何体如图所示,则该几何体的左视图为( )
在________图形中取互相垂直的x轴、y轴,两轴相交于点O,
画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点
直 观 图
O′,且使∠x′O′y′=________,已知图形中平行x轴、y 轴的线段在直观图中平行于x′轴、y′轴.已知图形中平行于 x轴的线段,在直观图中长度________,平行于y轴的线段,长 度变为________.
[答案] 1.(1)× (2)× (3)√ (4)× 2.(1)× (2)× (3)√ 3.(1)× (2)×
考点一:空间几何体结构特征的剖析
[调研 1] (1)给出下列命题: ①棱柱的侧棱都相等,侧面都是全等的平行四边形; ②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱 台; ③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂 直;
2.对三视图的认识及三视图画法 (1)空间几何体的三视图是该几何体在三个两两垂直的平面 上的正投影,并不是从三个方向看到的该几何体的侧面表示的图 形. (2)在画三视图时,重叠的线只画一条,能看见的轮廓线和 棱用实线表示,挡住的线要画成虚线. (3)三视图的正视图、侧视图、俯视图分别是从几何体的正 前方、正左方、正上方观察几何体用平行投影画出的轮廓线.
∵O′C′=2,∴OE=4 2, ∴S▱OABC=6×4 2=24 2.
1.正棱柱与正棱锥 (1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中 “正”字包含两层含义:①侧棱垂直于底面;②底面是正多边形. (2)底面是正多边形,顶点在底面的射影是底面正多边形的 中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:① 顶点在底面上的射影必须是底面正多边形的中心;②底面是正多 边形,特别地,各棱均相等的正三棱锥叫正四面体.
第二节 空间几何体的面积与体积
1.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面 展开图
侧面积 公式
S 圆柱侧=______
S 圆锥侧=_______
S 圆台侧=______
2.空间几何体的表面积和体积公式
名称 几何体
表面积
体积
柱体 (棱柱和圆柱)
S 表面积=S 侧+2S 底
V=________
第一节 空间几何体的结构特征及其三视图和直观图
1.简单多面体
多面体
结构特征
棱柱的侧棱都________且________, 棱柱 上下底面是________且________的
多边形.
棱锥
棱锥的底面是任意多边形,侧面是 有一个________的三角形.
棱台可由________于棱锥底面的平 棱台 面截棱锥得到,其上下底面是
判断下列结论是否正确(请在括号中打“√”或“ ”). 1.对棱柱、棱锥、棱台的结构特征的认识 (1)有两个侧面是矩形的棱柱是直棱柱.( ) (2)有一个面是多边形,其余各面都是三角形的几何体叫棱 锥.( ) (3)棱台是由平行于底面的平面截棱锥所得的平面与底面之 间的部分.( ) (4)有两个面平行,其余各面都是平行四边形的几何体是棱 柱.( )
下列说法正确的是( ) A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边旋转一 周形成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能 是六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
[答案] D [解析] A 错误.如 A 图(1)所示,由两个结构相同的三棱锥 叠放在一起构成的几何体,各个面都是三角形,但它不是三棱 锥.B 错误.如 B 图(1),B 图(2),无论△ABC 是不是直角三角 形,如果旋转轴不是直角边,所得的几何体都不是圆锥.
[解题指导] 由条件所给的左视图进行判断、逐个验证,利 用排除法解决此类问题.
[答案] C
[解析] 左视图是从图形的左边向右边看,看到一个长方形 的面,在面上有一条对角线,对角线是左下角与右上角的连线, 故选 C.
1.简单几何体的三视图的画法应从以下几个方面加以把握: (1)搞清主视、左视、俯视的方向,同一物体由于放置的位 置不同,所画的三视图可能不同. (2)看清简单组合体是由哪几个基本元素组成. (3)画三视图时要遵循“长对正,高平齐,宽相等”的原则, 还要注意几何体中与投影垂直或平行的线段及面的位置关系.
原图形,S
原图形=2
2S 直观图.
(2014·河北石家庄二模)如图,矩形 O′A′B′C′是水平放 置的一个平面图形的直观图,其中 O′A′=6,O′C′=2,则 原图形 OABC 的面积为________.
[答案] 24 2
[解析] 由题意知,原图形 OABC 是平行四边形,且 OA= BC=6,设平行四边形 OABC 的高为 OE,则 OE×12× 22= O′C′,
球
球可以由半圆或圆绕________所在直线 旋转得到.
3.三视图与直观图
三 空间几何体的三视图是用________得到的,它包括________、 视 ________、________,其画法规则是:________,________, 图 ________.
空间几何体的直观图常用_______画法规则来画,基本步骤是: ①画几何体的底面
[解析] ①错误,因为棱柱的侧面不一定是全等的平行四边 形;②错误,必须用平行于底面的平面去截棱锥,才能得到棱台; ③正确,根据面面垂直的判定定理判断;④正确,因为两个过相 对侧棱的截面的交线平行于侧棱,又垂直于底面;⑤正确,如图 所示,正方体 AC1 中的三棱锥 C1-ABC,四个面都是直角三角形; ⑥正确,由棱台的概念可知,因此,正确命题的序号是③④⑤⑥.
________且________的多边形.
2.简单旋转体
旋转体
结构特征
圆柱
圆柱可由________绕其任意一边所在直 线旋转得到.
圆锥
圆锥可以由直角三角形绕其________所 在直线旋转得到.
圆台
圆台可以由直角梯形绕直角腰所在直线
或等腰梯形绕上下底中点连线所在直线 旋转得到,也可由________于圆锥底面 的平面截圆锥得到.
C 错误.若六棱锥的所有棱长都相等,则底面多边形是正六 边形.由几何图形知,若以正六边形为底面,则侧棱长必然要大 于底面边长.D 正确.故选 D.
考点二:空间几何体的三视图 [调研 2] (1)(2013·江西)一几何体的三视图如图所示,则该 几何体的体积为( )
A. 200+9π C. 140+9π
(2)给出下列命题: