高中数学-函数的奇偶性说课稿

合集下载

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿《函数的奇偶性》说课稿1一、教材分析函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。

因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。

二。

教学目标1.知识目标:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性。

2.能力目标:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。

3.情感目标:通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。

三。

教学重点和难点教学重点:函数的奇偶性及其几何意义。

教学难点:判断函数的奇偶性的方法与格式。

四、教学方法为了实现本节课的教学目标,在教法上我采取:1、通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与已知的距离,激发学生求知欲,()调动学生主体参与的积极性。

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

五、学习方法1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

六。

教学程序(一)创设情景,揭示课题"对称"是大自然的一种美,这种"对称美"在数学中也有大量的反映,让我们看看下列各函数有什么共性?观察下列函数的图象,总结各函数之间的共性。

f(_)= _2 f(_)=__通过讨论归纳:函数是定义域为全体实数的抛物线;函数f (_)=_是定义域为全体实数的直线;各函数之间的共性为图象关于轴对称。

高中数学必修一《函数的奇偶性》说课稿

高中数学必修一《函数的奇偶性》说课稿

函数的奇偶性说课稿今天我将要为大家讲的课题是“函数的奇偶性”一、教学设计理念按照新课程教学理念,同时根据教学需要,关注学生已有的知识基础和学习经验,精心设计问题情境,激发学生学习兴趣,引导学生积极探索,在探索过程中获得对数学的积极体验和应用。

二、教材分析(一)、对教学内容教材的认识本节内容在全书及章节的地位:《函数的奇偶性》是高中数学人教版必修一第一章的第三节。

函数的奇偶性是描述函数整体性质的,是对函数概念的深化,教材沿用了处理函数单调性的方法,函数的奇偶性不仅与现实生活中的对称性密切相关联,而且为后面学习幂、指、对函数的性质作好了坚实的准备和基础。

(二)、教学目标根据教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:1.知识与技能(1).使学生理解奇函数、偶函数的概念及其几何意义;(2).使学生掌握判断函数奇偶性的方法。

2.过程与方法(1).培养学生判断、推理的能力;(2).通过教学,使学生明确奇(偶)函数概念的形成过程,强化数形结合、等价转化思想训练。

3.情感态度价值观使学生在学习过程中,欣赏数学美,体验数学的科学价值和应用价值,养成细心观察、认真分析、严谨论证的良好思维习惯和勇于探索的科学态度。

(三)、教学重点、难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:教学重点:函数的奇偶性及其建立过程,判断函数的奇偶性方法与格式教学难点:对函数奇偶性概念的理解与认识三、教学方法与教学手段(一)教法数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我进行了这样的教法设计:以一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生在思考中体会数学概念形成过程中所蕴涵的数学方法,感受数学的魅力。

(二)学法数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。

函数的奇偶性说课稿

函数的奇偶性说课稿

函数的奇偶性说课稿
函数的奇偶性说课稿(精选9篇)
作为一名教师,通常会被要求编写说课稿,是说课取得成功的前提。

那么问题来了,说课稿应该怎么写?下面是小编为大家收集的函数的奇偶性说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

函数的奇偶性说课稿篇1
一、教材分析
1.教材所处的地位和作用
"奇偶性"是人教A版第一章"集合与函数概念"的第3节"函数的基本性质"的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。

从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。

因此,本节课起着承上启下的重要作用。

2.学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。

同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。

3.教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:。

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿引言:函数是数学中非常重要的概念之一,我们在数学学习的过程中会经常遇到各种类型的函数。

不同种类的函数都有不同的性质,今天我将要给大家讲述的是函数的奇偶性。

一、教学目标1. 知识目标:掌握奇函数和偶函数的基本概念、性质及图像。

2. 技能目标:能通过函数的变化确定其奇偶性,并求出奇偶扩展函数。

3. 情感目标:培养学生的求知欲和思考能力,养成勇于解决问题的良好习惯。

二、教学内容1. 函数的基本概念。

2. 奇函数和偶函数的定义与性质。

3. 常见的奇偶函数及其图像。

三、教学过程1. 导入新课,激发学生的学习兴趣。

先让学生思考以下问题:如果用一种颜色区分正数和负数情况下,函数图象会有什么变化? 如图所示,请看以下函数:f(x) = x^2, g(x) = x^3, h(x) = x^4-4x^2。

当x取正数、负数时,f(x)、g(x)、h(x)的值呈现什么规律?2. 引入函数的奇偶性概念引导学生来解答思考的问题,由此,我们很自然地引出了什么是偶函数什么是奇函数。

学生能够理解并总结什么是奇函数,什么是偶函数等相关概念。

3. 探究正、负数时函数的变化规律将函数f(x)、g(x)、h(x)的x值依次取-2、-1、0、1、2,通过对比负数和正数时函数的值得出以下规律:当x取正数时,f(x)、g(x)、h(x)的值相等,即f(x) = g(x) = h(x);当x取负数时,f(x)、g(x)的值相等,而h(x)的值与两个函数值不等;即我们可以说,函数f(x) 和g(x)关于y轴对称,而h(x)没有任何对称轴,只有原点的对称性。

通过以上探究学生能够感受到奇偶性函数的性质,掌握函数的奇偶性。

4. 探究奇函数和偶函数的性质及图像接下来,我们将通过一些例子来探究奇函数和偶函数性质及图像。

首先将以下函数的图像画出:f(x) = x^3, g(x) = x^4从图像中发现,函数f(x)的图像表现了奇函数的性质,它对称于原点,当x取正数时,f(x)、g(x)的值相等,而x取负数时,f(x)、g(x)的值相等;而函数g(x)的图像表现了偶函数的性质,它对称于y轴,函数的图像无论用哪种方法旋转,都能使其与原图像一致,即不会改变原函数的形状。

函数的奇偶性的说课稿

函数的奇偶性的说课稿

函数的奇偶性的说课稿一、说教材本文是高中数学课程中关于函数性质的一个重要部分,主要探讨函数的奇偶性。

函数的奇偶性是研究函数对称性质的基础,是数学中一种基本的函数分类方式。

它不仅在数学理论中占有重要地位,而且在实际应用中也有广泛的影响。

(1)作用与地位:函数的奇偶性是函数概念的重要组成部分,对于深化学生对函数性质的理解,培养学生的抽象思维能力具有重要意义。

此外,它也是后续学习积分、微分等高级数学知识的基础。

(2)主要内容:本文主要介绍了函数的奇偶性的定义、判定方法以及奇偶函数的性质。

具体包括:奇函数的定义、偶函数的定义、奇偶函数的性质和判定方法。

二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解函数奇偶性的定义,掌握判定函数奇偶性的方法;(2)能够判断给定函数的奇偶性,并运用奇偶函数的性质解决相关问题;(3)通过奇偶函数的学习,培养学生的抽象思维能力,提高学生的数学素养。

三、说教学重难点(1)教学重点:1. 函数奇偶性的定义;2. 判定函数奇偶性的方法;3. 奇偶函数的性质。

(2)教学难点:1. 理解奇偶函数的定义,尤其是抽象函数的奇偶性判定;2. 运用奇偶函数性质解决实际问题。

四、说教法为了让学生更好地理解和掌握函数的奇偶性,我设计了一系列的教学方法,旨在激发学生的兴趣,引导他们主动探究,以下是我计划采用的教学方法及亮点:1. 启发法:- 在引入函数奇偶性概念时,我会通过具体的图形示例,如正弦和余弦函数的图像,来启发学生观察和思考这些函数的对称特点。

- 通过提问“为什么这些函数图像会有这样的对称性?”来激发学生的好奇心,引导他们主动探索背后的数学原理。

2. 问答法:- 在讲解奇偶性的定义时,我会采用问答法,让学生回答“什么是奇函数?什么是偶函数?”等问题,通过学生的回答来澄清概念,并纠正理解上的误区。

- 通过对比不同学生的回答,突出正确理解和表达的重要性,同时也能够及时发现并解决学生的疑惑。

关于《函数的奇偶性》说课稿

关于《函数的奇偶性》说课稿

《函数的奇偶性》说课稿关于《函数的奇偶性》说课稿作为一名专为他人授业解惑的人民教师,可能需要进行说课稿编写工作,认真拟定说课稿,怎么样才能写出优秀的说课稿呢?下面是小编为大家整理的关于《函数的奇偶性》说课稿,仅供参考,欢迎大家阅读。

《函数的奇偶性》说课稿1一、教材分析(一)教材特点、教材的地位与作用本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。

因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析1.教学方法:启发引导式结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。

使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。

2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。

让每一位学生都能参与研究,并最终学会学习。

三、教辅手段以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学四、教学过程为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。

函数奇偶性说课稿

函数奇偶性说课稿

函数奇偶性说课稿一、教材分析1、教材的地位函数是高中数学的重点和难点,而函数的单调性、奇偶性,周期性、贯穿于整个高中数学之中。

奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习基本初等函数的性质作好了坚实的准备和基础。

因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。

2、教学目标教学原则明确强调要将思想教育的内容渗透到数学教学中去,使学生获得知识和培养能力的同时,在思想教育方面受到良好的熏陶,依据教学目的和原则以及学生的学习现状,我制定了本节课将要完成的教学目标。

知识与技能:使学生理解函数的奇偶性及其几何意义,掌握判断函数的奇偶性的方法。

过程与方法:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;情感态度与价值观:培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力,使学生领会数形结合的数学思想方法。

根据上述教学目标,本节课的教学重点是判断函数的奇偶性的方法与格式。

虽然高一学生已经有一定的思维能力。

但函数奇偶性概念对他们来说还是比较抽象的,因此教学难点是函数奇偶性的概念及其几何意义。

3、教法学法分析为了实现本节课的教学目标,在教法上我采取了:(1)通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主动参与的积极性。

(2)在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

(3)在鼓励学生主动参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

在学法上,我重视让学生利用图形直观启迪思维,让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

4、学情分析从学生认知角度看:由于学生是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃,敏捷,却缺乏冷静,深刻,因此考虑问题会片面,不严谨。

函数的奇偶性说课稿——获奖说课稿

函数的奇偶性说课稿——获奖说课稿

函数的奇偶性说课稿——获奖说课稿尊敬的评委、各位老师、亲爱的同学们:大家好!今天我要说课的内容是函数的奇偶性。

这节课将从教学内容、教学目标、教学重难点、教学方法和教学过程五个方面来展开。

一、教学内容本节课主要学习函数的奇偶性,包括奇函数和偶函数的概念、性质及其应用。

二、教学目标1.掌握奇函数和偶函数的概念和性质;2.学会判断函数的奇偶性;3.能运用函数的奇偶性解决实际问题;4.培养学生的数学思维能力和创新意识。

三、教学重难点1.教学重点:掌握奇函数和偶函数的概念和性质,学会判断函数的奇偶性。

2.教学难点:运用函数的奇偶性解决实际问题,培养学生的数学思维能力和创新意识。

四、教学方法本节课将采用以下教学方法:1.直观演示法:通过实例演示,让学生直观地了解函数的奇偶性,加深对概念的理解。

2.讨论法:组织学生分组讨论,引导学生深入思考,自主解决问题。

3.讲练结合法:通过讲解例题,让学生了解如何运用函数的奇偶性解决实际问题。

4.类比法:通过比较不同类型函数的奇偶性,总结规律,培养学生的数学思维能力和创新意识。

五、教学过程本节课将分为以下五个环节展开:1.导入新课通过展示一些具有对称性的图片,引导学生思考对称性与数学的联系,进而引出函数的奇偶性这一主题。

这样的导入旨在激发学生的学习兴趣和探究欲望。

2.学习新课(1)概念引入通过具体实例的演示,让学生初步感知函数的奇偶性。

例如,展示一些中心对称和轴对称图形的函数图像,让学生了解具有这些对称性的函数的特点。

(2)奇函数和偶函数的概念定义:对于函数f(x),如果对于任意实数x,都有f(-x)=-f(x),则称f(x)为奇函数;如果对于任意实数x,都有f(-x)=f(x),则称f(x)为偶函数。

(3)性质介绍介绍奇函数和偶函数的一些基本性质,例如:奇函数的图像关于原点对称;偶函数的图像关于y轴对称等。

通过这些性质的介绍,让学生深入理解奇偶性的本质。

(4)判断函数的奇偶性学习如何判断一个函数的奇偶性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的奇偶性说课稿
一、说教材
1、说课内容:
函数的奇偶性
2、教材的编写意图:
教材从具体到抽象,从感性到理性,从实践到理论,层次分明,循序渐进地引导学生回顾自然界和日常生活中具有对称美的事物, 进入数学领域观察、归纳,同时渗透数形结合,从特殊到一般的数学思想,形成函数奇偶性概念。

3、教学目标
(1)、从形和数两个方面进行引导,使学生理解奇偶性的概念,回会利用定义判断简单函数的奇偶性.
(2)、在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的数学思想方法.
(3)、在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.
4、教学重点
函数奇偶性概念的形成与函数奇偶性的判断
5、教学难点
对函数奇偶性的概念的理解
二、说教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法为辅。

教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

三、说学法
根据学法指导自主性和差异性原则,让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

四、说程序设计:
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:
(一)设疑导入观图激趣,。

(二)指导观察,形成概念。

(三)给出例题、加深理解。

(四)、学生探索、发展思维。

五、说课过程:
(一)、设疑导入、观图激趣、。

1、让学生感受生活中的美:对称美
学生举例,出示一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)
(通过让学生观察麦当劳的标志导入新课,既激发了学生浓厚的学习兴趣,又为新知作好铺垫。


(二)、指导观察、形成概念。

数学中对称的形式也很多,这节课我们就同学们谈到的与轴对称的函数展开研究。

思考:那些函数的图象关于轴对称?试举例。

以函数为例,给出图象,然后问学生初中是怎样判断图象关于轴对称呢?此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?
学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.引导学生先把它们具体化,再用数学符号表示.(借助课件演示令比较
得出等式,再令,得到)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)
从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方予以提示或调整.
(1) 偶函数的定义:如果对于函数的定义域内任意一个,都有
,那么就叫做偶函数。

(板书)
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.
(2) 奇函数的定义: 如果对于函数的定义域内任意一个,都有
,那么就叫做奇函数.(板书)
(三)、给出例题、加深理解。

例1.判断下列函数的奇偶性
(1); (2);
(3);;
(5); (6).
(7)2
21)(2
-+-=x x x f 例1设计意图:归纳出判断奇偶性的步骤
其中第(4)题设计意图:揭示定义域关于原点对称是函数具有奇偶性的先决条件
四、学生探索、发展思维。

由学生小结判断奇偶性的步骤之后,提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.
(学生探索活动)。

相关文档
最新文档