轴压构件计算

合集下载

轴心受压构件计算

轴心受压构件计算

五、受压构件一般构造要求 1. 截面形式和尺寸
lo / b 30
lo / h 25
b为矩形截面短边,h为长边
2. 材料强度: 混凝土:C25、C30、C40等 钢筋:一般采用钢筋HRB400、HRB335,不宜用 高强度的钢筋
3. 纵筋:
纵向钢筋直径d>φ12,纵筋净距≥50mm,钢
筋间距不大于350mm,保护层不小于30mm;圆柱中 纵向钢筋不小于6根;
四、公式的应用 (一)截面设计
已知:压力N,材料,计算长度
求: (1)确定截面尺寸
求 (2)配受压钢筋
解:: (1)假定
, '.
(2)从 N 0.9 fyAs 0.9 fc A
解出
N
0.9 fy
AS' A
A 0.9 fc A (0.9 fy ' 0.9 fc ) A
A
0.9
N
f
' y
纵向钢筋向外凸出,构件因砼被压碎而破坏。
2.长柱 普通箍筋长柱的受力特点和破坏特征,受压 区砼被压碎,产生纵向裂缝,凸边混凝土拉裂。
四、普通钢筋柱的正截面承载力计算 (配有钢箍)Βιβλιοθήκη N0.9(f
' y
As'
fc A)
式中 N-轴向力设计值;
-钢筋砼构件的稳定系数,按表3-1取用;
f ' -钢筋抗压强度设计值; y
配筋率 ' 5%
' min
0.6%
4、箍筋:
(1)箍筋一般采用HPB235钢筋或HRB335钢筋, 直径不宜小于d/4,亦不小于6mm;d为纵筋直径。
(2)箍筋间距不大于短边尺寸, 且不应大于

钢筋混凝土轴心受压构件计算

钢筋混凝土轴心受压构件计算

3.螺旋筋不能提升强度过多,不然会造成混凝土保护层剥
落,即 N 螺 1 .5 N 普 1 .3( 5 fcA d fs ' A d s ')
§6.2 配有纵向钢筋和螺旋箍筋旳轴心受压构件
五、构造要求 1、螺旋箍筋柱旳纵向钢筋应沿圆周均匀分布,其截面积应
不不不小于箍筋圈内关键截面积旳0.5%。常用旳配筋率在
二、破坏形态
1.影响原因: (1)徐变:
●使钢筋应力忽然增大,砼应力减小(应力重分布) ●忽然卸载砼会产生拉应力。 (2)长细比:(l0/b) 2.一般箍筋柱旳破坏特征 (1)短柱破坏——材料破坏。
破坏特征:纵向裂缝、纵筋鼓起、砼崩裂。
承载能力
PSfcAfs'dAs' |
(2)长柱破坏——失稳破坏 破坏特征:凹侧砼先被压碎,
式中 为作用于关键混fc凝c土f旳c径k向2压应力值。
2
§6.2 配有纵向钢筋和螺旋箍筋旳轴心受压构件 三、承载力计算
螺旋箍筋柱正截面承载力旳计算式并应满足
0 N d ≤ N u 0 . 9 f c A c d o k s r A d s 0 f f s 'A d s '
★★螺旋筋仅能间接地提升强度,对柱旳稳定性问题 毫无帮助,所以长柱和中长柱应按着通箍筋柱计算, 不考虑螺旋筋作用。
As' f1s'd(0r0.9Nd fcdA)
2)截面复核 已知截面尺寸,计算长度l0,全部纵向钢筋旳截面面 积,混凝土轴心抗压强度和钢筋抗压强度设计值,轴向力 组合设计值,求截面承载力。
§6.1 配有纵向钢筋和一般箍筋旳轴心受压构件
五、构造要求 1.混凝土 一般多采用C25~C40级混凝土。 2.截面尺寸 ① lo /②b30 ③2尺5寸2模c5m 数化: 25,30,

轴心受压构件长细比详细计算公式及扩展

轴心受压构件长细比详细计算公式及扩展
0
cos 2 ) d
2
rd
D4 1 (
64 2
D
2
2
r 3 dr sin 2
0
0
sin 2
)
/
2 0
2
d
D3 64
( cos 2
1 2 sin 2 )
l 为构件的几何长度,其具体长度又根据混凝土,钢结构,砌体
等不同的结构形式而有所不同。
只供学习与交流
资料收集于网络,如有侵权 请联系网站删除只供学习与交流
;圆形(实): i 124 ,圆环 : i来自4(不用记 )
项次 1
2
钢结构受压杆件的容许长细比 构件名称
柱、桁架和天窗架结构 柱的缀条、吊车梁或吊车桁架以下 的柱间支撑 支撑(吊车梁或吊车桁架以下的柱 间支撑除外) 用以减少受压构件长细比的杆件
容许长细比 150
200
只供学习与交流
bh3
I
,对于
12
圆形截面来说为 I
D4 ,对于圆管截 面的惯性矩为
64
I
D4 (1
4 ) 其中
64
矩形: I
y 2 dA
d / D ,d 为圆管内径, D 为圆管外径。
h 2
y 2 b dy
h 2
2b
y2 3
h
/
2 0
bh 3 24
圆形:
I
y 2 dA
D4 12 (1
64 2 0
D 2
dr
0
2
r 2 sin
资料收集于网络,如有侵权 请联系网站删除只供学习与交流
关于受压杆件长细比的计算
1.对于轴压构件的长细比计算公式如下:
l0 i

B94-实际轴心受压构件整体稳定计算公式

B94-实际轴心受压构件整体稳定计算公式

x
x
x
x
格构式
y
x
y
x
y
x
x
x
x 焊接,翼缘为 轧制或剪切边
b类
c类
y
y
y
y
焊接,翼缘为轧
y 焊接,板件
x
制或剪切边 x
宽厚比≤20
c类
c类
轴心受压构件截面分类(板厚t≥40mm)
截面形式
对x轴
b x
y
h
轧制工字形 或H形截面
t<80mm
b类
t≥80mm
c类
y
x
x
y
焊接工字 形形截面
翼缘为焰切边
b类
y

轧制等 边角钢
对x轴
y x
y
xx
x
y
x
x
y
y
y
y
y
b类
y 轧制、焊接
x
x
轧制或 焊接
x
板件宽厚比
大于20
y x
y
x 轧制截面和翼 缘为焰切边的 焊接截面
y
x
y
x 焊接,板件 边缘焰切
对y轴 b类
轴心受压构件截面分类(板厚t<40mm)
截面形式
对x轴 对y轴
y
y
y
y
y
x
x
x
x
x
焊接
y
y
y
y
b类 b类
计算 l0
i

截面类型
查表
得到
代入公 式验算
N f
A
如何提高轴心受压构件整体稳定性 ?
由公式 N f 及 l0

轴心受压构件长细比详细计算公式及扩展

轴心受压构件长细比详细计算公式及扩展

轴心受压构件长细比详细计算公式及扩展
长细比的计算公式如下:
λ=L/d
其中,λ为长细比,L为构件的长度,d为构件的截面尺寸(一般指最小截面尺寸,如矩形截面的宽度或圆形截面的直径)。

1.普通钢筋混凝土构件:λ≤60
2.预应力混凝土短期受拉构件:λ≤35
3.预应力混凝土长期受拉构件:λ≤25
以上是常见的构件长细比限制,对于特殊构件或特殊材料,限制值可能有所不同。

在进行具体的构件设计时,需要结合实际情况进行计算和判断。

扩展的长细比计算公式如下:
1.矩形截面长细比计算公式:
-构件为矩形截面,不考虑抗弯预应力,截面面积为A,截面惯性矩为I,截面高度为h,长细比为λ,宽度为b;
-λ=L/d=L/(b/√12)=√12*L/b
-公式中√12是矩形截面抗弯构件的长细比的系数。

2.圆形截面长细比计算公式:
-构件为圆形截面,直径为d,长细比为λ;
-λ=L/d
3.T形截面长细比计算公式:
-构件为T形截面,不考虑抗弯预应力,截面上翼缘的高度为h1,宽度为b1,截面下翼缘的高度为h2,宽度为b2;
-λ=L/d=L/((b1h1+b2h2)/2)
以上是一些常见截面形状的长细比计算公式。

在实际工程设计中,可能还会有其他特殊形状的截面,需要根据具体情况进行计算。

在进行长细比计算时,需要注意以下几点:
1.计算中要考虑截面惯性矩的效应,通常会取截面最不利的惯性矩进行计算。

2.考虑截面的有效高度,对于有孔洞或开口的截面,需要减去孔洞或开口的高度。

3.不同材料的长细比限制值可能有所不同,需要根据不同材料的特性进行计算和判断。

轴心受压构件的计算长度系数

轴心受压构件的计算长度系数
轴心受压构件的计算长度系数
1
前面已经得到了两端铰接的轴心受压构件的屈曲荷载:
2EI
Pcr l 2
为了钢结构设计应用上的方便,可以把各种约束条件构件的Pcr值换算成相 当于两端铰接的轴心受压构件屈曲荷载的形式,其方法是把端部有约束的构件 用等效长度为 l0的构件来代替, ,而计算长度l0 与构件实际的几何长度之间的 关系是l0=μ l ,这里的系数μ称为计算长度系数。
A2
cosk(la)v sinka
B2
sink(l a) sinka
v
B 点的转角为 y′1(l )=kv/tanka
由B 点的变形协调条件y′1(l)=y′2(l)得到悬伸构件的屈曲方程为
kl (tanka +tankl)-tanka tankl= 0
kll
Pl EI
2EI/(l)2
EI
9
而ka=kαl=απ/μ ,这样屈曲方程为
2.0 2.0 6
悬伸轴心受压构件
如图 (a)所示悬伸轴心受压构件在图示支撑架平面内的计算长度系数。AB 段的长 度为l ,BC 段的长度为a,而a=αl ;顶端的水平杆对柱无约束。图(b)即为所研究 的悬伸轴心受压构件ABC ,它的计算简图如图 (c) 所示,构件弯曲后顶端的挠度 为v。
P C a
对于均匀受压的等截面直杆,此系数取决于构件两端的约束条件。这样一 来,具有各种约束条件的轴心受压构件的屈曲荷载转化为欧拉荷载的通式是:
2EI Pcr ( l ) 2
2
讨论:
2 EI Pcr (l )2
1、Pcr与E、I、l、μ有关,即与材料及结构的形式均有关;
2、Pcr与EI成正比,不同的方向EI不一样,压杆要求EI 在 各方向上尽可能相差不大,且其数值尽可能大;

轴心受压构件的计算长度系数

轴心受压构件的计算长度系数

3、Pcr与EI、l、μ有关,同一构件,不同的方向,I不同,
μ不同,视综合情况而定;
4、端约束越强,Pcr越大,越不易失稳; 5、为了保证不同的方向μ尽可能相同,端约束用球铰,
这样,各方向有较一致的约束;
6、Pcr非外力也非内力,是反映构件承载能力的力学量。
构件截面的平均应力称为屈曲应力:
cr
屈曲应力超过屈服强度的在图中用虚线表示,f y=235N/mm2 计算长度 系数的理论值可以写为:
cr
pE Pcr
2EI
l 2 Pcr
项次 支承条件
1 两端铰接
2 两端固定
3
上端铰接 下端固定
4
上端平移 但不转动 下端固定
5
上端自由 下端固定
6
上端平移 但不转动 下端铰接
变形曲线 l0=μl
P C a
P P
C
B
P
C a
B
v Pv/l
l A (a)
EI
l
y
x x
A
Pv/l
P (b)
y A
P (c)
悬伸轴心受压构件
当0<x<l时,平衡方程为: EIy″ +Py+Pvx/l=0
P
令: k 2 P
C
EI
a
则: y″ +ky+kvx/l=0
其通解为: l

y A1 sin kx B1 cos kx l x
kl (tanka +tankl)-tanka tankl= 0
kl l P l 2EI / (l)2
EI
EI

而ka=kαl=απ/μ ,这样屈曲方程为

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算

轴心受压构件正截面承载力计算首先,要计算轴心受压构件的正截面承载力,我们需要了解构件的几何参数,例如截面的尺寸和形状,以及构件的材料特性,如弹性模量和抗压强度等。

下面介绍一种常用的计算方法,即欧拉公式。

欧拉公式适用于细长的杆件,可以计算其承载力。

根据欧拉公式,轴心受压构件的正截面承载力可以表示为:Pcr = (π^2 * E * I) / (Lr)^2其中,Pcr 是构件的临界承载力,E 是构件的弹性模量,I 是构件截面的惯性矩,Lr 是约化长度。

对于不同的构件形状,惯性矩I的计算公式也不同。

以下是一些常见形状的惯性矩计算公式:1.矩形截面:I=(b*h^3)/12,其中b是截面的宽度,h是截面的高度;2.圆形截面:I=π*(d^4)/64,其中d是截面的直径;3.方管截面:I=(b*h^3-(b'*h')^3)/12,其中b是外边框的宽度,h是外边框的高度,b'是内边框的宽度,h'是内边框的高度。

约化长度Lr的计算取决于构件的边界条件。

以下是一些常见边界条件的约化长度计算公式:1.双端固定支承:Lr=L;2.一端固定支承、一端支座支承:Lr=0.7*L;3.双端支座支承:Lr=2*L。

通过使用上述公式,我们可以计算出轴心受压构件的正截面承载力。

需要注意的是,上述公式是基于一些理想化假设和条件下推导得出的,实际工程中还需要考虑一些因素,例如构件的稳定性和局部细部构造等。

因此,在实际设计中,应该根据具体情况综合考虑各种因素,并结合相关的规范和标准进行设计和验证,以确保构件的安全性和可靠性。

总之,轴心受压构件正截面承载力计算是工程设计中的重要环节。

通过合理的参数选择和计算,可以确定构件能够安全承受的最大压力,从而保证结构的安全和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

受压构件计算
例4-1:某现浇多层钢筋混凝土框架结构,底层中柱按轴心受压构件计算。

柱高H=6.4m ,轴力设计值N=2450KN ,采用C30混凝土,HRB335级钢筋。

求柱截面尺寸,并配置纵筋和箍筋。

[解]:1、估算截面尺寸
设配筋率ρ'=0.01,,1=ϕ由公式(规范7.3.1)
3
'157354)
30001.03.14(0.19.0102450)
(9.0f f N
A y c =⨯+⨯⨯⨯='+=
ρϕ
正方形截面边长mm A b 7.396==,取b 400=2、求稳定系数
柱计算长度H l 0.10=(规范7.3.11),164006400
0==
b l ,查表得87.0=ϕ(规范7.3.1)。

3、计算配筋
由公式 ''
9.0y c s f A f N
A -=ϕ=300
4003.1487.09.01024502
3⨯-⨯⨯23.2803mm =
选择(=3041mm 2),ρ=(3041/4002)=1.9%。

箍筋配置 >22/4,s <15×22=330,钢筋配置见上图。

例4-2: 某宾馆门厅现浇钢筋混凝土柱,采用圆形截面,直径d=500mm ,承受轴向压力设计值N=3250kN 。

柱高H =8m ,计算长度l 0=0.7H 。

采用C30级混凝
土,纵筋采用HRB335级钢筋,箍筋采用HPB235级钢筋。

求该柱的配筋。

解:1、基本参数
取混凝土保护层厚度C=25mm ,则有
22
1590004
,450252500mm d A mm d cor
cor cor ===⨯-=π
先初步确定纵筋为
20(规范10.3.1),由 表查得2
'2513mm A s =
C30级混凝土235
,3.14HPB MPa f c =级钢筋MPa f y 210=。

2、计算螺旋箍筋
由(规范7.3.2-1)确定螺旋箍筋的换算面积,C30级混凝土,取螺旋箍筋影响
系0.1=α,
y
s y cor c sso
f A f A f N
A α29.0'
'--= =23
3.1389210
0.122513
3001590003.149.0103250mm =⨯⨯⨯-⨯-⨯
'
2'25.0,25.62825.0s sso s A A mm A >=(规范7.3.2注2) 设螺旋箍筋直径为8mm ,由表查得2
13.50mm A ss =。

由(规范7.3.2-2)
mm
A A d S ss ss cor 2.513
.13893.5045014.30
1
=⨯⨯==
π 取40mm <mm S 50=<mm d cor
905
=及80mm ,(规范10.3.3)满足构造要求。

3、轴心受压普通钢筋柱计算承载力(规范7.3.2注1)
122.11500
80007.00<=⨯=d l (规范7.3. 2注2),查表,962.0=ϕ 按(规范7.3.1)计算,
KN
A f A f N s y c 3084)25133004
500
3.14(962.09.0)(9.02
''=⨯+⨯⨯⨯⨯=+=πϕ螺旋箍筋柱承载力KN N 3250=小于 1.5倍普通钢箍柱承载力
)462630845.1(KN =⨯,满足要求。

相关文档
最新文档