(完整版)高一解三角形(答案)

合集下载

高一数学解三角形试题

高一数学解三角形试题

高一数学解三角形试题1.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.2.在△ABC中,若最大角的正弦值是,则△ABC必是()A.等边三角形B.直角三角形C.钝角三角形D.锐角三角形【答案】【解析】根据题意,因为是最大角,所以角只能是,所以是钝角三角形.【考点】特殊函数值;三角形的判断.3.两地相距,且地在地的正东方。

一人在地测得建筑在正北方,建筑在北偏西;在地测得建筑在北偏东,建筑在北偏西,则两建筑和之间的距离为()A.B.C.D.【答案】C【解析】在△ABD中又∴点A、B、C、D四点共园,圆心是BC的中点(在同园或等圆中,同弧所对的圆周角相等) ,同理在Rt△ABC中,在Rt△BCD中【考点】解三角形4.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.5.在某次测量中,A在B的北偏东,则B在A的方向.【答案】南偏东【解析】根据题意,由于在某次测量中,A在B的北偏东,则可知B在A的南偏东方向.可知答案为南偏东【考点】方位角点评:主要是考查了方位角的求解,属于基础题。

6.对于,有如下命题:①一定有成立.②若, 则一定为等腰三角形;③若的面积为,BC=2,,则此三角形是正三角形;则其中正确命题的序号是 . (把所有正确的命题序号都填上)【答案】①②③【解析】根据题意,由于①结合投影的定义可知,一定有成立.②若, 则一定为等腰三角形;利用解三角形方程可成立③若的面积为,BC=2,,则此三角形是正三角形;利用解三角形可知成立,故可知答案为①②③【考点】解三角形点评:考查了解三角形的运用,属于基础题。

7.如图,在△中,已知,D是BC边上一点,AD=10,AC=14,DC=6,求AB的长.【答案】【解析】解:在△中,∵AD=10,AC=14,DC=6∴, 5分∴, ∴ 7分∴在△中,∵,∴, 11分∴ 15分【考点】解三角形点评:主要是考查了正弦定理的运用,属于基础题。

高一数学解斜三角形试题答案及解析

高一数学解斜三角形试题答案及解析

高一数学解斜三角形试题答案及解析1.在△ABC中,若==,则△ABC是( ).A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】由正弦定理得,由得,即,由于为三角形的内角,故,即,因此三角形为等边三角形.【考点】判定三角形的形状.2.在中,若,则△ABC的面积是= ( ).A.9B.9C.18D.18【答案】A【解析】在中,,是等腰三角形,,由三角形的面积公式得.考点:解三角形.3.已知中,的对边分别为且.(1)判断△的形状,并求的取值范围;(2)如图,三角形的顶点分别在上运动,,若直线直线,且相交于点,求间距离的取值范围.【答案】(1)为直角三角形,;(2).【解析】(1)法一,根据数量积的运算法则及平面向量的线性运算化简得到,从而可确定,为直角三角形;法二:用数量积的定义,将数量积的问题转化为三角形的边角关系,进而由余弦定理化简得到,从而可确定为直角,为直角三角形;(2)先引入,并设,根据三角函数的定义得到,进而得到,利用三角函数的图像与性质即可得到的取值范围,从而可确定两点间的距离的取值范围.试题解析:(1)法一:因为所以即所以,所以所以是以为直角的直角三角形法二:因为所以是以为直角的直角三角形即(2)不仿设,所以所以.【考点】1.平面向量的数量积;2.余弦定理;3.三角函数的应用.4.边长为2的等边三角形,求它水平放置时的直观图的面积 .【答案】【解析】等边三角形ABC的边长为2,故面积为,而原图和直观图面积之间的关系故直观图△A/B/C/的面积为.【考点】斜二测画法,直观图5.已知为的内角,且,则 .【答案】或【解析】依题意可知,且在单调递增,所以当时,,当时,,所以,即,综上可知或.【考点】1.三角形内角的取值范围;2.正弦函数的单调性.6.在△ABC中,∠A、∠B、∠C的对应边分别为a、b、c.若a、b、c成等差数列,则∠B的范围是()A.(0,] B.(0,]C.[,π) D.[,π)【答案】B【解析】根据题意,由于a、b、c成等差数列,则可知2b=a+c,结合余弦定理可知得到cosB ,故可知得到∠B的范围是(0,],故选B.【考点】等差数列点评:主要是考查了等差数列的运用,以及解三角形的综合运用,属于基础题。

(完整版)正余弦定理及解三角形整理(有答案)

(完整版)正余弦定理及解三角形整理(有答案)

正余弦定理考点梳理:1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) A(2)锐角之间的关系:A +B =90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A =cos B =,cos A =sin B =,tan A =。

C B c a c b ba2.2.斜三角形中各元素间的关系: a如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =_____(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

(R 为外接圆半径)R CcB b A a 2sin sin sin ===3.正弦定理:===2R 的常见变形:asin A b sin B csin C (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)====2R ;a sin Ab sin B csin C a +b +csin A +sin B +sin C (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =,sin B =,sin C =.a 2Rb 2R c2R 4.三角形面积公式:S =ab sin C =bc sin A =ca sin B .1212125.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

余弦定理的公式: 或.2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩6.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两边和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.7.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.8.解题中利用中,以及由此推得的一些基本关系式进行三角变换ABC ∆A B C π++=的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-.sincos ,cos sin ,tan cot222222A B C A B C AB C+++===9. 解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C 。

高一数学解三角形试题

高一数学解三角形试题

高一数学解三角形试题1.如图,两座建筑物AB,CD的高度分别是9m和15m,从建筑物AB的顶部看建筑物CD的张角,求建筑物AB和CD底部之间的距离BD。

【答案】【解析】过作于,设,显然此时,记;将放入中.利用建立关于的关系;将放入中,利用建立关于的关系.最后根据的关系,解出其中的.如图,过作于,设∵,记,则,在中,, ∴,在中,, ∴,∴,解得:或(舍去).所以建筑物和底部之间的距离为.【考点】直角三角形中,正切表示边;正切和角公式.2.如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(1).设AD=x(x≥0),DE=y,求用x表示y的函数关系式,并求函数的定义域;(2).如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.【答案】(1);(2)如果DE是水管,DE的位置在AD=AE=处,如果DE是参观路线,则DE为AB中线或AC中线时,DE最长,证明过程详见解析.【解析】(1)在△ADE中,利用余弦定理可得,又根据面积公式可得,消去AE后即可得到y与x的函数关系式,又根据可以得到x的取值范围;(2)如果DE是水管,则问题等价于当时,求的最小值,利用基本不等式即可求得当时,y有最小值为,如果DE是参观路线,则问题等价于问题等价于当时,求的最小值,根据函数在[1,2]上的单调性,可得当x=1或2时,y有最小值.(1)在△ADE中,由余弦定理:①又∵②②代入①得(y>0), ∴,由题意可知,所以函数的定义域是,;(2)如果DE是水管,当且仅当,即x=时“=”成立,故DE∥BC,且DE=.如果DE是参观线路,记,可知函数在[1,]上递减,在[,2]上递增,=.即DE为AB中线或AC中线时,DE最长.故∴ymax【考点】1、平面向量的数量积;2、三角形面积计算.3.在中三个内角 A、B、C所对的边分别为则下列判断错误的是()A.若则为钝角三角形B.若则为钝角三角形C.若则为钝角三角形D.若A、B为锐角且则为钝角三角形【答案】C【解析】,可得.A正确;由余弦定理可知,为钝角,正确;,的夹角为钝角,但是夹角并不是三角形内角而是三角形外角,故错;由同一坐标系下的三角函数图象可知A、B为锐角且,可得.【考点】三角函数相关性质,余弦定理,向量的数量积.4.①设a,b是两个非零向量,若|a+b|=|a-b|,则a·b=0②若③在△ABC中,若,则△ABC 是等腰三角形④在中,,边长a,c分别为a=4,c=,则只有一解。

高中数学经典题型--解三角形(含详细答案)

高中数学经典题型--解三角形(含详细答案)

高中数学经典题型解三角形【编著】黄勇权【第1题】在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c , 且sinC bsinBasinA = 3a32 sinB + c求:角C 的大小【第1题】答案:已知:sinCbsinB asinA += 3a 32 sinB + c等号左边:因为分子、分母每一项含有sin ,故用正弦定理,将sin 替换成边即:cb *b a *a += 3a 32 sinB +c 特别提示: 等号右边的sinB 不能换成边b , 这是因为sinB=R 2b ,这样就会多出R 21,等号两边同时乘以ca 2+b 2 = 3ac 32 sinB +c 2将c 2移到等号左边,a 2+b 2- c 2 = 3ac 32 sinB由于等号左边是a 2+b 2-c 2,只能构建cosC ,故等号两边同时除以2ab ,这一步非常重要。

2a b c b a 222-+ = b 3c 3 sinBc osC = b 3c 3 sinB等号右边,左边分子含c ,分母含b ,故用正弦定理把c 、b 换成sinC ,sinB 这一步非常重要,很多同学想不到,因此就解不出来。

c osC = B sin 3sinC 3 sinBc osC =33 sinCtanC= 3 即C=60°经典技巧:对于正弦定理,很多同学都不知道什么时候能用,什么时候不能用,其实,在运用正弦定理将sin与对应边换时,一定要遵循能够消除2R为原则。

例如1:acosB+bcosA=2c 【能用】由正弦定理:a=2RsinA,b=2RsinB,c=2RsinC代入上式,2RsinA*cosB+2RsinB*cosA=2*2RsinC因为每一项都有2R,故能消除2R,化简:sinA*cosB+sinB*cosA=2sinC所以能用正弦定理。

例如2:bcosA+sinB=3c 【不能用】由正弦定理:b=2RsinB,c=2RsinC代入上式,得:2RsinB*cosA+sinB=2RsinC*3因为第二项不含2R,无法消除2R, 所以不能用正弦定理例如3:sin2A+sin2B=2sinBsinC 【能用】a b c(R 2a )2 + (R 2b )2 = 2 *R 2b *R 2c因为每一项都有(R 21)2,故能消除2R ,化简得:a 2 +b 2=2bc 所以能用正弦定理 例如4:acosB+bcosA=4bc 【能用】由正弦定理:a=2RsinA ,b=2RsinB ,c=2RsinC 代入上式,2RsinA*cosB+2RsinB*cosA=4b*2RsinC因为要消除2R ,所以只能代入一项,要么是b 或c 而等号右边化简后sinA*cosB+sinB*cosA=sin (A+B )=sinC所以我们只把c 换为sinC ,而b 不动。

解三角形小题综合 解析版--高一下学期备战期末专题训练

解三角形小题综合 解析版--高一下学期备战期末专题训练

期末专题04解三角形小题综合一、单选题1(2022春·江苏常州·高一校联考期末)在△ABC中,AB=5,BC=6,AC=8,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断【答案】C【分析】根据余弦定理可得cos B<0,进而得∠B为钝角,即可求解.【详解】在△ABC中,由余弦定理以及AB=5,BC=6,AC=8可知:cos B=AB2+BC2-AC22AB⋅BC=25+36-64 2×5×6=-120<0,故∠B为钝角,因此△ABC是钝角三角形故选:C2(2022春·江苏连云港·高一统考期末)在锐角三角形ABC中,a=2b sin A,则B=()A.π6B.π4C.π3D.7π12【答案】A【分析】利用正弦定理即可求解.【详解】解:在锐角三角形ABC中,0<B<π2,由正弦定理得asin A=bsin B,又a=2b sin A,所以sin B=12,且0<B<π2,故B=π6.故选:A.3(2022春·江苏泰州·高一统考期末)在△ABC中,角A,B,C所对的边分别为a,b,c.若2a= 3b sin A,则sin B=()A.63B.33C.23D.13【答案】A【分析】运用正弦定理边化角直接计算即可.【详解】由题意,2a=3b sin A,∴2sin A=3sin B sin A,∵sin A≠0,∴sin B=23=63;故选:A.4(2022春·江苏淮安·高一统考期末)在△ABC中,a,b,c分别是角A,B,C的对边,若a=c cos B,则△ABC的形状()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】B【分析】根据余弦定理边角互化并整理即可得答案.【详解】因为a=c cos B,cos B=a2+c2-b2 2ac,所以a=c⋅a2+c2-b22ac,整理得a2+b2=c2,所以三角形的形状是直角三角形.故选:B5(2022春·江苏淮安·高一统考期末)在△ABC 中,B =45°,点D 是边BC 上一点,AD =5,AC =7,DC =3,则边AB 的长是()A.46B.1036 C.562D.26【答案】C【分析】由余弦定理求得cos C ,由正弦定理求得AB .【详解】△ACD 中cos C =AC 2+CD 2-AD 22AC ⋅CD=49+9-252×7×3=1114,所以sin C =1-1114 2=5314,△ABC 中,由正弦定理AB sin C =AC sin B 得AB =AC sin C sin B =7×5314sin45°=562.故选:C .6(2022秋·江苏南京·高一南京市第九中学校考期末)中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状、不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知AB =CD =4,BC =3,AD =7,则该玉佩的面积为()A.496π-934B.493π-932C.496π D.493π【答案】A【分析】延长AB 、DC ,交于点O ,如图,根据相似三角形的性质求出BO =3,AO =7,进而得出△OAD 为等边三角形,利用扇形的面积和三角形的面积公式即可求出结果.【详解】延长AB 、DC ,交于点O ,如图,由BC ⎳AD ,得△OBC ∼△OAD ,所以BC AD =BOAO,又AB =CD =4,BC =3,AD =7,所以37=BO BO +AB=BO BO +4,解得BO =3,所以AO =7,所以△OAD 为等边三角形,则∠AOB =π3,故S 扇形=12αr 2=12×π3×72=496π,S △BOC =12OB ×OC ×sin π3=12×3×3×32=934,所以玉佩的面积为496π-934.故选:A7(2022秋·江苏南通·高一统考期末)图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h ,日影长为l .图2是地球轴截面的示意图,虚线表示点A 处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬23°26 )在某地利用一表高为2dm 的圭表按图1方式放置后,测得日影长为2.98dm ,则该地的纬度约为北纬( )(参考数据:tan34°≈0.67,tan56°≈1.49)A.23°26B.32°34C.34°D.56°【答案】B【分析】由题意有tan α=22.98≈0.67,可得∠MAN ,从而可得β【详解】由图1可得tan α=22.98≈0.67,又tan34°≈0.67,所以α=34°,所以∠MAN =90°-34°=56°,所以β=56°-23°26 =32°34 ,该地的纬度约为北纬32°34 ,故选:B .8(2022春·江苏镇江·高一扬中市第二高级中学校考期末)设f x =sin x cos x -cos 2x +π4,在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f A2 =0,a =1,则△ABC 面积的最大值为()A.2+33B.3+33C.2+34D.3+34【答案】C【分析】先用三角恒等变换得到f x =sin2x -12,从而根据f A 2 =0求出A =π6,再结合余弦定理基本不等式求出bc ≤2+3,根据面积公式求出最大值.【详解】f x =sin x cos x -cos 2x +π4 =12sin2x -121+cos 2x +π2 =sin2x -12,则f A 2 =sin A -12=0,所以sin A =12,因为△ABC 为锐角三角形,所以A =π6,由余弦定理得:cos A =b 2+c 2-12bc=32,所以b 2+c 2=3bc +1,由基本不等式得:b 2+c 2=3bc +1≥2bc ,当且仅当b =c 时等号成立,所以bc ≤2+3,S △ABC =12bc sin A =14bc ≤2+34故选:C9(2022春·江苏扬州·高一统考期末)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列各组条件中,使得△ABC 恰有一个解的是()A.a =2,b =4,A =π3B.a =13,b =4,A =π3C.a =23,b =4,A =2π3D.a =32,b =4,A =2π3【答案】D【分析】利用正弦定理逐项判断.【详解】A . 因为a =2,b =4,A =π3,由正弦定理得a sin A=b sin B ,则sin B =b sin A a =4×sin π32=3>1,无解;B . 因为a =13,b =4,A =π3,由正弦定理得a sin A=b sin B ,则sin B =b sin Aa =4×sin π313=23913,又32<23913<1,则π3<B <2π3,有两解,故错误;C . 因为a <b ,A =2π3,则B >A ,所以无解,故错误;D . 因为a =32,b =4,A =2π3,由正弦定理得a sin A =b sin B ,则sin B =b sin A a =4×sin π332=63,又12<63<1,且a >b ,所以π6<B <π2,故有一解,故正确. 故选:D10(2022春·江苏南通·高一统考期末)已知△ABC 为锐角三角形,AC =2,A =π6,则BC 的取值范围为()A.1,+∞B.1,2C.1,233D.233,2【答案】C【分析】根据锐角三角形得出角B 的范围,再利用正弦定理及三角函数的性质即可求解.【详解】因为△ABC 为锐角三角形,所以A =π60<B <π20<5π6-B <π2,解得π3<B <π2,所以32<sin B <1.在△ABC 中,由正弦定理,得AC sin B =BC sin A,即BC =AC ⋅sin A sin B =2×sin π6sin B =1sin B ,由32<sin B <1,得1<1sin B<233,即1<BC <233.所以BC 的取值范围为1,233.故选:C .11(2022春·江苏镇江·高一统考期末)已知A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,且测得点B 对点A 和点C 的张角为120°,则点B 到AC 的距离为( )km .A.2077B.10217C.20217D.1077【答案】B【分析】由余弦定理求出AC ,再由面积等积法求解.【详解】由余弦定理可得:AC 2=AB 2+BC 2-2AB ⋅BC cos120°=102+202-2×10×20×-12=700,即AC =107,所以S △ABC =12AB ⋅BC sin120°=12⋅AC ⋅h ,解得h =AB ⋅BC ⋅sin120°AC =1003107=10217.故选:B12(2022春·江苏无锡·高一统考期末)设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c .若b =2,a 2sin C =6sin A ,则△ABC 面积的最大值为()A.3B.5C.6D.3【答案】B【分析】由a 2sin C =6sin A 结合正弦定理可得ac =6,再利用余弦定理可求得cos B ≥23,则可得sin B ≤53,从而可求出△ABC 面积的最大值【详解】因为a 2sin C =6sin A ,所以由正弦定理可得a 2c =6a ,得ac =6,由余弦定理得b 2=a 2+c 2-2ac cos B ,4=a 2+c 2-12cos B ,所以4+12cos B =a 2+c 2≥2ac =12,当且仅当a =c 时取等号,所以cos B ≥23,所以sin B =1-cos 2B ≤1-49=53,所以12ac sin B ≤12×6×53=5,当且仅当a =c 时取等号,所以△ABC 面积的最大值为5,故选:B13(2022春·江苏南通·高一金沙中学校考期末)△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,则()A.若a <b <c ,则cos B <sin CB.∃A ,B 使得sin (A +B )=sin A +sin BC.∀B ,C 都有tan (B +C )=tan B +tan C1-tan B ⋅tan CD.若sin A +cos A =32,则A 是钝角【答案】D【分析】特殊值法判断A 、C ;B 由题设有sin A (cos B -1)=sin B (1-cos A ),进而有cos B =cos A =1即可判断;D 由已知得sin A +π4 =64<22,结合0<A <π即可判断.【详解】A :由题设A <B <C ,若C =150°,B =20°,A =10°,此时cos B =sin π2-B >sin C ,错误;B :若sin (A +B )=sin A +sin B ,则sin A (cos B -1)=sin B (1-cos A ),而sin A ,sin B >0,所以cos B =cos A =1,又0<A +B <π,故不存在这样的A ,B ,错误;C :当B =C =π4时tan (B +C )=tan B +tan C1-tan B ⋅tan C不成立,错误;D :由sin A +cos A =2sin A +π4 =32,故sin A +π4 =64<22,而0<A <π,所以5π4>A +π4>3π4,即π>A >π2,正确.故选:D14(2022春·江苏南通·高一统考期末)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若ac =8,sin B +2sin C cos A =0,则△ABC 面积的最大值为()A.1B.3C.2D.4【答案】C【分析】根据sin B +2sin C cos A =0利用三角恒等变换和正余弦定理得到2b 2=a 2-c 2,再根据余弦定理和基本不等式可得cos B 的范围,由此得B 的范围,从而得到sin B 的最大值,从而根据S △ABC =12ac sin B 可求△ABC 面积的最大值.【详解】∵sin B +2sin C cos A =0,∴sin A +C +2sin C cos A =0,即sin A cos C +cos A sin C +2sin C cos A =0,即sin A cos C +3cos A sin C =0,则a ⋅b 2+a 2-c 22ab +3×b 2+c 2-a 22bc×c =0,整理得2b 2=a 2-c 2,∴cos B =a 2+c 2-b22ac=a 2+c 2-a 2-c222ac=a 2+3c 24ac ≥23ac 4ac =32,当且仅当a 2=3c 2⇔c =83,a =83时取等号,∴B ∈0,π6,∴sin B ≤12,则S △ABC =12ac sin B ≤12×8×12=2.故选:C .15(2022春·江苏扬州·高一期末)△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p=(a +c ,b ),q =(b -a ,c -a ),若p ∥q,则角C 的大小为()A.π6B.π3C.π2D.2π3【答案】B【分析】因为p ⎳q ,所以a +c c -a -b b -a =0,再根据余弦定理化简即得解.【详解】因为p ⎳q,所以a +c c -a -b b -a =0,所以c 2-a 2-b 2+ab =0,∴a 2+b 2-c 2=ab ,所以2ab cos C =ab ,∴cos C =12,∵0<C <π,所以C =π3.故选:B .16(2022春·江苏苏州·高一校考期末)如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为()A.206海里B.406海里C.20(1+3)海里D.40海里【答案】A【分析】分别在△ACD 和△BCD 中利用正弦定理计算AD ,BD ,再在△ABD 中利用余弦定理计算AB 即可【详解】由题意可知CD =40,∠ADC =105°,∠BDC =45°,∠BCD =90°,∠ACD =30°,所以∠CAD =45°,∠ADB =60°,在△ACD 中,由正弦定理得AD sin30°=40sin45°,得AD =202,在Rt △BCD 中,因为∠BDC =45°,∠BCD =90°,所以BD=2CD=402,在△ABD中,由余弦定理得AB=AD2+BD 2-2AD⋅BD cos∠ADB=800+3200-2×202×402×12=2400=206,故选:A17(2022春·江苏苏州·高一统考期末)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,且b2-c2⋅sin B=2S,若a=kc,则k的取值范围是()A.1,2B.0,3C.1,3D.0,2【答案】A【分析】根据面积公式,余弦定理和题干条件得到c=a-2c cos B,结合正弦定理得到B=2C,由△ABC为锐角三角形,求出B∈π3,π2,从而求出cos B=a-c2c=12k-12∈0,12,求出k的取值范围.【详解】因为S=12ac sin B,所以b2-c2⋅sin B=2S=ac sin B,即b2-c2=ac,所以ac+c2=a2+c2-2ac cos B,整理得:ac=a2-2ac cos B,因为a>0,所以c=a-2c cos B,由正弦定理得:sin C=sin A-2sin C cos B,因为sin A=sin B+C=sin B cos C+cos B sin C,所以sin C=sin B cos C-cos B sin C=sin B-C,因为△ABC为锐角三角形,所以B-C为锐角,所以C=B-C,即B=2C,由B∈0,π2C=B2∈0,π2A=π-B2-B∈0,π2,解得:B∈π3,π2,因为a=kc,所以cos B=a-c2c=12k-12∈0,12,解得:k∈1,2,故选:A【点睛】三角形相关的边的取值范围问题,通常转化为角,利用三角函数恒等变换及三角函数的值域等求出边的取值范围,或利用基本不等式进行求解.二、多选题18(2022春·江苏南京·高一南京市中华中学校考期末)在△ABC中,下列结论中,正确的是()A.若cos2A=cos2B,则△ABC是等腰三角形B.若sin A>sin B,则A>BC.若AB2+AC2<BC2,则△ABC为钝角三角形D.若A=60°,AC=4,且结合BC的长解三角形,有两解,则BC长的取值范围是(23,+∞)【答案】ABC【分析】根据cos2A=cos2B及角A、B的范围,可判断A的正误;根据大边对大角原则,可判断B的正误;根据条件及余弦定理,可判断C的正误;根据正弦定理,可判断D的正误,即可得答案.【详解】对于选项A,因为cos2A=cos2B,且A,B∈(0,π),所以A=B,所以△ABC是等腰三角形,所以选项A正确;对于选项B,由sin A>sin B,则a<b且A,B∈(0,π),可得A>B,所以选项B正确;对于选项C,由AB2+AC2<BC2,以及余弦定理可得cos A<0,即△ABC为钝角三角形,所以选项C正确;对于选项D,由A=60°,AC=4,以及正弦定理可得sin B=ACBCsin A=23BC<1,解得BC>23,且由大边对大角B>A,可得AC>BC,即BC<4,所以BC长的取值范围是(23,4),所以选项D 错误;故选:ABC.19(2022春·江苏南京·高一统考期末)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=45°,c =2,下列说法正确的是()A.若a=3,△ABC有两解B.若a=3,△ABC有两解C.若△ABC为锐角三角形,则b的取值范围是(2,22)D.若△ABC为钝角三角形,则b的取值范围是(0,2)【答案】AC【分析】根据三角形的构成,可判断三角形有几个解所要满足的条件,即c sin A<a<c,△ABC有两解,a>c或a=c sin A,△ABC有一解,a<c sin A,△ABC有0解,根据直角三角形的情况,便可得出△ABC为锐角或钝角三角形时,b的取值范围.【详解】A选项,∵c sin A<a<c,∴△ABC有两解,故A正确;B选项,∵a>c,∴△ABC有一解,故B错误;C选项,∵△ABC为锐角三角形,∴c cos A<b<cc cos A,即2<b<22,故C正确;D选项,∵△ABC为钝角三角形,∴0<b<c cos A或b>cc cos A,即0<b<2或b>22,故D错误.故选:AC20(2022春·江苏宿迁·高一沭阳县修远中学校考期末)在三角形△ABC中,∠A=π3,若三角形有两解,则ca的可能取值为()A.223B.1.1 C.233D.1.01【答案】BD【分析】根据正弦定理可知三角形有两解,则满足32c <a <c ,即可求解.【详解】若三角形有两解,则满足32c <a <c ,故1<c a <233,故选:BD 21(2022春·江苏南通·高一统考期末)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若c =2b ,B =30°,则角A 可能为()A.135°B.105°C.45°D.15°【答案】BD【分析】由正弦定理求角.【详解】解:正弦定理得c sin C=bsin B ,又c =2b ,B =30°,sin C =22,c >b ,则C >B ,0°<C <180°,故C =45°或135°,A =105°或15°故选:BD .22(2022春·江苏苏州·高一校联考期末)在△ABC 中,角A ,B ,C 对边分别为a ,b ,c ,设向量m=c ,a +b ,n =a ,c ,且m ⎳n,则下列选项正确的是()A.A =2BB.C =2AC.1<ca<2D.若△ABC 的面积为c 24,则C =π2【答案】BC【分析】根据向量平行得到c 2=a 2+ab ,结合余弦定理转化为cos C =-12+b 2a,进而利用正弦定理得到cos C =-12+sin B 2sin A,化简整理即可判断A 、B 选项;利用正弦定理及二倍角公式将ca 转化为2cos A ,然后求出角A 的范围,进而求出值域即可判断C 选项;利用S =12ab sin C =c 24,结合正弦定理及二倍角公式化简整理可求得角A ,进而可以求出角C ,从而可以判断D 选项.【详解】因为向量m =c ,a +b ,n =a ,c ,且m ⎳n,所以c 2=a a +b ,即c 2=a 2+ab ,结合余弦定理得cos C =a 2+b 2-c 22ab ,cos C =-ab +b 22ab,cos C =-12+b 2a ,再结合正弦定理得cos C =-12+sin B2sin A,2sin A cos C =-sin A +sin B ,又因为sin B =sin A +C =sin A cos C +cos A sin C ,所以2sin A cos C =-sin A +sin A cos C +cos A sin C ,sin A cos C -cos A sin C =-sin A ,sin A -C =-sin A ,sin A -C =sin -A ,所以A -C =-A ,故C =2A ,所以B 正确,A 错误;c a =sin C sin A =sin2A sin A =2sin A cos A sin A,因为sin A ≠0,所以c a =2cos A ,又因为0°<A<180°0°<2A<180°0°<180°-3A<180°,所以0°<A<60°,所以12<cos A<1,即1<2cos A<2,因此1<ca<2,故C正确;因为S=12ab sin C=c24,结合正弦定理12sin A sin B sin C=14sin2C,即sin A sin B=12sin C,则sin A sin180°-3A=12sin2A,sin A sin3A=12sin2A,sin A sin3A=sin A cos A,sin3A=cos A ,sin3A=sin A+90°则3A+A+90°=180°,或3A=A+90°,故A=22.5°或A=45°,故C=45°或C=90°,故D错误.故选:BC.23(2022春·江苏泰州·高一统考期末)在△ABC中,角A、B、C所对的边分别为a、b、c.若b=6,c=2,3sin A3+cos A3=2cos C,则下列说法正确的有()A.A+3C=πB.sin C=64C.a=2 D.S△ABC=154【答案】AD【分析】利用三角恒等变换可得出cos C=cosπ3-A3,结合余弦函数的单调性可判断A选项;利用正弦定理、二倍角的正弦公式以及同角三角函数的基本关系可判断B选项;利用正弦定理可判断C 选项;利用三角形的面积公式可判断D选项.【详解】因为2cos C=2cos A3cosπ3+sinπ3sin A3=2cosπ3-A3,即cos C=cosπ3-A3,因为0<A<π,0<C<π,则0<π3-A3<π3且余弦函数y=cos x在0,π上递减,所以,C=π3-A3,所以,A+3C=π,A对;因为A+3C=π=A+B+C,则B=2C,所以,0<2C<π,可得0<C<π2,由正弦定理bsin B=csin2C,即62sin C cos C=2sin C,所以,cos C=64,则sin C=1-cos2C=104,B错;由二倍角公式可得sin2C=2sin C cos C=154,cos2C=2cos2C-1=-14,所以,sin A=sin3C=sin C cos2C+cos C sin2C=104×-14+64×154=108,由正弦定理asin A=csin C可得a=c sin Asin C=1,C错;S△ABC=12ab sin C=12×1×6×104=154,D对.故选:AD.24(2022春·江苏扬州·高一统考期末)如图所示,△ABC中,AB=3,AC=2,BC=4,点M为线段AB 中点,P 为线段CM 的中点,延长AP 交边BC 于点N ,则下列结论正确的有( ).A.AP =14AB +12ACB.BN =3NCC.|AN |=193D.AP 与AC 夹角的余弦值为51938【答案】AC【分析】对A ,根据平面向量基本定理,结合向量共线的线性表示求解即可;对B ,根据三点共线的性质,结合AP =14AB +12AC 可得AN =13AB +23AC ,进而得到BN=2NC判断即可;对C ,根据余弦定理可得∠BAC ,再根据B 中AN =13AB +23AC两边平方化简求解即可;对D ,在△ANC 中根据余弦定理求解即可【详解】对A ,AP =12AM +12AC =14AB +12AC,故A 正确;对B ,设AP =λAN ,则由A ,λAN =14AB +12AC ,故AN =14λAB +12λAC,因为B ,N ,C 三点共线,故14λ+12λ=1,解得λ=34,故AN =13AB +23AC ,故AB +BN =13AB +23AB +23BC ,所以BN =23BN +23NC ,即BN =2NC ,故B 错误;对C ,由余弦定理,cos ∠BAC =32+22-422×3×2=-14,由B 有AN =13AB +23AC ,故AN 2=19AB2+49AC 2+49AB ⋅AC ⋅-14 ,即AN 2=1+169-23=199,所以|AN |=193,故C 正确;对D ,在△ANC 中AN =193,AC =2,NC =13BC =43,故cos ∠NAC =AN 2+AC 2-NC 22AN ⋅AC=199+4-1692⋅193⋅2=131976,故D 错误;故选:AC25(2022春·江苏徐州·高一统考期末)已知△ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,以下结论中正确的是()A.若A >B ,则sin A >sin BB.若a =2,b =5,B =π3,则该三角形有两解C.若a cos A =b cos B ,则△ABC 一定为等腰三角形D.若sin 2C >sin 2A +sin 2B ,则△ABC 一定为钝角三角形【答案】AD【分析】对A ,根据正弦定理判断即可;对B,根据正弦定理求解sin A判断即可;对C,根据正弦定理结合正弦函数的取值判断即可;对D,根据正弦定理边角互化,再根据余弦定理判断即可【详解】对A,由三角形的性质,当A>B时,a>b,又由正弦定理asin A=bsin B>0,故sin A>sin B,故A正确;对B,由正弦定理asin A=bsin B,故2sin A=532,故sin A=155,因为a<b,故A<π3,故该三角形只有1解,故B错误;对C,由正弦定理,sin A cos A=sin B cos B,故sin2A=sin2B,所以A=B或2A+2B=π,即A+B =π2,所以△ABC为等腰或者直角三角形,故C错误;对D,由正弦定理,c2>a2+b2,又余弦定理cos C=a2+b2-c22ab<0,故C∈π2,π,故△ABC一定为钝角三角形,故D正确;故选:AD26(2022春·江苏无锡·高一统考期末)△ABC的内角A,B,C所对边分别为a,b,c,下列说法中正确的是()A.若sin A>sin B,则A>BB.若a2+b2-c2>0,则△ABC是锐角三角形C.若a cos B+b cos A=a,则△ABC是等腰三角形D.若asin A =bcos B=ccos C,则△ABC是等边三角形【答案】AC【分析】A由正弦定理及大边对大角判断;B由余弦定理知C为锐角;C正弦边角关系及三角形内角和性质得A=C;D由正弦定理及三角形内角性质得B=C=45°.【详解】A:由sin A>sin B及正弦定理知:a>b,根据大边对大角有A>B,正确;B:由余弦定理cos C=a2+b2-c22ab>0,只能说明C为锐角,但不能确定△ABC是锐角三角形,错误;C:sin A cos B+sin B cos A=sin(A+B)=sin C=sin A,则a=c,故△ABC是等腰三角形,正确;D:由asin A =bcos B=ccos C=bsin B=csin C,则sin B=cos B,sin C=cos C,且0<A,B,C<π,故B=C=45°,即△ABC是等腰直角三角形,错误.故选:AC27(2022春·江苏苏州·高一江苏省昆山中学校考期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,则下列说法正确的是()A.c=a cos B+b cos AB.若a cos A=b cos B,则△ABC为等腰或直角三角形C.若a2tan B=b2tan A,则a=bD.若a3+b3=c3,则△ABC为锐角三角形【答案】ABD【分析】由余弦定理判断A,利用正弦定理和正弦函数性质判断B,由正弦定理,切化弦及正弦函数性质判断C ,由余弦定理判断D .【详解】解:由余弦定理a cos B +b cos A =a ×a 2+c 2-b 22ac +b ×b 2+c 2-a 22bc=c ,A 正确;a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,sin2A =sin2B ,A ,B 是三角形内角,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,三角形为等腰三角形或直角三角形,B 正确;由a 2tan B =b 2tan A 得sin 2A ×sin B cos B =sin 2B ×sin Acos A,sin2A =sin2B ,同上得a =b 或a 2+b 2=c 2,C 错;若a 3+b 3=c 3,所以a c 3+b c 3=1,因此0<a c <1,0<bc<1,所以a c 2+b c 2>a c 3+b c 3=1,即a 2+b 2>c 2,cos C =a 2+b 2-c 22ab >0,C ∈(0,π),所以C 为锐角,显然c 边最大,C 角最大,所以△ABC 为锐角三角形,D 正确.故选:ABD .28(2022春·江苏苏州·高一校考期末)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的是()A.若a cos A =b cos B ,则△ABC 是等腰三角形B.若AB =22,B =45°,AC =3,则满足条件的三角形有且只有一个C.若△ABC 不是直角三角形,则tan A +tan B +tan C =tan A tan B tan CD.若AB ⋅BC<0,则△ABC 为钝角三角形【答案】BC【分析】对于A 利用正弦边角关系及三角形内角性质可得A =B 或A +B =π2判断;对于B 应用余弦定理求BC 即可判断;对于C 由三角形内角性质及和角正切公式判断.对于D 由向量数量积定义判断;【详解】对于A :由正弦定理得sin A cos A =sin B cos B ,则sin2A =sin2B ,则△ABC 中A =B 或A +B =π2,故A 错误;对于B :由cos B =AB 2+BC 2-AC 22AB ⋅BC =BC 2-142BC=22,则BC 2-4BC -1=0,可得BC =2±5,故BC =2+5,满足条件的三角形有一个,故B 正确;对于C :由△ABC 不是直角三角形且A =π-(B +C ),则tan A =-tan (B +C )=-tan B +tan C1-tan B tan C,所以tan A +tan B +tan C =tan A tan B tan C ,故C 正确;对于D :AB ⋅BC =|AB ||BC |cos (π-B )=-|AB ||BC |cos B <0,即|AB ||BC|cos B >0,∠B 为锐角,故△ABC 不一定为钝角三角形,故D 错误;故选:BC三、填空题29(2022春·江苏连云港·高一统考期末)曲柄连杆机构的示意图如图所示,当曲柄OA 在水平位置OB 时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针方向旋转角α时,P 和Q 之间的距离是xcm ,若OA =3cm ,AP =7cm ,α=120°,则x 的值是.【答案】5【分析】根据余弦定理解决实际问题,直接计算即可.【详解】如下图,在△APO中,由余弦定理可知49=OP2+9-2×3⋅OP⋅cos∠AOP⇒OP=5cm,另外,由图可知,在点A与点B重合时,OQ=AP+OA=10cm,∴PQ=OQ-OP=10-5=5cm,故答案为:530(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)已知轮船A和轮船B同时离开C岛,A船沿北偏东30°的方向航行,B船沿正北方向航行(如图).若A船的航行速度为40nmile/h,1小时后,B船测得A船位于B船的北偏东45°的方向上,则此时A,B两船相距nmile.【答案】202【分析】利用正弦定理求AB的长度即可.【详解】由题设,CA=40nmile且∠ABC=135°,正弦定理有ABsin∠BCA=CAsin∠ABC°,则ABsin30°=40sin135°,可得AB=202nmile.故答案为:20231(2022春·江苏无锡·高一统考期末)△ABC的内角A,B,C所对边分别为a,b,c,已知C=60°,a =1,c=7,则b=.【答案】3【分析】利用余弦定理求解即可【详解】因为在△ABC中,C=60°,a=1,c=7,所以由余弦定理得c2=a2+b2-2ab cos C,所以7=1+b2-2b cos60°,b2-b-6=0,(b+2)(b-3)=0,得b=-2(舍去),或b=3,故答案为:332(2022春·江苏扬州·高一期末)《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图为张衡地动仪的结构图,现在相距120km的A,B两地各放置一个地动仪,B在A的东偏北75°方向,若A地地动仪正东方向的铜丸落下,B地地动仪东南方向的铜丸落下,则地震的位置距离B地km【答案】603+60【分析】由题意作图后由正弦定理求解【详解】作图如下,由题意得A=75°,B=60°,C=45°,AB=120,故BCsin A=ABsin C,BC=120sin45°⋅sin75°,而sin75°=sin(45°+30°)=6+24,得BC=603+60故答案为:603+6033(2022春·江苏泰州·高一统考期末)如图所示,该图由三个全等的△BAD 、△ACF 、△CBE 构成,其中△DEF 和△ABC 都为等边三角形.若DF =2,∠DAB =π12,则AB =.【答案】6+2##2+6【分析】设AF =BD =x ,在△ABD 中,利用正弦定理求出x 的值,再利用正弦定理可求得AB 的长.【详解】由已知△ABD ≌△CAF ,所以,AF =BD ,设AF =x ,在△ABD 中,∠ADB =2π3,∠BAD =π12,则∠ABD =π4,sin ∠BAD =sin π12=sin π3-π4 =sin π3cos π4-cos π3sin π4=6-24,由正弦定理BD sin π12=AD sin π4,即x 6-24=x +222,解得BD =AF =x =233,由正弦定理BD sin π12=ABsin 2π3得AB =BD sin 2π3sin π12=233×326-24=6+ 2.故答案为:6+ 2.34(2022春·江苏常州·高一统考期末)在△ABC 中,AB =22,BC =3,B =45°,点D 在边BC 上,且cos ∠ADC =1717,则tan ∠DAC 的值为.【答案】67【分析】首先由余弦定理求出b ,再求出sin ∠ADC ,由正弦定理求出AD ,再由余弦定理求出BD ,最后在△ADC 中由正弦定理求出sin ∠DAC ,最后由同角三角函数的基本关系计算可得;【详解】解:因为AB =22,BC =3,B =45°,由余弦定理b 2=a 2+c 2-2ac cos B ,即b 2=9+8-2×3×22×22=5,所以b =5,因为cos ∠ADC =1717,所以sin ∠ADC =1-cos 2∠ADC =41717,所以sin ∠ADB =sin π-∠ADC =sin ∠ADC =41717由正弦定理AB sin ∠ADB=AD sin B ,所以AD =172,再由余弦定理AD 2=BD 2+AB 2-2AB ⋅BD cos B ,即4BD 2-16BD +15=0,解得BD =32或BD =52,又BC =3,∠ADC ∈0,π2 ,所以BD =32,则DC =32,在△ADC 中由正弦定理AC sin ∠ADC =DCsin ∠DAC ,即541717=32sin ∠DAC,所以sin ∠DAC =68585,又AD >DC ,所以cos ∠DAC =1-sin 2∠DAC =78585,所以tan ∠DAC =sin ∠DAC cos ∠DAC=67;故答案为:6735(2022春·江苏南通·高一统考期末)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =6,b =2,要使△ABC 为钝角三角形,则c 的大小可取(取整数值,答案不唯一).【答案】5(填7也对,答案不唯一)【分析】利用三角形两边和与差点关系,求出4<c <8,再分别讨论a 和c 为钝角时,边c 的取值范围,根据题意即可得到答案.【详解】首先由a ,b ,c 构成三角形有4=a -b <c <a +b =8,若c 为钝角所对边,有c 2>a 2+b 2=40,c >40,若a 为钝角所对边,有36=a 2>b 2+c 2=4+c 2,c <32,由b <a ,b 不可能为钝角所对边,综上,c 的取值范围是4,32 ∪40,8 , 由题意,c 取整数值,故c 的大小可取5或7.故答案为:5(填7也对,答案不唯一).36(2022春·江苏南京·高一南京市中华中学校考期末)拿破仑是十九世纪法国伟大的军事家、政治家,对数学也很有兴趣,他发现并证明了著名的拿破仑定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的中心恰为另一个等边三角形的顶点”,在△ABC 中,以AB ,BC ,CA 为边向外构造的三个等边三角形的中心依次为D ,E ,F ,若∠BAC =30°,DF =4,利用拿破仑定理可求得AB +AC 的最大值为.【答案】46【分析】结合拿破仑定理求得AD ,AF ,利用勾股定理列方程,结合基本不等式求得AB +AC 的最大值.【详解】设BC =a ,AC =b ,AB =c ,如图,连接AF ,BD ,AD .由拿破仑定理知,△DEF 为等边三角形.因为D 为等边三角形的中心,所以在△DAB 中,AD =12⋅AB sin60°=c 3,同理AF =b3.又∠BAC=30°,∠CAF=30°,∠BAD=30°,所以∠DAF=∠BAD+∠BAC+∠CAF=90°.在△ADF中,由勾股定理可得DF2=AD2+AF2,即16=c23+b23,化简得b+c2=2bc+48,由基本不等式得b+c2≤2⋅b+c22+48,解得b+c≤46(当且仅当b=c=26时取等号),所以AB+ACmin=46.故答案为:46。

(完整版)解三角形练习题及答案

(完整版)解三角形练习题及答案

第一章解三角形一、选择题1.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为().A.90°B.120°C.135°D.150°2.在△ABC中,下列等式正确的是().A.a∶b=∠A∶∠B B.a∶b=sin A∶sin BC.a∶b=sin B∶sin A D.a sin A=b sin B3.若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ).A.1∶2∶3 B.1∶3∶2C.1∶4∶9 D.1∶2∶34.在△ABC中,a=5,b=15,∠A=30°,则c等于( ).A.25B.5C.25或5D.10或55.已知△ABC中,∠A=60°,a=6,b=4,那么满足条件的△ABC的形状大小 ( ).A.有一种情形B.有两种情形C.不可求出D.有三种以上情形6.在△ABC中,若a2+b2-c2<0,则△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定7.在△ABC中,若b=3,c=3,∠B=30°,则a=( ).A.3B.23C.3或23D.28.在△ABC中,a,b,c分别为∠A,∠B,∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为23,那么b=().A.231+B.1+3C.232+D.2+39.某人朝正东方向走了x km后,向左转150°,然后朝此方向走了3 km,结果他离出发点恰好3km,那么x的值是( ).A.3B.23C.3或23D.310.有一电视塔,在其东南方A处看塔顶时仰角为45°,在其西南方B处看塔顶时仰角为60°,若AB=120米,则电视塔的高度为( ).A .603米B .60米C .603米或60米D .30米 二、填空题11.在△ABC 中,∠A =45°,∠B =60°,a =10,b = .12.在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .13.在△ABC 中,∠A =60°,a =3,则C B A c b a sin sin sin ++++= . 14.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = . 15.平行四边形ABCD 中,AB =46,AC =43,∠BAC =45°,那么AD = .16.在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值= .三、解答题17. 已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.18.在△ABC 中,已知b =3,c =1,∠B =60°,求a 和∠A ,∠C .19. 根据所给条件,判断△ABC 的形状.(1)a cos A =b cos B ;(2)A a cos =B b cos =Cc cos .20.△ABC 中,己知∠A >∠B >∠C ,且∠A =2∠C ,b =4,a +c =8,求a ,c 的长.第一章 解三角形参考答案一、选择题1.B解析:设三边分别为5k ,7k ,8k (k >0),中间角为, 由cos =k k k k k 85249-64+25222⨯⨯=21,得 =60°,∴最大角和最小角之和为180°-60°=120°.2.B 3.B4.C5.C6.C7.C8.B解析:依题可得:⎪⎪⎩⎪⎪⎨⎧︒︒30cos 2-+=23=30sin 212=+222ac c a b ac b c a ⇒⎪⎩⎪⎨⎧ac ac c a b ac b c a 3-2-)+(=6=2=+22 代入后消去a ,c ,得b 2=4+23,∴b =3+1,故选B .9.C10.A二、填空题11.56.12.2.13.23.解析:设A a sin =B b sin =C c sin =k ,则C B A c b a +sin +sin sin ++=k =A a sin =︒60sin 3=23. 14.32π.15.43.16.-41.三、解答题17.解析:解三角形就是利用正弦定理与余弦定理求出三角形所有的边长与角的大小.解法1:由正弦定理得sin C =26sin 45°=26·22=23. ∵c sin A =6×22=3,a =2,c =6,3<2<6, ∴本题有二解,即∠C =60°或∠C =120°,∠B =180°-60°-45°=75°或∠B =180°-120°-45°=15°.故b =Aa sin sin B ,所以b =3+1或b =3-1, ∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.解法2:由余弦定理得b 2+(6)2-26b cos 45°=4,∴b 2-23b +2=0,解得b =3±1. 又(6)2=b 2+22-2×2b cos C ,得cos C =±21,∠C =60°或∠C =120°,所以∠B =75°或∠B =15°.∴b =3+1,∠C =60°,∠B =75°或b =3-1,∠C =120°,∠B =15°.18.解析:已知两边及其中一边的对角,可利用正弦定理求解. 解:∵B b sin =Cc sin , ∴sin C =b B c sin ⋅=360sin 1︒⋅=21. ∵b >c ,∠B =60°,∴∠C <∠B ,∠C =30°,∴∠A =90°.由勾股定理a =22+c b =2,即a =2,∠A =90°,∠C =30°.19.解析:本题主要考查利用正、余弦定理判断三角形的形状.(1)解法1:由余弦定理得a cos A =b cos B ⇒a ·(bc a c b 2222-+)=b ·(acc b a 2222+-)⇒a 2c 2-a 4-b 2c 2+b 4=0, ∴(a 2-b 2)(c 2-a 2-b 2)=0,∴a 2-b 2=0或c 2-a 2-b 2=0,∴a =b 或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.解法2:由正弦定理得sin A cos A =sin B cos B⇒sin 2A =sin 2B⇒2∠A =2∠B 或2∠A =-2∠B ,∠A ,∠B ∈(0,)⇒∠A =∠B 或∠A +∠B =2π, ∴△ABC 是等腰三角形或直角三角形.(2)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C 代入已知等式,得A A R cos sin 2=BB R cos sin 2=C C R cos sin 2, ∴A A cos sin =B B cos sin =CC cos sin , 即tan A =tan B =tan C .∵∠A ,∠B ,∠C ∈(0,π),∴∠A =∠B =∠C,∴△ABC 为等边三角形.20.解析:利用正弦定理及∠A =2∠C 用a ,c 的代数式表示cos C ;再利用余弦定理,用a ,c 的代数式表示cos C ,这样可以建立a ,c 的等量关系;再由a +c =8,解方程组得a ,c . 解:由正弦定理A a sin =Cc sin 及∠A =2∠C ,得 C a 2sin =C c sin ,即C C a cos sin 2⋅=Cc sin , ∴cos C =ca 2. 由余弦定理cos C =abc b a 2222-+, ∵b =4,a +c =8,∴a +c =2b ,∴cos C =)()(c a a c c a a +-4++222=)())((c a a c a c a +4+3-5=a c a 43-5, ∴c a 2=ac a 43-5, 整理得(2a -3c )(a -c )=0,∵a ≠c ,∴2a =3c . 又∵a +c =8,∴a =524,c =516.。

(完整版)高中数学解三角形最值

(完整版)高中数学解三角形最值

三角形中的最值(或范围)问题解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点.其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决.类型一:建立目标函数后,利用三角函数有界性来解决例1.在△ABC 中, ,,a b c 分别是内角,,A B C 的对边,且2asinA =(2b+c )sinB+(2c+b)sinC 。

(1) 求角A 的大小;(2)求sin sin B C +的最大值.变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ⋅=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边。

(1) 求角C 的大小;(2)求sin sin A B +的最大值。

解:由m n ⋅=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC所以cosC=21,从而C=60故sin sin sin sin(120)O A B A A +=+-=3sin(60 +A) 所以当A=30 时,sin sin A B +的最大值是3变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。

解:根据题意得:2R(224R a —224R c )=(2a —b)*R b2化简可得 c 2=a 2+b 2—2ab , 由余弦定理可得: C=45 , A+B=135 S=21absinC=212RsinA *2RsinB*sinC =2sinAsin(135 —A) =22R (2sin (2A+45 )+1 ∵0<A<135 ∴45 <2A+45 <315∴ 当2A+45 =90 即A=15 时,S 取得最大值2212R +。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一解三角形
1.(2011东城区4月文)(15)(本小题共13分)
在厶ABC 中,角A , B , C 的对边分别为a , b , c ,且满足,c 2bcosA .
所以 sin (A B) 2s in B cosA ,
sin (A B) 0,
在厶ABC 中,因为0 A n , 0 B n ,
...................... 6分
所以 n A 所以A B .
B n
n )解:由(I )知 a b .
4
因为cosC 一 ,
又0
A n ,所以 sinC 3.
5
5
因为△ ABC 的面积S
15 所以S
-absinC
15
,可得a
b 5.
2
2
2
由余弦定理c 2
a 2
b 2 2abcosC
10 ,
所以c .
.............. 13分
2.(2011西城区4月文)15.(本小题满分13分)
4
设 ABC 的内角A , B , C 所对的边长分别为 a , b , c ,且cosB - , b 2.
5
(I)当A 30o 时,求a 的值;(n)当 ABC 的面积为3时,求a c 的值.
4
3
解:(I)因为cosB ,所以sin B .
..................
5
5
由正弦定理一
a b
,可得一 J
10
.
......
sin A sin B sin 30
3 5 所以a 5. ............
3
1
3 (n)因为 ABC 的面积 S acsinB , sinB -,
2
5
3
所以 一 ac
3 , ac 10.
.................
10
由余弦定理b 2 a 2 c 2 2accosB ,
..................... 得 4 a 2 c 2
8
ac a 2 c 2
16,即 a 2 c 2
20.
(5)
所以(a c)2 2ac 20 , (a c)2 40 ,
..................... 所以,a c 2、10.
.....................
(I )求证:
B ; (□)若厶AB
C 的面积S
15 ,cosC
2
-,求c 的值.
5
(I )证明:因为 c 2b cosA ,由正弦定理得sin C
2sin B cosA ,
2分 4分 6分
8分 9分 10分
12分 13分
3在 ABC 中,角A , B , C 所对的边分别为a , b , c •已知c 2a , C
(i)求 si nA 的值;(n)求 cos(2A )的值.
3
解:(i)因为 c 2a , C -,
4
(i )求函数f (x)的定义域;(n )若f (x) 解:(i )由题意,sin x 0 ,
函数f (x)的定义域为{xx k ,k Z} .
.............. 4分
(n )因为
A
f (x)
2,所以、、2 sin( x ) - 2sin x ,

.............. 5分
\2( —^sin x
2 、、2
1
cosx) 2sin x , • 2 3
..............
7分 cosx sin x
1 ............... 9分
所以,x k (k Z)
3
3
由正弦定理
a
c 一得:si nA
sin A sin C
4
n)因为 sin A —,
c 2a 可知a c , A
4
4
则 cos A . 1 sin 2
A
14
4
sin 2 A 2sin A cos A
7
,cos2A c 2
2cos A
1 3
4
4
n
n 3
、21
则 cos(2A —)=cos2A
cos
si n2As in =
3
3
3
8
、、
14
5,2 14 3、7
8
4 8 4
8 . 由正弦定理可得: 3.7
a
-,所以 a '一 14 .
13分
13分
4.已知函数f(x)
.2si n(x —)
sin x
2 ,求sin2x 的值.
sin B sin A
1 将上式平方,得1 sin2x - , .............. 12分
9
8 所以sin2x .
........ 13分
9
4
5在 ABC 中,角A , B , C 所对的边分别为a , b , c ,且a 2 , cosB -.
5
所以b 13 .
3
6.在 ABC 中,角A, B,C 的对边分别为a,b,c , cosA - , C 2A .
4
(i )求 cosC 的值;(n )若 ac 24,求a,c 的值.
3 15、解:(I)因为 cosA 一 ,
4 所以 cosC cos2A 2cos 2 A 1 3 2 2(4)
1
(n)
在 ABC 中,因为cosA -,所以sin A 4
因为cosC 1 「
1 2 3-7 ,所si nC t 1 ()2
8
8
8
根据正弦定理
a c
sin A sin C '
所以a -,
又ac
24,所以a
4,c
6.
c 3
3分 -5分
-7分
9分
10分
.... 12分
(i )若b 3,求si nA 的值;(n )若
ABC 的面积S ABC
3
,求b , c 的值
解:(i ) 因为
cosB 4
,又 0 B
5
所以sin B
由正弦定理,
3 5 •
asi nB 2
得 sin A -
1 cos 2
B
2分 ...
6分
(n)因为 S ABC
1
所以丄2c
2
1
acsi nB 3,
2
3
5 所以c
由余弦定理,
b 2 a 2
c 2
2ac cos B
22 52 2 2
13分。

相关文档
最新文档