离散型随机变量及其分布律
合集下载
离散型随机变量及其分布律

路口1
路口2
P{X=0}=P(A1)=1/2,
路口3
X表示该汽车首次遇到红灯前已通过的路口的个数
路口1
路口2
路口3
P{X=1}=P( A1 A2
)
1 2
1 2
= 1/4
路口1
路口2
路口3
P{X=2}=P(A1A2 A3
)
1 2
1 2
1 2
=1/8
X表示该汽车首次遇到红灯前已通过的路口的个数
例6 “抛硬币”试验,观察正、反两面情况.
X
X (e)
0,
1,
当e 当e
正面, 反面.
随机变量 X 服从 (0—1) 分布.
其分布律为
X0 1
1
1
pk
2
2
例7 200件产品中,有190件合格品,10件不合格品, 现从中随机抽取一件,那末,若规定
X
1, 0,
取得不合格品, 取得合格品.
其中(ai a j ), (i j) ,则称 X 服从等可能分布. 例 抛掷骰子并记出现的点数为随机变量 X,
则有 X pk
12 11
66
34 11
66
56 11 66
3. 伯努利试验和二项分布 看一个试验 将一枚均匀骰子抛掷3次.
令X 表示3次中出现“4”点的次数
X的分布律是:
P{ X
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
我们把在随机时刻相继出现的事件所形成的序列, 叫做随机事件流.
§2.2离散型随机变量及其分布律

解:X 的取值为 5,6,7,8,9,10.X为离散型
并且
PX
k
C4 k 1
C150
k 5, 6, ,10
则X 的分布律可写为
X 5 6 7 8 9 10
P
1
5
15
35
70
126
252
252
252
252
252
252
验证? 分布函数?
上页 下页 返回
例2 将 1 枚硬币掷 3 次,令X:出现的正面次数与反 面次数之差.试求 X 的分布律.
解:对目标进行300次射击相当于做300重Bernoulli 试验.令:
X: 300射击中命中目标的次数.
则由题意 X ~ B300, 0.44.
由于 300 10.44 132.44,它不是整数.
因此,最可能射击的命中次数为
k0 132.44 132
其相应的概率为
PX
132
C 132 300
0.44132
把检查一只元件是否为一级品看成是一次试验, 检查 20只元件相当于做 20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数,
则 X ~ B(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1, ,20.
k
上页 下页 返回
解 以 X 记 20 只元件中一级品的只数, 则 X ~ B(20, 0.2), 因此所求概率为
k
k!
e
0
⑵ 又由幂级数的展开式,可知
k0
k
k!
e
e
k0
k
k!
e e
1
所以是分布律.
离散型随机变量及其分布律

解 由 0 p 1 ( k 0 , 1 , 2 , ), p 1 k k k 0 1 k ( ) a 得 k 1 即 a 3 1 ! k! k 03 k k0 1k 1 1 ( ) ae 3 3 e3 ! k 0 k
2. 离散型随机变量分布律与分布函数及 事件概率的关系 (1) 若已知 X 的分布律:
X
pk
0 1 2
1 2
1
实例2 200件产品中,有190件合格品,10件不合格 品,现从中随机抽取一件,那末,若规定
1 , 取得不合格品, X 0 , 取得合格品.
X
0
190 200
1
10 200
pk
则随机变量 X 服从(0-1)分布.
说明 两点分布是最简单的一种分布,任何一个只有 两种可能结果的随机现象, 比如新生婴儿是男还是 女、明天是否下雨、种籽是否发芽等, 都属于两点 分布.
p P { X x } k k
或
F ( x ) F ( x 0 ) k k k 1 , 2 , ) F ( x ) F ( x ) ( k k 1
( P { X x } P { x X x } ) k k 1 k 注 1º 离散型随机变量X的分布函数F(x)是阶
梯函数,x1, x2,· · · ,是F(x)的第一类间断 点, 而X在xk(k=1,2, · · ·)处的概率就是
F(x)在这些间断点处的跃度.
2º P { a X b }
P { a X b } P { X a } P { X b }
[ F ( b ) F ( a )] [ F ( b ) F ( b 0 )] [ F ( a ) F ( a 0 )]
2-2离散型随机变量及其分布律

松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}
离散型随机变量及其分布规律

解:
例5. 某射手连续向一目标射击,直到命中为止,
已知他每发命中的概率是p,求射击次数X 的分布列.
解: 显然,X 可能取的值是1,2,… , 为计算 P(X =k ), k = 1,2, …,
设 Ak = {第k 次命中},k =1, 2, …,
于是
P(X =1)=P(A1)=p,
P(X 2)P(A1A2 ) (1 p)p
P(X 3)P(A1A2 A3)(1 p)2p
可见 P(Xk)(1 p)k1p k1,2,
这就是所求射击次数 X 的分布列.
若随机变量X的分布律如上式, 则称X 服从
几何分布. 不难验证:
(1 p)k1p 1
k 1
几个重要的离散性随机变量模型
(0,1)分布 二项分布 波松分布
一、 (0-1)分布 (二点分布)
按Po
k
n=10 n=20 n=40 n=100 =np=1 p=0. p=0.05 p=0.02 p=0.01
0 10.349 0.3585 0.369 0.366
0
1 0.305 0.377 0.372 0.370
0
2 0.194 0.189 0.186 0.185
0
3 0.057 0.060 0.060 0.061
•• • • • • • 56 7 8 9 10
•
•
•
•
•
•
•
•
•20x
二项分布的图形特点:
X ~ Bn, p
对于固定n 及 P, 当k 增加时 , 概率P (X = k ) 先是随之增加
Pk
直至达到最大值, 随后单调减少.
当 n 1p 不为整数时, n 1p 二项概率 PX k
概率论与数理统计3.2 离散型随机变量及其分布律

(2)每次试验中事件 A 发生的概率相等, P( A) p
且 0 p1
则称这样的试验为n重伯努利(Bernoulli)试验
定理 (伯努利定理) 设在一次试验中,事件 A
发生的概率为 p(0 p 1), 则在 n 重贝努利
试验中,事件A恰好发生k次的概率为
P{ X
k}
C
k n
pk (1
解 设X:该学生靠猜测能答对的题数
则 X ~ B 5, 1
4
P至少能答对4道题 P X 4
P X 4 P X 5
C
4 5
1 4
4
3 4
1 5
4
1 64
某人进行射击,设每次射击的命中率 为0.02,独立射击400次,求至少击中 两次的概率。
称
pi P{ X xi } i 1,2,3,
为离散型随机变量X的概率分布或概率函数,也 称为分布列或分布律
表格形式
X x1 pi p1
x2 xn p2 pn
分布列的性质:
(1) pi 0 , k 1,2,
(2) pi 1
i
用这两条性质 判断一个函数 是否是分布律
解:将每次射击看成一次试验,设击中的次数 为X,则X~B(400,0.02),
P{ X
k}
C
k 400
(0.02)
k
(0.98)400
k
(k
0,1,2,..., 400)
所求概率为
P{X 2} 1 P{X 0} P{X 1}
1 (0.98)400 400(0.02)(0.98)399
2-2离散型随机变量及其分布律

4、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
P ( X 5 )
5 k 0
Ck 5000
(
1 1000
)k
(
999 1000
)5000k
离散型随机变量X b(n, p). 又设np ( 0), 则有
Cnk
pk (1
p )nk
n
k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
P(X=0)=P(A1)=1/2,
P(X 1) P(A1A2 ) P(A1)P(A2 ) 1 4 P(X 2) P(A1 A2A3 ) P(A1)P(A2)P(A3) 1 8 P(X 3) P(A1 A2 A3A4 ) P(A1)P(A2 )P(A3 )P(A4 ) 1 16 P(X 4) P(A1A2 A3 A4 ) P(A1)P(A2)P(A3)P(A4) 1 16
例3 (P30,例2) 设射手每次击中目标的概率p=0.75, 且各次射击 相互独立。现共射击4次,以X表示击中目标的次数。(1)写出X的 分布律;(2)求恰击中3次的概率;(3)求至少击中2次的概率。
解 : 定义 A {击中目标}, 伯努利试验.
X的可能取值有:0,1,2,3,4. 显然, X b(2,0.75)
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200* 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
Ck 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
离散型随机变量及其分布

定是一个离散型随机变量,其分布函数 F(x) 唯一确定.
例 2.6 设随机变量 X 的分布律为
X2
3
4
P 0.2
0.3 0.5
求 X 的分布函数,并求 P{X 2}, P{2.4 X 3.8}, P{3 X 4} .
解 当 x 2 时, F(x) P{X x} 0 ;
当 2
x 3 时,
元和 6 万元.设 X 为总公司应付出的奖金,求 X 的分布
律并计算 P{4 X 10} 和 P{X 6} .
解 X 的所有可能取值为 0,4,6,10 (单位:万元).设 Ai { 第 i 个 分 公 司 获 得 奖 金 }( i 1, 2 ), 则 P(A1) 0.8 , P(A2 ) 0.4 ,且 A1, A2 相互独立.因此
离散型随机变量 及其分布
1.1 离散型随机变量及其分布律
定义 2.3 若随机变量 X 的所有可能取值是有限个或可
列无限多个,则称此随机变量为离散型随机变量.
例如,掷骰子朝上一面的点数、一昼夜120接到的呼叫 次数等均为离散型随机变量,而某元件寿命的所有可能取 值充满一个区间,无法按一定次序一一列举出来,因而它是 一个非离散型随机变量.
显然
(1) P{X k} 0 ( k 0,1, 2, , n );
F ( x)
P{X
xi x
xi}
P{X
2}
0.2
;
当 3
x 4 时,
F ( x)
P{X
xi x
xi}
P{X
2}
P{X
3}
0.5 ;
当 x 4 时, F(x) P{X 2} P{X 3} P{X 4} 1 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C30
(1)0 3
(1
1)3 3
C31
(
1)1 3
(1
1)2 3
20 27
.
例 2.4 设某射手独立地向一目标射击 4 次,每次击中目标 的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大.
解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
反面向上,
为离散型随机变量,其分布律为
正面向上
X0 1
0 1
11 P
22
或
X
~
1
1
.
2 2
2
性质 2.1(离散型随机变量分布律的性质)设离散型随机
变量 X 的分布律为
X
~
x1 p1
x2 p2
xi pi
,
则有 ⑴ pi 0 , i 1, 2, ; ⑵
pi 1 .
i
【注】如果实数列 pi (i 1, 2, ) 满足性质 2.1 中的⑴和⑵,
则 pi (i 1, 2, ) 必能构成某离散型随机变量 X 的分布律.
结论 2.1 设 L 为任意实数集合,则 PX L pi .
结论 2.2 X 的分布函数
xi L
F(x) PX x pi , x .
3
xi x
例 2.1 设盒子中有8 个正品和2 个次品,现依次不放回地将其
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点 {1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某
产品合格与不合格;某课程的考试及格与不及格;某事件 A 发
x
1 2 3x
例 2.2
已知随机变量
X
的分布律为 P{X
i}
k 2i
,
i 1, 2, ,试求常数 k ,以及 X 取奇数的概率.
1
解
由
i 1
P{X
i}
i 1
k 2i
k
2 1 1
k
,以及分布
2
律的性质可得 k 1.由上可知, X 的分布律为
P{X
i}
1 2i
,i
1, 2,
,
所以 X 取奇数的概率为
1 x 2,
4
,
2
x
3,
5 44
,
45
4 5
8 45
1 45
,
x3
1,
x 1, 1 x 2,
2 x 3, x 3.
【注】分布函数的三个特征:
①分 n 1段;②每段上的函数值为概率累加(开始为零);
③ 每个区间为左闭右开。
5
y
4
1
5
8
45
1
45
o 1 2 3x
F ( x)
0.8 1
例 2.3 设随机变量 X ~ B(2, p), Y ~ B(3, p) ,若 P{X 1} 5 , 9
求 P{Y 1}.
解 由于 P{X 0} 1 P{X 1} ,及 P{X 1} 5 知, 9
P{X
0} C20 p0 (1
p)2
(1
p)2
4 9
,
所以 p 1 ,从而 3
P{Y 1} P{Y 0} P{Y 1}
就称上式为离散型随机变量 X 的分布律或概率分布.
1
10P1X 2
离散型随机变量 X 的分布律或概率分布也记为
X
x1
x2
xi
P
p1
p2
pi
或
X
~
x1 p1
x2 p2
xi pi
,
其中 x1, x2 , , xi , 互不相同,且可能为有限个 x1, x2 , , xn .
例
1.1
中, X
0, 1,
生与不发生等许多现象都能够刻划成0 1 两点分布,本章例
1.1 中,随机变量 X ~ B(1, 1) . 2
2.二项分布(贝努里(Bernulli)分布) 定义 2.4 如果随机变量 X 的分布律为
P{X k} Cnk pk (1 p)nk , k 0,1, 2, , n , 就称 X 服从二项分布,记为 X ~ B(n, p) ,其中n 为正整数, 0 p 1.
逐个取出,记 X 为首次取到正品时的所取产品个数,试求 X 的
分布律和分布函数 F(x) .
解 由题意知 X 的可能取值为1, 2,3 ,因此 X 为离散型随机
变量.由乘法公式和古典概型概率计算公式得 X 的分布律为
P{X 1} 8 4 , P{X 2} 2 8 8 ,
10 5
10 9 45
【注 1】 Cnk pk (1 p)nk 0 , k 0,1, 2, , n ,且
n
Cnk pk (1 p)nk [ p (1 p)]n 1 ,
k 0
故 P{X k} Cnk pk (1 p)nk 满足分布律的性质. 【注 2】又 Cnk pk (1 p)nk 为二项式[ p (1 p)]n 的展开式 中的各项,因此称 X 服从二项分布.
P{X 3} 2 1 8 1 或 1 4 8 1 ,
10 9 8 45
5 45 45
1 2 3
即
X
~
4 5
8 45
1 45
.
4
续解 利用 F(x) PX x pi , x ,可求得 xi x
X 的分布函数为
0,4,源自F(x)5 4 5
8 45
,
x 1, 0,
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念
定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就称 X 为离散型随机变量.
定 义 2.2 设 X 为 离 散型 随机 变量 ,其所 有可 能的 取值为 x1, x2 , , xi , ,且
P{X xi} pi , i 1, 2, .
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 . 可具体计算得, P{X 0} C40 0.60 0.44 0.0256 ,
1
i 1
P{X
2i 1}
i 1
1 22i1
2 1 (1)2
2. 3
7
2
二、几种常见的离散型随机变量的概率分布 1. 0 1两点分布
定义 2.3 如果随机变量 X 的分布律为 P{X k} pk (1 p)1k , k 0,1 , 0 p 1
即
X
0
1
P 1- p p
就称 X 服从 0 1两点分布,记为 X ~ B(1, p) .
由贝努里概率模型,在n 重贝努里试验中,记 X 表 示事件 A 发生的次数,则 X ~ B(n, p) ,其中 p P(A) , 因此二项分布也称为贝努里分布.
设 X ~ B(n, p) ,当 n 1 时,可得 X 的分布律为 P{X k} pk (1 p)1k , k 0,1 ,
故 0 1两点分布为二项分布中 n 1 时的特例.