比较线段的长短检测题
比较线段的长短中的专题

线段中的专题姓名:专题一:中点的应用1、如图,C,D是线段AB上的两点,AC=5cm,AD=8cm,D是CB的中点,求DB ,AB。
A C D B2、长为12cm的线段AB上有一点P,M,N分别为PA,PB的中点,求线段MN专题二:线段的比的关系1、线段AB被C点分成3:5两部分,又被D点分成7:5两部分,已知CD=2.5•厘米,•求AB的长.2、如图所示,线段AB被分成2:3:3三部分,其中AP长为4厘米,•则线段的总长为3、线段AB被分成2:3:4三部分,已知第一部分和第三部分中点的距离是5.4厘米,求线段AB的长4、画线段AB=5厘米,延长AB至C,使AC=2AB,反向延长AB至E,使AE=13CE,再计算:(1)线段CE的长;(2)线段AC是线段CE的几分之几?(3)线段CE是线段BC的几倍?5、如图所示,如果延长线段AB到C,使BC= AB,D为AC中点,DC=2.5,求AB的长6、如图所示,点C分线段AB为5:3,点D分线段AB为3:5,已知CD的长是10cm,求AB 的长。
7、如图B、O两点把线段AD分成3:4:5三部分,M是AD的中点,OD=8,求MC的长。
五、分类讨论1、已知线段AB=8cm,BC=3cm.,求AC的长度。
2、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,求AM的长.3、已知线段AB=8厘米,在直线AB上画线段BC=3厘米,求线段AC的长.4、已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,试求线段AM的长5、已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,求点A与点C之间的距离。
初一数学比较线段的长短试题

初一数学比较线段的长短试题1.点B把线段AC分成两条相等的线段,点B就叫做线段AC的_______,这时,有AB=_______,AC=_______BC,AB=BC=_______AC.点B和点C把线段AD分成三条相等的线段,则点B和点C就叫做AD的_______.【答案】中点,BC,2,,三等分点【解析】根据线段的中点,三等分点的定义即可得到结果.点B把线段AC分成两条相等的线段,点B就叫做线段AC的中点,这时,有AB= BC,AC=2BC,AB=BC=AC.点B和点C把线段AD分成三条相等的线段,则点B和点C就叫做AD的三等分点.【考点】本题考查的是线段的中点,三等分点点评:解答本题的关键是熟练掌握线段的中点,三等分点的定义.2.如右图,点C分AB为2∶3,点D分AB为1∶4,若AB为5 cm,则AC=__cm,BD=_____cm,CD=______cm.【答案】2,4,1【解析】根据点C分AB为2∶3,点D分AB为1∶4,AB为5cm,即得结果.∵点C分AB为2∶3,点D分AB为1∶4,AB为5cm,∴AC=2cm,AD=1cm,BD=4cm,∴CD=AC-AD=1cm.【考点】本题考查的是比较线段的长短点评:解答本题的关键是读懂图形,理解比值中的每一份代表的长度.3.若线段AB=a,C是线段AB上任一点,MN分别是AC、BC的中点,则MN=_______+_______=_______AC+_______BC=_______【答案】MC,CN,,,AB【解析】根据线段的中点的性质即可得到结果.∵线段AB=a,C是线段AB上任一点,MN分别是AC、BC的中点,∴MN=MC+CN=AC+BC=AB.【考点】本题考查的是线段的中点点评:解答本题的关键是熟记线段的中点把线段分成相等的两部分,且这两部分均等于原线段的一半.4.已知线段AB,在AB的延长线上取一点C,使BC=2AB,再在BA的延长线上取一点D,使DA=AC,则线段DC=______AB,BC=_____CD.【答案】6,【解析】根据题意画出图形,设AB=1,则可求出DC,BC,CD,从而可得出答案.根据题意画图如下:设AB=1,则BC=2,CD=2AC=2(AB+BC)=6,∴可得:线段DC=6AB,BC CD.【考点】本题考查的是线段长度的计算点评:解答本题的关键是根据题意画出草图,然后利用已知条件解答.5.如图,CB=AB,AC=AD,AB=AE,若CB=2㎝,则AE=( )A.6㎝B.8㎝C.10㎝D.12㎝【答案】D【解析】先由CB=AB,CB=2㎝求出AB的长,再结合AB=AE即可得到结果.∵CB=AB,CB=2㎝,∴AB=4㎝,∵AB=AE,∴AE=12㎝,故选D.【考点】本题考查了比较线段的长短点评:解答本题的关键是熟练掌握线段长度之间的关系,正确计算出各条线段.6.如图,O是线段AC中点,B是AC上任意一点,M、N分别是AB、BC的中点,下列四个等式中,不成立的是( )A、MN="OC"B、MO=(AC-BC)C、ON=(AC-BC)D、MN=(AC-BC)【答案】D【解析】根据O是线段AC中点,M、N分别是AB、BC的中点,可知MN=MB+BN=(AB+BC)=OC,MB=MN-BN=(AC-BC),ON=OC-CN=(AC-BC),MN=MB+BN=(AC+BC),继而可选出答案.根据O是线段AC中点,M、N分别是AB、BC的中点,可知:A、MN=MB+BN=(AB+BC)=OC,故本选项正确;B、MB=MN-BN=(AC-BC),故本选项正确;C、ON=OC-CN=(AC-BC),故本选项正确;D、MN=MB+BN=(AC+BC),故本选项错误.故选D.【考点】本题考查了比较线段的长短点评:注意根据中点的定义准确找出各线段的关系是关键.7.如图,M是线段的EF中点,N是线段FM上一点,如果EF="2a," NF=b,则下面结论中错误是( )A.MN=a-b B.MN=aC.EM=a D.EN=2a-b【答案】B【解析】根据M是线段的EF中点,N是线段FM上一点,EF=2a,NF=b,可知MN=MF-NF=a-b,EM=EF,EN=EF-NF,继而即可求出答案.由题意知:MN=MF-NF=a-b,EM=EF=a,EN=EF-NF=2a-b.故选B.【考点】本题考查了比较线段的长短点评:利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.比较线段AB与AD的长短:答:___________【答案】AD>AB【解析】根据比较线段的长短的方法即可得到结果.根据叠合法可知AD>AB.【考点】本题考查的是比较线段的长短点评:解答本题的关键是熟练掌握比较线段的长短的两种方法:测量法和叠合法.9.已知:AE=EB,F是BC的中点,BF=AC=1.5㎝,求EF的长。
七年级数学上册第四章第二节比较线段的长短练习题(附答案)

C. 与 D. 与
10.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西 千米处,是黄河上最具气势的自然景观.其落差约 米,年平均流量 立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )
A. 立方米/时 B. 立方米/时
C. 立方米/时 D. 立方米/时
火车往返于 两个城市,不同的车站往来需要不同的车票,所以共有30种不同的车票.
21.答案:5
解析:因为 互为相反数, 互为倒数,所以 ,
又m的绝对值为 ,所以 ,则原式 .
22.答案:2
解析:
23.答案:5cm或11cm
解析:有两种情况,如答图所示.
24.答案:0
解析:∵从数轴可知: ,
∴ , , ,
3.答案:B
解析:因为 的长为 ,点D为线段 的中点,所以 .
分两种情况:
(1)如图1,C为线段 的一个三等分点,所以
所以 ;
(2)如图2,因为C为线段 的一个三等分点,所以
所以 .故选B.
4.答案:B
解析:因为点M在线段 上,所以再加下列条件之一,即可确定点M是 的中点:① ;② ;③ .而无论点M在 上的什么位置,都有 ,所以选项B不能确定点M是 的中点.
24.已知有理数 表示的点在数轴上的位置如图所示,化简 =_______.
参考答案
1.答案:C
解析:从“数”“形”两个角度理解线段的中点.
(1)由形到数:若点M是线段 的中点,则 .
(2)由数到形:若点M在线段 上,且 或 ,则点M是线段 的中点.
2.答案:C
解析:两条直线相交最多有 (个)交点,三条直线相交最多有 (个)交点,四条直线相交最多有 (个)交点,五条直线相交最多有 (个)交点,六条直线相交最多有 (个)交点.故选C.
比较线段的长短练习题

比较线段的长短练习题线段的长短是数学中一个基本的概念,也是我们日常生活中常常遇到的问题。
通过比较线段的长短,我们可以培养自己的观察力和思维能力。
下面,我们来做一些关于线段长短的练习题,通过解题来加深对这个概念的理解。
练习题一:小明有一条长为8厘米的线段,小红有一条长为5厘米的线段,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为8厘米,小红的线段长为5厘米。
我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
8厘米 - 5厘米 = 3厘米所以,小明的线段比小红的线段长3厘米。
练习题二:小华有一条长为15厘米的线段,小李有一条长为10厘米的线段,那么小华的线段比小李的线段长多少厘米?小华的线段比小红的线段长多少倍?解答:小华的线段长为15厘米,小李的线段长为10厘米。
我们可以通过减法来计算小华的线段比小李的线段长多少厘米。
15厘米 - 10厘米 = 5厘米所以,小华的线段比小李的线段长5厘米。
我们还可以通过除法来计算小华的线段比小李的线段长多少倍。
15厘米÷ 10厘米 = 1.5倍所以,小华的线段比小李的线段长1.5倍。
通过这两道练习题,我们可以看出,比较线段的长短可以通过减法和除法来解决。
在解决问题的过程中,我们需要运用数学知识,进行计算和推理。
这样的练习可以培养我们的思维能力和逻辑思维能力。
练习题三:小明有一条线段长为12厘米,小红有一条线段长为10毫米,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为12厘米,小红的线段长为10毫米。
我们需要将小红的线段的单位转换为厘米,然后再进行比较。
10毫米 = 1厘米所以,小红的线段长为0.1厘米。
现在我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
12厘米 - 0.1厘米 = 11.9厘米所以,小明的线段比小红的线段长11.9厘米。
通过这道练习题,我们可以看出,比较线段的长短时,需要注意单位的转换。
在解决问题的过程中,我们需要灵活运用数学知识,进行单位转换和计算。
二年级线段练习题(打印版)

二年级线段练习题(打印版)一、基本概念练习1. 线段的定义:线段是两个端点之间的一段直线。
请画出一条线段,并标出它的两个端点。
2. 线段的命名:通常用两个端点的字母来表示线段。
例如,线段AB。
请画出线段CD,并写出它的名称。
3. 线段的长度:线段的长度是指两个端点之间的距离。
请画出一条长度为5厘米的线段,并标出它的长度。
二、线段的比较1. 比较线段长度:比较两条线段的长短。
如果线段AB比线段CD长,请在下面画出这两条线段,并标出它们的长度。
2. 线段的延伸:线段可以无限延伸。
请画出线段EF,并延伸它,使其成为一条直线。
三、线段的连接1. 线段的连接:两条线段可以首尾相连。
请画出线段GH和线段IJ,并使它们首尾相连,形成一个角度。
2. 线段的垂直:两条线段可以垂直相交。
请画出线段KL和线段MN,并使它们垂直相交。
四、线段的组合1. 线段的组合:多条线段可以组合成不同的图形。
请画出三条线段OP、PQ、QR,使它们首尾相连形成一个三角形。
2. 线段的平行:两条线段可以平行放置。
请画出线段ST和线段UV,并使它们平行。
五、线段的应用1. 测量线段:使用直尺测量线段的长度。
请画出一条线段WX,并用直尺测量它的长度,然后在图中标注。
2. 线段的对称:线段可以关于某一点对称。
请画出线段YZ,并找到它的中点,然后画出关于中点对称的线段。
六、线段的练习题1. 画出一条长度为8厘米的线段,并标出它的长度。
2. 画出两条线段,使它们的长度相等,然后首尾相连形成一个正方形。
3. 画出两条线段,使它们垂直相交,并标出它们的角度。
4. 画出三条线段,使它们首尾相连形成一个等边三角形。
请同学们认真完成以上练习题,并在完成每题后检查自己的答案是否正确。
通过这些练习,可以加深对线段概念的理解,提高空间想象能力。
比较线段长短测试

1 3
11、已知 (a b) 2 b
1 2 ) 0 ,求 (5 a 2b 2ab 2 3ab ) (2ab 5a b 2ab 2 3
)
2
A: 3x
2
x2 3
B: 3a
2a3 5a5
C:
3 x 3x
D: 0.25ab
1 ab 0 4
7、若代数式 2x2+3y+7 的值为 8,那么代数式 6x2+9y+8 的值为_____.
2 8、已知 A x 5x , B x 2 x 3 ,求:⑴A+2B;
2
⑵、当 x 1 时,求 2A-B 的值.
9、已知多项式 x 2 + m y -3 与多项式- n x 2 +2 y +2 的差中,不含有 x 、 y ,求 n m + m n 的
值.
10、 6 xy 3[3 y ( x 2 xy) 1] 其中 x = -2 , y =
2 2
11 月 13 日作业 1、 线段 AB 被 C、D 分成 1:2:5 三部分,已知第一部分中点和第三部分中点距离是 15cm,求线段 AB 的 长。
2、已知线段 AB,点 C 分线段 AB 为 5︰7,点 D 分线段 AB 为 5∶11,若 CD=5cm,求线段 AB 的长。
3、 线段 AB 被 C 点分成 3:5 两部分,又被 D 点分成 7:5 两部分,已知 CD=2.5 厘米,求 AB 的长。
4、如图,点 P 在线段 AB 上,点 M、N 分别是线段 AB、AP 的中点,若 AB 16 cm, BP 6 cm,求线 段P
B
5、在代数式 x 5, 1, x 3x 2, , , x
2 2 2
初中数学北师大版七年级上册第四章2比较线段的长短练习题-普通用卷

初中数学北师大版七年级上册第四章2比较线段的长短练习题一、选择题1.如图,下列关于图中线段之间的关系一定正确的是()A. x=2x+2b−cB. c−b=2a−2bC. x+b=2a+c−bD. x+2a=3c+2b2.已知线段AB=10cm,点C在直线AB上,且AC=2cm,则线段BC的长为()A. 12cmB. 8 cmC. 12 cm或8 cmD. 以上均不对3.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A. 28B. 29C. 30D. 314.两根木条,一根长10cm,另一根长12cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A. lcmB. 11cmC. 1cm或11cmD. 2cm或11cm5.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A. CD=AC−BDB. BD=AC−CDAB−BDC. AD=CB+BDD. CD=12AB,延长线段BA到D使AD=AC,6.已知线段AB=4cm,延长线段AB到C使BC=12则线段CD的长为()A. 12cmB. 10cmC. 8cmD. 6cm7.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A. ①④B. ②③C. ③D. ④8.如果线段AB=6cm,BC=4cm,且点A、B、C在同一直线上,那么A、C间的距离是()A. 10 cmB. 2 cmC. 10 cm或者2 cmD. 5 cm或者2 cm9.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短10.下列说法不正确的是()ABA. 因为M是线段AB的中点,所以AM=MB=12B. 在线段AM延长线上取一点B,如果AB=2AM,那么点M是线段AB的中点C. 因为A,M,B在同一直线上,且AM=MB,所以M是线段AB的中点D. 因为AM=MB,所以点M是AB的中点二、填空题11.如图,已知空间站A与星球B距离为a,信号飞船C在星球B附近沿圆形轨道行驶,B,C之间的距离为b.数据S表示飞船C与空间站A的实时距离,那么S的最小值是________.CB,D、E分别为AC、AB的12.如图,已知点C为AB上一点,AB=25cm,AC=32中点,则DE的长为______13.如图,数轴上A、B两点所表示的数分别是−4和2,点C是线段AB的中点,则点C所表示的数是.14.数轴上有两点M、N,点M到点E的距离为2,点N到点E距离为5,则M、N之间的距离为________________________ 。
七年级数学比较线段长短专项练习题(附答案)

七年级数学比较线段长短专项练习题一、解答题1.如图,点C 是AB 的中点,,D E 分别是线段,AC CB 上的点,且23,35AD AC DE AB ==,若24cm AB =,求线段CE 的长.2.如图,P 是线段AB 上一点, 12cm AB =,,C D 两点分别从,P B 出发以1/2/cm s ,cm s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上),运动的时间为t .(1)当1t =时,2PD AC =,请求出AP 的长; (2)当2t =时,2PD AC =,请求出AP 的长;(3)若,C D 运动到任一时刻时,总有2PD AC =,请求出AP 的长;(4)在(3)的条件下,Q 是直线AB 上一点,且AQ BQ PQ -=,求PQ 的长.3.如图,已知,C D 为线段AB 上顺次两点,点,M N 分别为AC 与BD 的中点,若20,8AB CD ==,求线段MN 的长.4.已知点C 是线段AB 上一点,6cm,4cm AC BC ==,若.M N 分别是线段,AC BC 的中点,求线段MN 的长.5.如图,点C 在线段AB 上,3:2AC BC =:,点M 是AB 的中点,点N 是BC 的中点,若3cm MN =,求线段AB 的长.6.已知线段6AB =,在直线AB 上取一点P ,恰好使2AP PB =,点Q 为PB 的中点,求线段AQ 的长.7.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足::1:4:3AM MB BC =(1)若6AN =,求AM 的长; (2)若2NB =,求AC 的长. 8.读题计算并作答线段3cm AB =,在线段AB 上取一点K ,使AK BK =,在线段AB 的延长线上取一点C ,使3AC BC =,在线段BA 的延长线取一点D ,使12AD AB =. (1)求线段,BC DC 的长? (2)点K 是哪些线段的中点?9..如图,已知,C D 为线段AB 上顺次两点,点M N ,分别为AC 与BD 的中点,若10AB =,4CD =,求线段MN 的长.10.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长; (2)若,8AB a BC ==,求MN 的长; (3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?11.已知点C 在线段AB 上,线段7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点,求MN 的长度.12.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.13.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.14.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度; (2)若3cm,1cm AC CP ==,求线段PN 的长度.15.如图,已知线段AB 上有两点,C D ,且AC BD =,,M N 分别是线段,AC AD 的中点,若cm,cm AB a AC BD b ===,且,a b 满足2(10)|4|02ba -+-=.(1)求,AB AC 的长度. (2)求线段MN 的长度.16.如图,已知E 是AB 的中点,F 是CD 的中点,且11,10cm 34BD AB CD EF ===,求AC 的长.17.如图,已知线段65AB =cm ,点M 为AB 的中点,点P 在MB 上,且N 为PB 的中点,若6.5BN =cm ,试求线段MP 的长.18.如图,,M N 两点把线段AB 分成2:3:4三部分,C 是线段AB 的中点,4NB = cm. (1)求CN 的长. (2)求:AM MC .19.如图,点,,,,A B E C D 在同一条直线上,且AC BD =,点E 是BC 的中点,那么点E 是AD 的中点吗?为什么?20.如图,已知111,,,333CB AB AC AD AB AE ===,且2CB =,求CD 的长.21.如图①,已知点M 是线段AB 上一点,点C 在线段AM 上,点D 在线段BM 上,C D 、两点分别从M B 、出发以1cm/s 3cm/s 、的速度沿直线BA 向左运动,运动方向如箭头所示. (1)若10cm AB =,当点C D 、运动了2s ,求AC MD +的值. (2)若点C D 、运动时,总有3MD AC =,则:AM = AB . (3)如图②,若14AM AB =,点N 是直线AB 上一点,且AN BN MN -=,求MNAB的值.22.如图,D 是AB 的中点,E 是BC 的中点,12cm 5BE AC ==,求线段DE 的长.23.画线段3cm MN =,在线段MN 上取一点Q ,使MQ NQ =;延长线段MN 到点A ,使12AN MN =;延长线段NM 到点B ,使3BN BM =. (1)求线段AN 的长; (2)求线段BM 的长;(3)试说明点Q 是哪些线段的中点.24.如图,点C 在线段AB 上,8cm,6cm AC CB ==,点,M N 分别是,AC BC 的中点.(1)求线段MN 的长.(2)若点C 为线段AB 上任意一点,满足cm AC CB a +=,其他条件不变,你能猜想MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足cm AC BC b -=,,M N 分别为,AC BC 的中点,你能猜想MN 的长度吗?并说明理由.参考答案1.答案:10.4cm CE =. 解析:2.答案:(1)4cm ;(2)4cm ;(3)4cm ;(4)4cm 或12cm 解析:3.答案:14MN = 解析:4.答案:线段MN 长5cm . 解析:5.答案:10cm 解析:6.答案:AQ 的长度为5或9. 解析:7.答案:(1)32AM =;(2)16AC = 解析:8.答案:(1) 1.5cm 6cm BC DC ==,; (2)点K 是线段AB 和DC 的中点. 解析: 9.答案:7 解析:10.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=, 因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==.(3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN 的长度始终等于线段AB 的一半,与C 点的位置无关. 解析:11.答案:【解】因为7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点, 所以113.5cm, 2.5cm 22MC AC CN BC ====. 则 3.5 2.56(cm)MN MC CN =+=+=. 解析:12.答案:【解】第一种情况:若为图(1)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==. 所以2cm MN MB NB =-=. 第二种情况:若为图(2)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==.解析:13.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===. 所以10cm AD AB BC CD =++=. 因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=. 因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=. 1010220(cm)AD x ==⨯-.解析:14.答案:(1)因为,M N 分别是,AC BC 的中点, 所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=. 因为P 是线段AB 的中点,所以28cm AB AP ==. 所以5cm CB AB AC =-=.因为N 是线段CB 的中点,12.5cm 2CN CB ==.所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 15.答案:解:(1)由题意可知2(10)0,|4|02ba -=-=, 所以10,8ab ==,所以10cm,8cm AB AC ==. (2)因为8cm BD AC ==, 所以2cm AD AB BD =-=.又因为,M N 分别是,AC AD 的中点,所以3cm MN AM AN =-=.解析:若几个非负数之和为0,则这几个非负数均为0. 16.答案:解:设BD x =, 因为1134AB CD BD ==,所以33,44AB BD x CD BD x ====, 因为E 为AB 的中点, 所以1322BE AB x ==. 因为F 为CD 的中点, 所以122DF CD x ==,所以2BF DF BD x x x =-=-=, 所以3522EF BE BF x x x =+=+=. 因为10EF =, 所以5102x =,解得4x =.所以312,416,4AB x CD x DB x ======, 所以16412BC CD BD =-=-=, 所以121224(cm)C AB BC =+=+=.解析:线段,AB CD 与BD 都有倍分关系,故把BD 设为x ,表示出,AB CD 的长. 17.答案:解:因为M 为AB 的中点,且65AB =cm 所以652AM MB ==cm. 又N 为PB 的中点,且 6.5BN =cm, 所以 6.5PN NB ==cm ,所以13PB =cm. 所以65391322MP MB PB =-=-= (cm). 解析:18.答案:解:(1)由题意得::2:3:4AM MN NB =,设 2AM x =,则3,4MN x NB x ==.又4NB =cm ,故2AM =cm,3MN =cm, 因此9AB =cm.又C 为AB 的中点,所以1922CB AB ==cm, 故91422CN CB BN =-=-= (cm) (2)由(1)知15322MC MN CN =-=-=(cm), 故5:2:4:52AM MC ==. 解析:19.答案:解:点E 是AD 的中点.理由如下:因为,,,,A B E C D 在同一条直线上,AC BD = (已知), 所以AC BC BD BC -=- (等式的性质),, 即AB CD = (线段和、差的意义). 因为点E 是BC 的中点(已知), 所以BE CE =(线段中点的定义), 所以AB BE CD CE +=+ (等式的性质), 即AE ED = (线段和、差的意义), 所以点E 是AD 的中点(线段中点的定义). 解析:20.答案:解:因为1,24CB AB CB ==,所以36AB CB ==. 所以4AC AB BC =-=.因为13AC AD =,所以312AD AC ==.所以1248CD AD AC =-=-=. 解析:21.答案:解:(1)当点C D 、运动了2s 时,2cm,6cm CM BD ==10cm,2cm,6cm AB CM BD ===10262cm AC MD AB CM BD ∴+=--=--= (2),C D 两点的速度分别为1cm/s,3cm/s , 3BD CM ∴=. 又3MD AC =,33BD MD CM AC ∴+=+,即3BM AM =,14AM AB ∴=;(3)当点N 在线段AB 上时,如图AN BN MN -=,又AN AM MN -=1142BN AM AB MN AB ∴==∴=,,即12MN AB =. 当点N 在线段AB 的延长线上时,如图AN BN MN -=,又AN BN AB -=MN AB ∴=,即1MNAB=. 综上所述12MN AB =或1. 解析:22.因为E 是BC 的中点,所以24cm BC BE ==. 因为D 是AB 的中点,解析:23.答案:(1)解:如图所示:因为1,3cm 2AN MN MN ==,所以 1.5cm AN => (2)因为3cm,MN MQ NQ ==,所以 1.5cm MQ NQ ==又因为13BM BN =,所以23MN BN =.所以34.5cm 2BN MN == 所以 1.5cm BM BN MN =-=.(3)因为 1.5 1.53(cm)BQ BM MQ =+=+=3cm AQ AN NQ =+=所以BQ AQ = 又MQ NQ =,所以Q 是MN 的中点,也是AB 的中点.解析:24.答案:(1)解:因为点,M N 分别是,AC BC 的中点,8cm,6cm AC CB == 所以114cm,3cm 22CM AC CN BC ====. 所以437(cm)MN CM CN =+=+= 所以线段MN 的长是7cm .(2)1cm 2MN a =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB a +=, 所以11,22CM AC CN BC ==, 所以1111()cm 2222MN CM CN AC BC AC BC a =+=+=+= 所以线段MN 的长是1cm 2a .(3)如图.1cm 2MN b =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB b -= 所以11,22CM AC CN BC == 所以1111()cm 2222MN CM CN AC BC AC BC b =-=-=-=, 即线段MN 的长是1cm 2b .解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较线段的长短检测题
一. 选择题(30分)
1.为了比较线段AB 和CD 的大小,小明将点A 与点C 重合使两条线段在一条直线上,结果点B 在CD 的延长线上,则( )
A.AB ﹤CD
B.AB >CD
C.AB=CD
D.以上答案都不对
2.如图所示,如果点C 是线段AB 的中点,
那么,(1)AB=2AC ,(2)2AB=BC,(3)AC=BC,
(4)AC+BC=AB 上述四个式子中,正确的有( )
A.1个
B.2个
C.3个
D.4个
3.如图,C,D 是线段AB 上两点,若CB=4cm ,
DB=7cm ,且D 是AC 中点,则AC 的长度等于( )
A.3cm
B.6cm
C.11cm
D.14cm
4.A,B 两点的距离是指( )
A.连接A,B 两点的线段
B. 连接A,B 两点的线段的长度
C.过A,B 两点的直线
D.过A,B 两点的线段
5.下列说法中正确的个数是( )
A.过两点有且只有一条直线
B.连接两点的线段叫两点的距离
C.两点之间线段最短
D.如果AB=BC ,则点B 是线段AC 的中点
6.已知线段AB=15cm,BC=5cm,则线段AC 的长是( )
A.20cm
B.10cm
C.20cm 或10cm
D.不能确定
7.已知线段AB=5,C 是直线AB 上一点,BC=2,则线段AC 长为( )
A.7
B.3
C.3或7
D.以上都不对
8.如图,D,E 是AB 的三等分点,若DE=2,AC=10,
则BC 的长为( )
A.A.2
B.4
C.6
D.8
9.如果点B 在线段AC 上,那么下列表达式(1)AB=2
1AC,(2)AB=BC,(3)AC=2AB,(4)AB+BC=AC.能表示B 是线段AC 的中点的有( )
A.1 个
B.2 个
C.3个
D.4个
10.如果A,B,C 三点在同一直线上,且线段AB=4cm ,BC=2cm,那么AC 两点之间的距离是( )
A.A2cm
B.6cm
C.2cm 或6cm
D.无法确定
二.填空题(18分)
11.如图,点M,N 把线段AB 三等分,点C 是NB
中点,且CM=6cm ,则AB=_____________cm
12.如图(1)DC______AC;(2)
AD+DC_____AC;(3)AD+BD__________AB(填>,=或﹤)
13.已知线段AB ,延长AB 到C ,使BC=21AB ,反向延长AC 到D ,使DA=2
1AC ,若AB=8cm ,则DC 的长是______________
14.如图,从点A 到点B 有(1)(2)(3)条通道,最近一一条通道是___________这是因为_________________
15.如图,点B是线段AC的中点,则
AC=_____AB=______BC,AB=BC=_____AC
16.点B在线段AC上,AB=5,BC=3,则A,C两点的距离是_______________
三.解答题(72分)
17.线段a,b,c,已知用直尺和圆规作图
(1)作线段AB,使AB=2c-a
(2)作线段CD,使CD=2c-a
18.如图,D为AB的中点,E为BC的中点,AC=10,EC=3,求AD的长
19.如图,E,F两点把线段AB分成AE:EF:FB=2:3:4三部分,D是线段AB的中点(1)若FB=12,求DF的长
(2)求AE:ED的值
20已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,求AM的长
21.如图所示,已知点C在线段AB上,点M,N分别是线段AC,BC的中点. (1)若线段AB=6,BC=4,求线段MN的长度
(2)若AC+BC=a,求线段MN的长度
(3)题目中“点C在线段AB上”若改为:“点C在直线AB上”(1)中的结果会有变化吗?若有,求出MN的长度.
22.已知线段AB=20cm,回答下列问题:
(1)能否找到一点C,使它到A,B两点的距离之和等于19cm,?为什么?(2)能否找到一点C,使它到A,B两点距离之和等于20cm,?为什么?(3).当点C到A,B两点距离之和大于20cm时,这样的点有多少个?请说出它的位置.
23.如图.已知点C为线段AB的中点,点D为BC的中点,AB=10cm,求AD的长度.
24.线段AB=6cm ,线段AC=BD=4cm ,E,F 分别是线段AB,CD 的中点,求EF 的长度.
25.已知C 为线段AB 上一点,且AC=125AB ,D 为线段AB 上另一点,D 分线段AB 所得两条线段的长为5:11,若CD=20cm ,则AB 为多少?
26.如图,已知BC=31AB=4
1CD ,点E,F 分别是AB,CD 的中点,且EF=60cm ,求AB ,CD 的长.。