高电压防雷设计

合集下载

架空线路的防雷措施

架空线路的防雷措施

架空线路的防雷措施架空线路的防雷措施是否得当,直接关系到电网的安全运行与矿井的安全生产。

现在我们结合实际了解几种防雷措施:一、架设避雷线避雷线主要是防止雷直击导线,它是架空线路最基本的防雷措施。

规程规定:35KV_110KV架空线路,如果未沿全线架设避雷线,则应在1KM_2KM的进线段架设避雷线。

公司现在运行的架空线路最高电压等级是35KV:它们是曲矿线、铜矿线、王坡线、相坡线共四条35KV等级线路,其中曲矿线和铜矿线都是在主焦变电站进线段约1.5KM范围内架设有避雷线。

相坡线和王坡线原先也是只在坡北变电站进线段装设有避雷线,但是由于线路雷电活动较强,几乎每年都会发生雷击跳闸事故。

严重威胁到了矿井的安全生产,所以在2005年底,将这两条线路在全线补设了避雷线。

全线封闭后,到现在已有四年。

只在07年王坡线24#铁塔发生了一起雷电绕击事故。

(这与24#铁塔在龙山山顶的位置有关)事实证明,全线架设避雷线虽然成本较高,但它防止直击雷的效果还是非常明显的。

二、装设自动重合闸重合闸的作用是在线路因雷击跳闸后,能在1.5秒的时间内重新自动合一次闸。

一般设定只让重合闸一次,如果线路出现的是永久性故障,重合一次合不上,就不再重合了。

雷击造成的闪路大多数能在跳闸后自行恢复绝缘,所以重合成功率比较高。

由于它能在极短时间内恢复送电,因此对矿井的安全生产有重要意义。

咱们的35KV铜矿线就有这套装置。

实践证明,合闸成功率接近100%。

(但是它不能保护设备绝缘)三、装设避雷器公司35kv和6kv线路上都装有避雷器,使用非常广泛。

避雷器在正常工作电压下,对地呈绝缘状态;在雷电过电压(不管是直击雷还是感应雷),则呈低电阻状态,对地泄放雷电流,将过电压数值限制在设备绝缘安全值以下,从而有效地保护了被保护电器设备的绝缘免受过电压的损害。

除了这三种,还有采用消弧线圈接地、降低杆塔接地电阻等措施,这里不再讲了。

现在我们知道:避雷线是防直击雷的,对导线起屏蔽作用;自动重合闸能在架空线路因雷击跳闸后,缩短事故停电时间,但是它不能保护电气设备的绝缘;避雷器则能有效保护电气设备的绝缘,并且由于它具有成本较低、安装方便、残压低等优点,已成为架空线路不可替代的防雷措施。

电力系统防雷保护-高电压技术考点复习讲义和题库

电力系统防雷保护-高电压技术考点复习讲义和题库

考点5:电力系统防雷保护5.1 输电线路的感应雷过电压一、雷击线路附近大地时,线路上的感应雷过电压1、先导在导线轴线方向上的电场强度X E 将导线两端与雷云电荷异号的正电荷,吸引到最靠近先导通道的一段导线上,成为束缚电荷。

导线上的负电荷则被排斥而向两侧运动,经线路泄露电导和系统中性点进入大地。

导线上电流很小,忽略线路工作电压,导线电位仍保持的电位。

正束缚电荷产生的电场在导线高度处被电导中负电荷产生的电场所抵消。

2、主放电先导通道中的负电荷自下而上被迅速中和,相应的电场被迅速减弱,使导线上正束缚电荷迅速释放,形成电压波向两侧传播,形成的过电压称为感应过电压的静电分量。

与此同时,由于先导通道中雷电流所产生的磁场变化而引起的感应称为感应过电压的电磁分量。

(1)当雷击点离开线路的距离s>65m 时,)(25d L KV Sh I u g ⨯⨯≈ 其中L I :雷电流峰值(KA);d h :导线平均高度(m);S:为雷击点离线路的距离。

感应过电压峰值一般最大可达300~400KV,这会引起35KV 及以下钢筋混凝土杆线路绝缘闪络。

(2)加避雷线由于屏蔽作用,感应过电压下降,导线上的感应过电压为)k 1(U U gd ,gd -=因此,避雷线离导线越近,耦合系数k 越大,U 感应越小。

二、雷击线路杆塔时,导线上的感应过电压无避雷线d ah =gd U有避雷线)1(U gd ,k ah d -=与直击雷相比,感应过电压的特点:1、极性与雷云电荷相反,一般为正极性。

2、在三相导线上同时出现,不会直接产生相间过电压。

3、 波形较缓和,波前几微秒到几十微秒,波长可达数百微秒。

5.2 输电线路的直击雷过电压和耐雷水平一、雷击杆塔顶部1.塔顶电位塔顶电流i gt <雷电流L i ,即L i i β=gt 雷电流到达峰值时,塔顶电压有最大值6.2(ch L R U gt L td I +=β其中β为分流系数,设雷电流具有斜角波前,at i =,则t L R L L bib t ++=11β,t 取T/2,(T 1波前时间2.6us)2.导线电位和线路绝缘上的电位当塔顶电位为td U 时,在塔顶的避雷线也有同样的电位,导线上产生的耦合电压为td kU ,由于通道电磁场的作用,导线上有感应过电压)1(a k h d -, 此电压与塔顶电位极性相反,所以导线电位的幅值d U 为)1(a U U td k h k d d --=作用在线路绝缘上的总电压k)-)(1ah (U U U U d td j +=-=d td 对于斜角波前的雷电波6.2L 1LI I a T == )1)(6.26.2(ch L k h I d gt j L R U -++=ββ 3.耐雷水平的计算 耐雷水平:]6.2)6.2[)(1(ch %501d gt h k L R U I ++-=β提高耐雷水平:↓↑↓β,,R ch k ,加强线路绝缘。

高电压技术_7电力系统防雷保护

高电压技术_7电力系统防雷保护

6
1 ~ 2km
A
F1
F2
(a )
F3
F1
F2
(b )
(10-3-1) 35kv 及以上变电所的进线保护接线
(a )未沿全线路架设避雷线的 35~110kv 线路的变电所的进线保护接线 (b )全线有避雷线的变电所的进线保护接线
7
二、图中各元件的名称和作用: 图中各元件的名称和作用: 1)进线段的作用 进线段的作用:进线段内防止雷击导线,进线段 进线段的作用 以外进雷时,由于进线段本身阻抗的作用,使流经 避雷器的雷电流受到限制,同时由于冲击电晕的影 响,将使入侵波陡度和幅值下降。 2)F3的作用 F 的作用:限制入侵波的幅值。 3)(管型避雷器)F2的作用 )F2 (管型避雷器)F 的作用:在雷季保护断路器和隔 离开关.断路器闭合运行时,入侵雷电波不应使其动 作。 )F1的作用 4)(阀式避雷器)F1的作用 (阀式避雷器)F1的作用:DL合闸状态时,保护一 切绝缘。
8
§7-3 变压器中性点保护 -
一、全绝缘
变压器中性点的绝缘水平与相线端是一样的。 1、35~60KV非有效接地系统中,变压器中性点一般不需 要保护装置。 2、对110KV且为单进线的变电所,宜在中性点上加设避 雷器。
二、分级绝缘
变压器中性点的绝缘水平比相线端低得多。 对于中性点接地系统中,有些不接地的变压器需要保护。
不平衡绝缘的原则是使两回路的绝缘子串片数有差异,这 样,雷击时绝缘串片数少的回路先闪络,闪络后的导线相当 于地线,增加了对另一回路导线的耦合作用,提高了另一回 路的耐雷水平以保证继续供电,一般两回路绝缘水平的差异 为 3 倍的相电压(峰值)。
3
五、架设自动重合闸
雷击造成的闪络大多能在跳闸后自行恢复绝缘性能。

35kV架空线路的防雷保护措施

35kV架空线路的防雷保护措施

35kV架空线路的防雷保护措施本文介绍了35kV线路遭受雷击后的危害。

采用典型的防雷保护接线;在35kV线路变电所进出线段架设避雷线;降低杆塔接地电阻;在无避雷线杆塔上装设金属性消雷器,这些防雷技术措施,可以使35kV线路免受雷击的危害。

标签:大气过电压;避雷线;不平衡绝缘;金属性消雷器;避雷器;自动重合闸一、前言35kV线路一般分布很广,雷雨季节遭受雷击机会很多。

线路遭受雷击有三种情况:一是雷击于线路导线上,产生直击雷过电压;二是雷击避雷线后,反击到输电线上;三是雷击于线路附近或杆塔上,在输电线上产生感应过电压。

雷电进行波顺线路侵入到变电站,威胁电气设备的绝缘,造成避雷器爆炸、主变压器绝缘损坏等事故,直接影响了变电站的安全运行。

为了提高供电的可靠性,减少因大气过电压造成的危害,对35kV架空线路应采取必要的防雷保护措施。

二、35kV架空线路应采取的的防雷保护措施1、选择典型的防雷保护接线防止35kV线路直击雷和进行波最有效的方法是架设避雷线。

但因雷击避雷线时,避雷线上产生的电位相当高,35kV线路的绝缘水平承受不了这个高电压,容易造成反击,同样会引起线路跳闸,同时避雷线线路造价又高,因此,35kV 线路只在变电所進出线段,根据变压器容量,架设1~2公里避雷线,以限制流进避雷器的雷电流和限制入侵波的陡度。

为了降低侵入波的峰值和陡度,35kV 线路除架设避雷线外,限制侵入波峰值的办法是在避雷线两端杆塔上还加装管型避雷器或保护间隙。

为此,35kV线路和变电所要选择典型防雷保护接线,如图1所示:图中:HY5W2-52.7/134型氧化锌避雷器;GB1-2-GXS(35/2-10)型管型避雷器。

2、35kV线路防雷保护的设计要求2.1避雷线的选择2.1.1带避雷线杆塔的选择带地线的35kV线路,要选用定型的杆塔,以确定避雷线悬点高度和与导线间垂直距离h和避雷线的保护角α=tg-1S/h(度)。

一般水泥双杆h为3.25m-4m 为双根避雷线,铁塔h为5.7m为单根避雷线,以满足角α为20°~30°的要求。

高电压技术第5章雷电及防雷设备1

高电压技术第5章雷电及防雷设备1
由于发电厂或变电所的面积较大,实际上都采用多 支等高避雷针保护。三支等高避雷针所形成的三角形的 外侧保护范围分别按两支等高避雷针的计算方法确定。 四支及以上等高避雷针所形成的四角形或多角形,可先 将其分成两个或数个三角形,然后分别按三支等高避雷 针的方法计算。
三支等高避雷针在hx水平面上的保护范围如左图所示,
5.1.1 雷云的形成
能产生雷电的带电云层称为雷云。
雷云的形成主要是含水汽的空气的热对流效 应。太阳的热辐射使地面部分水分化为蒸汽,含 水蒸汽的空气受到炽热的地面烘烤而上升,会产 生向上的热气流。热气流每上升10km,温度下降 约10℃,热气流与高空冷空气相遇形成雨滴、冰 雹等水成物,水成物在地球静电场的作用下被极 化,形成热雷云。
图8-2 雷电流的等值波形
(a)双指数波 (b)斜角平顶波 (c)半余弦波
f 1.2s t 50s
i I0 (et et )
f 2.6s I I / 2.6kA / s
f
i I (1 cost) 2
/ f
max
di dt
max
I 2
3、雷暴日及雷暴小时
雷暴日Td 是指该地区平均一年内有雷电放电的 平均天数,单位d/a 。 雷暴小时Th 雷暴小时是指平均一年内的有雷电 的小时数,单位h/a。
2. 避雷针的保护范围
表示避雷针的保护效能,通常采用保护范围的 概念,只具有相对意义。避雷针的保护范围是指被 保护物体在此空间范围内不致遭受直接雷击。我国 使用的避雷针的保护范围的计算方法,是根据小电 流雷电冲击模拟试验确定,并根据多年运行经验进 行了校验。保护范围是按照保护概率99.9%确定的 空间范围(即屏蔽失效率或绕击率0.1%)。
第5章 雷电及防雷设备

110kV220kV变电站防雷接地技术

110kV220kV变电站防雷接地技术

110kV220kV变电站防雷接地技术发布时间:2021-06-25T10:36:41.827Z 来源:《中国电业》2021年3月第7期作者:吴承俊[导读] 110kV220kV变电站是我国输配电网络中主要的高压变电站类型,直接承担着我国大部分的高压输配电任务,变电站的安全运行关系着电网的安全稳定运行吴承俊桂林丰源电力勘察设计有限责任公司广西桂林 541001摘要:110kV220kV变电站是我国输配电网络中主要的高压变电站类型,直接承担着我国大部分的高压输配电任务,变电站的安全运行关系着电网的安全稳定运行。

而雷电灾害是影响变电站运行的主要外部因素,一旦发生雷电故障,将导致严重的后果。

因此,本文主要分析110kV220kV变电站防雷接地技术的应用。

关键词:变电站;防雷接地技术;应用1.110kV220kV变电站出现雷击现象的主要因素由于110kV220kV变电站具有相对特殊的功能和特性,其一般位于相对空旷的区域,户外电气设备基本为金属设备,因此发生雷击的可能性非常高,一旦变电站发生雷击,可能导致严重事故,如停电将对社会的生产生活造成较大影响,也可能导致设备损坏造成严重的经济损失。

为了保护电气设备不受雷电的影响,有必要对变电站的防雷接地技术进行深入研究,一般来说,在变电站正常运行期间,电网电气设备以额定电压运行,但是在雷雨天气中,雷击导致输配电系统中的某些线路出现过电压,进而影响到变电站,根据不同的雷击方式,变电站的雷击过电压主要有以下几种[4]。

1.1雷直击设备过电压雷电直接击中电气设备后,会在电气设备中产生大的雷电流和超高压,同时还会释放出大量的热量,出现的热量将直接影响电气设备的正常运行,容易造成电气设备损坏,影响变电站的正常运行。

1.2雷直击线路及感应雷过电压当雷场移至架空线上时,在静电感应的影响下,会导致架空线上更多的异常束缚电积累,雷云一旦释放地面,将在架空输电线路上造成极高的感应过电压,此外,雷直击中输电线路时,在线路上形成雷电波,雷电波沿着输电线路侵入变电站,从而导致变电站电气设备过电压,这些过电压的出现会对变电站造成严重损害。

某工程防雷设计方案

某工程防雷设计方案

某工程防雷设计方案发表时间:2016-11-18T15:03:21.713Z 来源:《建筑建材装饰》2016年2月第4期作者:莫静蓉[导读] 它的高电压、大电流产生的电效应、热效应和机械力会造成房屋倒塌、油库爆炸、森林大火、人畜伤亡等。

(桂林市建筑设计研究院,广西桂林541001)摘要:一个独立、完善的防雷工程应包括三个方面的内容:(1)防直击雷;(2)防感应雷及雷电波侵入;(3)接地系统。

这三个系统缺一不可。

三个系统的设计及施工必须符合其相关的《标准》、《规范》,以及满足有关的技术参数和指标。

关键词:接闪器;引下线;接地装置前言雷电是一种常见的严重的自然灾害。

其危害方式主要有两种:一种是直击雷,即雷电直接击在建筑物或构筑物上,它的高电压、大电流产生的电效应、热效应和机械力会造成房屋倒塌、油库爆炸、森林大火、人畜伤亡等。

另一种是由雷电引起的静电感应和电磁感应产生的感应雷击和雷电波侵入,又称雷电的二次作用。

它的危害途径一般经电源线、信号线、天馈线等进户线引入室内,对电子设备产生损毁,甚至引起火灾和人员伤亡。

一般来说,感应雷没有直击雷那么猛烈,也不容易被人们觉察,但它发生的几率却比直击雷高得多。

这是因为直击雷只发生在雷云对地闪击时才会对地面物体造成灾害,而感应雷击则不论雷云对地闪击,或者雷云对雷云之间闪击,都可能发生并造成灾害。

自从人类进入到电气化时代以后,雷电的破坏由主要以直击雷击毁人和物为主,发展到以通过金属线传输雷电波破坏电气设备为主。

随着近年来电子技术的飞速发展,人类对电气设备尤其是计算机设备的依赖越来越大;且电子元器件的微型化、集成化程度越来越高,各类电子设备的耐过电压能力下降,遭雷电和过电压破坏的比例呈不断上升的趋势,对设备与网络的安全运行造成严重威胁。

据统计,全世界每年因雷害造成的损失高达十亿美元以上。

因此要采取安全可靠、技术先进、经济合理的防雷措施。

本设计方案是在建筑物地理位置及电源系统、计算机网络系统所处雷击环境等项目的基础上,着手进行综合防雷设计的。

高电压防雷保护的探讨

高电压防雷保护的探讨
措施பைடு நூலகம்。
关键词 : 雷击 ; 避 雷针 ; 高 电压供 电 系统
雷 电现象产生 的高电压可高达数千千伏 , 常常引发各种雷 电灾 3安装线路避雷器、 降低杆塔的接地电阻的分析 3 . 1安装线 路避雷器 。 害事故 。雷 电现象作为一种 自然现象 , 是不可避免的 。因此 , 对 于雷 电灾 害事故应该 以预 防为 主。人类对雷 电采取 防护措 施 , 最早 可追 避雷器又称 : s u r g e a r r e s t e r , 能释放雷 电或兼能释放电力 系统操 溯到 1 2世纪 。我 国湖南现存的岳 阳慈 氏塔 ( 约在 1 1 0 0年重建 ) , 自 作过 电压能量 , 保护 电工设备免受瞬时过 电压危害 , 又能截 断续流 , 避雷器通常接 于带 电导线与地 塔顶有 6 条铁链沿六个角下垂至地面上一定 高度 , 可用来 防止雷击 不致引起系统接地短路的电器装置 。 损 坏。 有 的古塔还将此类铁链沉人井 , 实现 良好接地 。 1 7 5 0年 , 美国 之间 , 与被保 护设备并联 。 当过 电压值达到规定 的动作电压时 , 避雷 流过电荷 , 限制过 电压 幅值 , 保护设备绝缘 ; 电压值 正 B . 富兰克林 提出 了以避雷针保护建筑物 的理论 和方法 , 这是 现代避 器立 即动作 , 宙 措施 的雏 形 。 常后 , 避雷器又迅 速恢 复原状 , 以保证 系统正常供电。 同样裸 漏在空气 中 , 高压电供 电系统 比低压 电供 电系统更容 易 避雷器是变 电站保护设备 免遭雷 电冲击波袭击 的设备 。 当沿线 遭受 雷击。 原 因是 高压 电供 电系统 因电荷聚集数量多 , 电势差大 , 当 路传入变 电站 的雷 电冲击波超 过避 雷器保护水平 时 , 避雷器首先放 电荷在 空气 中游 离时 ,与雷 电电源 电荷更容 易产生较大 电势差 , 形 电 , 并将 雷电流经过 良导体安 全的引入大地 , 利用接地装置使 雷 电 成放 电关 系。相对 于低压 电供 电系统 , 高压 电供 电系统在遭受 雷击 压 幅值限制在被保 护设 备雷 电冲击水 平以下 ,使电气设备受 到保 时产生的破 坏性 更大。原 因是 高电压 系统电流较大 , 更容易形成 过 护。避雷器按其发展的先后可分为 : 保护 间隙——是最简单形式 的 管型避雷器——也是一个保护 间隙 , 但 它 能 在 放 电后 自行 强 大 电流 , 尤其 当因雷击 出现短 路时 , 产 生的过强大 电流能够烧毁 避 雷 器 ; 电子器件 , 甚至击穿绝缘子 , 还容 易引起 火灾和人员电击伤亡事故 。 灭弧 ;阀型避雷器——是将单个放电间隙分成许 多短的串联间隙 , 本 文则 针对 电力系统的防雷保 护问题 , 以降低雷 电灾 害事故 率为 目 同时增加 了非线性 电阻 , 提 高 了保护性 能 ; 磁 吹避 雷器—— 利用 了 标, 分析 了高压 电电力系统 的防雷措施。 磁吹式火花 间隙 , 提高 了灭 弧能力 , 同时还具有限制 内部过 电压能 1 现 代 防雷 体 系的 组 成 力; 氧化 锌避雷器——利用 了氧化锌 阀片理想 的伏安 特性 ( 非线性 即在大 电流时呈低电阻特性 , 限制了避雷器上的电压 , 在正常 雷电现象产生的高电压可高达数千千伏 , 常常引发 各种 雷电灾 极高 , 害事故 。 现代 防雷体 系从 大地及其外 围空 间来说可划分为三个防雷 工频 电压下呈高 电阻特性 ) , 具有无 间隙 、 无续流 残压 低等优点 , 也 区域 ( 更确切地说 是三个 防雷层 次 ) , 即高空 防雷区 、 低空防雷 区和 能限制内部过 电压 , 被 广泛使用 。 地下防雷区 ) 。现代 防雷系统组成包括雷 电接受装置 、 接地线 、 接地 3 . 2 降低杆塔 的接地电 阻。杆 塔接地 电阻增加 主要有 以下原 装置等 。 雷电接受装置 : 直接或间接接受雷电的金属杆 ( 接闪器 ) , 如 因 : 避雷针 、 避雷带 ( 网) 、 架空地线及避 雷器等。接地线( 引下线 ) : 雷电 ( 1 ) 接 地体 的腐 蚀 , 特别 是在 山区酸性 土壤 中 , 或 风化后 土壤 接受装置与接地装置连接用的金属 导体 。接地装置 : 接 地线和接地 中, 最容易发生 电化学腐 蚀和吸氧腐蚀 , 最容易发生腐蚀 的部位是 体的总和 , 接地体指 的是降阻剂 , 离子接地极 , 扁钢等。 接地 引下线与水平接地体的连接处 , 由腐蚀 电位差不 同引起 的电化 2 高压送 电线路 防雷措施 学腐蚀 。有时会发生 因腐蚀断裂而使杆塔“ 失地 ” 的现象 。 还有就是 清楚了送电线路 雷击 跳闸的发 生原 因 , 我们就 可以有针 对性 的 接地体 的埋深不够 , 或用碎石 、 砂 子回填 , 土壤中含氧量高 , 使接地 对 送电线路 所经过的不同地段 , 不 同地理位置 的杆塔采取相应 的防 体容 易发生吸氧腐蚀 , 由于腐蚀使接地体 与周 围土壤之 间的接触 电 雷措施 。目前线路防雷主要有 以下几种措施 : 阻变 大 , 甚至使接地体 在焊接头处断裂 , 导致杆塔接地电阻变大 , 或 2 . 1加强高压送 电线路 的绝缘水平 。 失去 接 地 。 高压送 电线路的绝缘 水平 与耐雷水 平成正 比, 加强 零值 绝缘子 ( 2 ) 在山坡坡带 由于雨水 的冲刷使水 土流失而使接地体外露失 的检测 , 保证高压送 电线路有足够 的绝缘强度是提 高线路 耐雷水 平 去 与 大地 的接 触 。 的重要 因素 。 ( 3 ) 在施工时使用化学 降阻剂 , 或性能不稳定的降阻剂 , 随着 时 2 . 2 降低 杆塔 的接地 电阻。 间的推移 降阻剂 的降阻成分流失或失效后使接地 电阻增大。 高压送 电线路的接地电阻与耐雷水平成反 比, 根据 各基 杆塔的 ( 4 ) 外力破坏 , 杆塔接地引下线或接 地体被盗或外力破坏。 土壤 电阻率 的情况 , 尽可能 地降低杆塔 的接地 电阻 , 这是提高高 压 4 结 论 送 电线路耐雷水平的基础 , 是最经济 、 有效 的手段 。 我国地域广大 , 因雷击导致人 员伤亡 、 设备损坏 的事故屡见不 2 . 3 根据 规程 规 定 。 鲜。 目前高压 电供 电系统的雷击事故 比较频繁 , 所 以应重视高压 电 在雷 电活动强烈的地区和经常发生雷击故障的杆塔和地段 , 可 供电网络 的防雷设计 。 以增设 耦合地线 。 由于耦合地线可 以使避雷线和导线之间的耦合系 数增大 , 并使 流经 杆塔 的雷 电流向两侧分流 , 从 而提 高高压送 电线 路 的耐雷水平 。 2 , 4 适当运用 高压送 电线路避雷器 。 由于安 装避雷器使得杆塔 和导线 电位 差超过避 雷器 的动作 电 压时 , 避雷器就加入分 流, 保证 绝缘 子不 发生 闪络 。 根据实际运行经 验, 在雷击跳 闸较频繁 的高压送 电线路上选择性安 装避雷器可达到 很好的避雷效果 。 目前在全国范围已使用一定数量 的高压送 电线路 避雷器 , 运行 反映较好 , 但 由于装设避雷器投资较大 , 设 计 中我们只 能根据特殊情况少量使用 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要根据设计任务书的要求,本次设计为110kV变电所的防雷设计,变电所是电力系统中重要组成部分,而且变电所的电气部分要装设合理的避雷装置和接地装置,因此,它是防雷的重要保护对象。

如果变电所发生雷击事故,将造成大面积的停电,给人民生活和社会生产带来重大不便,还有可能给国家造成大经济损失,这就要求防雷措施必须十分可靠变电所的防雷设计应做到设备先进、保护动作灵敏、安全可靠、维护方便,在此前提下,力求经济合理的原则。

本次设计,主要对变电所的主要设备进行选择,重点设计变电所的防雷部分,包括变电所进线段保护、防直击雷、防感应雷以及变电所二次设备的防雷。

通过对各种避雷器的性能对比,结合变电所实际情况,确定变电所的避雷器的选择,并考虑变电所控制系统的防雷,提出防雷方案。

氧化锌避雷器以其优越的性能,越来越受到电力行业的关注。

本次设计,将结合氧化锌避雷器性能的优点,并结合变电所设计的情况,讨论氧化锌避雷器在变电所中的应用前景。

关键词:变电所避雷器防雷保护目录1 引言........................................................... (1)课题背景........................................................... . (1)课题研究的意义........................................................... . (1)2 系统设计方案的研究........................................................... . (2)雷电对变电所的危害........................................................... (2)2.1.1雷的直击和绕击危害........................................................... . (2)2.1.2雷电反击危害........................................................... (2)2.1.3 感应雷危害........................................................... . (3)2.1.4雷电侵入波危害........................................................... (3)变电所简介........................................................... . (4)2.2.1变电所概述........................................................... .. (4)2.2.2变电所主要任务........................................................... (4)2.2.3变电所主接线........................................................... . (4)变电所防雷措施........................................................... .. (5)2.3.1变电所遭受雷击的来源........................................................... (5)2.3.2变电所防雷具体措施........................................................... . (6)2.3.3变电所对直击雷防护........................................................... . (6)2.3.4变电所对雷电侵入波的防护........................................................... . (6)2.3.5变电站的进线防护........................................................... .. (7)2.3.6变压器的防护........................................................... . (7)2.3.7变电所的防雷接地........................................................... .. (7)3 防雷保护装置........................................................... . (7)避雷针........................................................... (7)3.1.1避雷针原理........................................................... .. (7)3.1.2避雷针设置原则........................................................... (8)3.1.3避雷针保护范围的计算........................................................... . (8)避雷器........................................................... . (14)3.2.1避雷器作用原理........................................................... . (15)3.2.2氧化锌避雷器的研究与应用............................................................. 153.2.3氧化锌避雷器的特性........................................................... .. (15)3.2.4氧化锌避雷器的优势........................................................... .. (16)3.2.5氧化锌避雷器在变电所中的发展前景 (17)3.2.6氧化锌避雷器的安装要求........................................................... . (17)主控室及屋内配电装置对直击雷的防雷措施 (18)防雷接地........................................................... (18)4 本设计的防雷方案........................................................... (19)电工装置的防雷设计........................................................... (19)4.1.1进线段保护........................................................... (19)4.1.2 直击雷的保护........................................................... . (20)4.1.3雷电入侵波的保护........................................................... . (21)4.1.4 变电所二次设备防雷保护........................................................... .. (23)接地装置........................................................... . (24)4.2.1 接地网........................................................... . (24)4.2.2接地线........................................................... .. (26)4.2.3防雷接地........................................................... . (26)总结........................................................... ............................................................... . (27)致谢........................................................... ...................................参考文献........................................................... .. (28)1 引言课题背景变电所是电力系统的一个重要组成部分,由电器设备及配电网络按一定的接线方式所构成,它从电力系统取得电能,通过其变换、分配、输送与保护等功能,然后将电能安全、可靠、经济的输送到每一个用电设备。

随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。

变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。

作为电能传输与控制的枢纽,变电所的防雷保护也越来越得到重视。

本次设计为110kV牵引变电所防雷设计,牵引变电所是指主要向牵引系统供电的变电所。

牵引变电所主要应用于工矿企业电气化运输、城市公共交通、市郊电气化铁路、煤矿井下平巷运输和地面工业广场运输,为运输机车提供可靠的供电电源。

课题研究的意义随着科学技术的发展,作为现代工业发展的基础和先行官—电力工业,也随之有了很大的发展。

相关文档
最新文档