恒流恒压电路方案(参考模板)

合集下载

几种简单的恒流源电路

几种简单的恒流源电路

几种简单的恒流源电路恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。

1.由7805组成的恒流电路,电路图如下图1所示:电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以这个电路在精度要求有些高的场合不适用。

2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R(Vref=1.25),Iadj的输出电流是微安级的所以相对于Io可以忽略不计,由此可见其恒流效果较好。

3.由PQ30RV31组成的恒流电路如图3所示,I=Vref/R(Vref=1.25),他的恒流会更好,另外他是低压差稳压IC。

摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。

设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA 范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。

人机接口采用4×4键盘及LCD 液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。

关键字:数控电流源SPCE061A模数转换数模转换采样电阻一、方案论证根据题目要求,下面对整个系统的方案进行论证。

方案一:采用开关电源的恒流源采用开关电源的恒流源电路如图1.1所示。

当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。

BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。

当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。

图 1.1采用开关电源的恒流源优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。

基于tl431的恒压恒流电路

基于tl431的恒压恒流电路

基于tl431的恒压恒流电路基于TL431的恒压恒流电路恒压恒流电路是一种常用的电路设计,它能够提供稳定的电压和电流输出,适用于许多电子设备和实验室应用。

基于TL431的恒压恒流电路是其中一种常见的实现方案。

TL431是一种具有可调节参考电压的精密电压比较器。

它可以通过调整参考电压来实现恒压或恒流输出。

在恒压恒流电路中,TL431被用作反馈元件,对输出电压和电流进行监测和控制。

在恒压恒流电路中,TL431的引脚可以连接到负载电路的输出端和负载电流传感器之间。

通过在TL431的控制引脚上加上一个电阻网络,可以对其参考电压进行调整。

当负载电路的电压或电流超过设定的阈值时,TL431会自动调整输出来保持恒定的电压或电流。

为了实现恒压输出,可以将TL431的控制引脚连接到一个电压分压电阻网络。

该网络将输出电压与参考电压进行比较,并将差异信号反馈给TL431。

通过调整电阻网络的比例,可以设置所需的恒定输出电压。

当负载电路的电压下降时,TL431会自动调整输出电流以保持恒定的电压输出。

而要实现恒流输出,可以将TL431的控制引脚连接到一个电流传感器。

该传感器用于监测负载电路的电流,并将差异信号反馈给TL431。

通过调整电流传感器的灵敏度,可以设置所需的恒定输出电流。

当负载电路的电流变化时,TL431会自动调整输出电压以保持恒定的电流输出。

基于TL431的恒压恒流电路具有许多优点。

首先,它能够提供稳定的输出电压和电流,适用于对电源要求较高的应用。

其次,它具有很高的精度和稳定性,可以满足精密测量和实验要求。

此外,它还可以提供快速响应的调整速度,以适应负载电路的变化。

然而,基于TL431的恒压恒流电路也存在一些局限性。

首先,由于TL431是一个有源元件,它需要一定的电源供电才能正常工作。

其次,由于电阻网络和电流传感器的误差,恒压恒流电路的输出可能存在一定的偏差。

最后,由于TL431的工作原理和特性,它在高温或高压环境下可能会受到影响。

某恒压恒流电源的电路图及解释

某恒压恒流电源的电路图及解释

图解电源(转贴,讲得非常好)电源是最常用的电器,作用是把220V交流转变成需要的直流电,供各种电器使用。

除了商品上各种独立的电源外,我们常见的各种适配器、充电器、机箱里用的模块化的(比如计算机用的),都可以认为是电源。

对于动手一族(DIY族),电源不仅是最常用的工具,往往也是DIY的对象。

也就是说,电源本身构造相对简单,往往可以DIY。

按照类别,电源可以分成线性电源和开关电源两类。

线性电源是先采用工频变压器降压,然后整流滤波,再用线性调整管进行稳压的方式,性能可以做得比较好。

开关电源是先整流滤波,然后高频振荡,再变压,再整流滤波。

由于初始滤波电容电压比较高,因此比能量比较大所以体积比较小,更因为高频振荡频率比工频高得多,因此变压器的体积和重量大大减少,再加上可以采用PWM反馈调节的方式,使得开关电源的效率很高,因此也不需要大体积的散热片,这样,开关电源的体积、重量与同功率的线性电源比大大减少。

但是,由于采用高频振荡,其谐波很可能向外发射或通过输出电源和输出电源传到外部,对通讯设备造成干扰。

值得注意的是,这种干扰并非是全频段的,而是在一些频率上(主要是谐波)有干扰。

同时,由于开关电源频率的不确定性,因此干扰频率也是不确定的,大多是变化的。

因此,不能简单的用收音机或者电台检查几个频点没有发现有干扰,就能确定某开关电源对通讯设备没有干扰。

正规的检查方法是要用频谱仪。

另外,有些电源是固定输出的,有些电源的电压可以在一定范围内可调,还有一些电源可以从0V起调。

可调的线性电源要解决好低压输出效率低下的问题,而可调的开关电源要解决大范围占宽比变化的问题。

大部分电源具备输出显示。

一般至少有一个电压表,也有的具备电流表,也有的是电压电流可以转换。

根据电压、电流表的类型,可以分成模拟显示电源和数字显示电源,前者用模拟表头显示,而后者用数字表显示。

数字显示电源有的是3位显示,也有高精度一些用4位表头显示,甚至更高的位数。

基于单片机恒压恒流源的设计样本

基于单片机恒压恒流源的设计样本

恒压、恒流源设计学校:专业:电气工程及其自动化带队教师:参赛队员:第一章前言 (3)第二章方案论证 (4)第三章整体设计思路 (5)1)、整体主电路框图2)、整体框图3)、电源主体4)、控制电路第四章单元电路 (7)1)、充电电流取样检测电路2)、充电电压取样检测电路3)、检查及保护电路4)、时钟芯片DS1302辅助电路5)、1602液晶显示模块第五章软件设计 (13)第七章结论 (14)附页前言铅酸蓄电池是当前世界上广泛使用一种化学电源,该产品具备良好可逆性,电压特性平稳,使用寿命长,合用范畴广,原材料丰富(且可再生使用)及造价低廉等长处而得到了广泛使用。

是社会生产经营活动中不可缺少产品。

但是,若使用不当,其寿命将大大缩短。

影响铅酸蓄电池寿命因素诸多,而采用对的充电方式,能有效延长蓄电池使用寿命。

研究发现:电池充电过程对电池寿命影响最大,放电过程影响较少。

也就是说,绝大多数蓄电池不是用坏,而是“充坏”。

由此可见,一种好充电器对蓄电池使用寿命具备举足轻重作用。

并且,老式充电器充电方略比较单一,只能进行简朴恒压或者恒流充电,以致充电时间很长,充电效率减少。

此外,充电即将结束时,电池发热量很大,从而导致电池极化,影响电池寿命。

针对上述问题,设计了一种智能充电器,尽量延长铅酸蓄电池使用寿命。

第二章方案论证一、方案论证与比较1.1控制器选取方案1:采用AT89S52单片机,该单片机做为典型单片机,以便使用,价格便宜,较长使用;但其功能单一,使用中需要外加各种其她电路,增长外围电路设计及成本;方案2:选取STC12C5A60S2单片机,此款作为本控制器自身带有AD转换、捕获、PWM等功能,可减少外围设计且价格适中,开发周期短,编程及调试环境简朴,容易实现;方案3:选取PIC16F1829单片机,本款控制器功能齐全,属于当前高品位8位MCU,其工作速度快,功耗低,可靠性高,但其开发调试环境都需要专门调试器,不利于任务完毕。

XL6019 30W升压恒压恒流方案(官方版)

XL6019 30W升压恒压恒流方案(官方版)
Efficiency VS Output current
100 95 90 85
Efficiency(%)
80 75 70 65 60 55 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
VIN=12V,VOUT=24V
Output current(A)
XL6019
Recommend output current safe work range
VOUT=12V Output current(mA)
VOUT=24V
2000 1800 1600 1400 1200 1000 800 600 400 200 0
Ouput current(mA)
8
9
10
11
典型系统应用(VIN=10~32V,VOUT=36V) XL6019
图 13. XL6019 系统参数测量电路(VIN=10~32V,VOUT=36V)
Efficiency VS Output current
100 95 90 85
Efficiency(%)
80 75 70 65 60 55 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
VIN=12V,VOUT=36V VIN=24V,VOUT=36V
Output current(A)
图14. XL6019系统效率曲线
9
Datasheet
220KHz 60V 5A开关电流升压/升降压型DC-DC转换器
典型系统应用(VIN=20~40V,VOUT=48V)
L1 47uH/5A D1 B560C

恒压、恒流源数电设计报告

恒压、恒流源数电设计报告

电路设计--恒压、恒流源电路设计报告专业:测控技术与仪器班级:姓名:学号:邮件:手机:一、恒流当开关合上即将R2短路时,VF1超过限定电压5V时,U4输出为低,则电流将会流经二极管SD1和U4迫使VF1降为5V,故VF1最大为5V。

而VF2最大为10V,输出电流Io=10V/(10R3)=100mA则负载的临界值为R0=5V/100mA=50欧当负载R4为0~50欧之间时,经仿真输出电流恒为100mA,此时为恒流状态。

二、恒压开关断开,负载电压V o最大为10V,但VF2受到U4的限制,其输出超过设定电压5V时,降为5V,故VF2最大为5V,所以此时输出电流Io为50mA,则负载的临界值为R=10V/50mA=200欧当负载R4<200欧时,经仿真Io=50mA,为恒流状态;当负载R4>200欧时,经仿真V o=10V,为恒压状态。

三、既非恒压又非恒流1、设电源电压V3=5V,V6=10V,开关打到恒流模式时,当R4>9.4欧时,Vo=5V,电路处于恒压状态,工作在第四象限;此外电路既非恒压也非恒流状态。

2、设电源V3=5V,V6=-10V,开关打到恒流模式时,当VF1(或Vo)处于-10V~5V时,经计算与仿真,负载电阻R4在50~200欧范围内时为恒流状态,恒定电流为100mA,电路工作于第一或第四象限;R4在14.7~50欧之间,V o=-10V,为恒压状态,工作于第二象限;R4>200欧时,V o=5V,电路处于恒压状态,工作在第一象限;此外既非恒流也非恒压。

3、设电源电压V3=-5V,V6=10V,开关打到恒流模式时,负载电阻R4在100~250欧之间时为恒流模式,此时恒定电流为-100mA,电路工作于第三或第四象限;经仿真,R4在10~100欧之间时,V o=5V,电路为恒压状态,工作于第四象限;R4>250欧时,V o=-10V,电路处于恒压状态,工作在第三象限;此外既非恒流又非恒压。

高中物理实验专题:72《恒压源恒流源》

高中物理实验专题:72《恒压源恒流源》

实验七十二 恒压源、恒流源实验目的通过实验理解恒压源与恒流源的原理。

实验原理恒压源可以定义为电动势恒定、内阻为零的电压源。

其回路的总电流改变时,端电压保持不变。

直接应用集成电路7805构造实验电路,实验电原理见图72-1a 。

恒流源可以定义为电动势和内阻都为无穷大,并且电动势与内阻之比为定值的电压源。

当回路中外电路的电阻改变时,端电压随之改变,但总电流保持不变。

利用三极管的输出特性构造实验电路,实验电原理见图72-1b 。

实验器材朗威®DISLab 、计算机、朗威®系列电学实验板EXB-12、13(图72-2a 、图72-2b )、学生电源、滑动变阻器、导线若干。

实验装置图见图72-3a 、图72-3b 。

图72-2b 朗威®系列电学实验板EXB-13图72-2a 朗威®系列电学实验板EXB-12图72-1b 使用7805构造实验电路图72-1a 使用三极管构造实验电路实验过程与数据分析1.将电压和电流传感器分别接入数据采集器;2.恒压源实验,将电压、电流传感器的测量夹分别与电学实验板的U 、I 连接,外接滑动变阻器于W ;3.打开计算表格,调节滑动变阻器W 1的触点,“点击记录”一组数据(图72-4),可以观察到电流变化时,电压保持恒定;4.恒流源实验,将电压、电流传感器的测量夹分别与电学实验板的U 、I 连接,外接滑动变阻器于W ;5.打开计算表格,点击“新建”,调节滑动变阻器W ,点击记录一组数据(图72-5),可以观察到电压在变化时,电流保持不变。

图72-3a 恒压源实验装置图图72-3b 恒流源实验装置图图72-4 实验数据注意恒压实验时,电流大于0.05A 的时间不要过长,做完实验后应及时断开K 。

图72-5 实验数据。

恒流电路的三种设计方案

恒流电路的三种设计方案

恒流电路的三种设计方案
作为(硬件)研发工程师相信对恒流电路不会陌生,本文介绍下三种恒流电路的原理图。

三极管恒流电路
三极管恒流电路
三极管的恒流电路,主要是利用Q2三极管的基级导通电压为0.6~0.7V这个特性;当Q2三极管导通,Q1三极管基级电压被拉低而截止,负载R1不工作;负载R1流过的(电流)等于R6电阻的电流(忽
略Q1与Q2三极管的基级电流),R6电阻的电流等于R6电阻两端的0.6~0.7V电压除以R6电阻阻值(固定不变),因此流过R1负载的电流即为恒定不变,即使R1负载的(电源)端VCC电压是可变的,也能达到恒流的电路效果。

运放恒流电路
运放恒流电路
运放的恒流电路,主要是利用运放的“电压跟随特性”,即运放的两个输入引脚(Pi)n3与Pin2电压相等电路特性;当在电阻R4输入Vin稳定电源电压时,电阻R7两端的电压也为Vin不变,因此无论外
界电路如何变化,流过R7电阻的电流是不变的;同三极管恒流(电路原理)分析一样,R2负载的电流等于R7电阻的电流,所以即使R2负载的电源为可变电压电源,R2负载的电流也是保持固定不变,达到恒流的效果。

除去运用三极管与运放设计的恒流电路,(芯片)哥介绍另外一种恒流(电路设计)方案,主要是利用稳压(二极管)的稳压特性。

稳压二极管恒流电路
稳压二极管恒流电路
稳压二极管的恒流电路中,三极管Q4的基级电压被限定在稳
压二极管工作的稳定电压Uzd下,因此R10电阻的电压等于Uzd减去三极管基级与发射级的导通压降0.7V,即U=Uzd-0.7保持恒定不变,所以流过R10电阻的电流在VCC电源即使可变的条件下也是固定不变,也就是R8负载的电流保持不变,达到恒流的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LED路灯是低电压、大电流的驱动器件,其发光的强度由流过LED的电流决定,电流过强会引起LED的衰减,电流过弱会影响LED的发光强度,因此LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。

用市电驱动大功率LED 需要解决降压、隔离、PFC(功率因素校正)和恒流问题,还需有比较高的转换效率,有较小的体积,能长时间工作,易散热,低成本,抗电磁干扰,和过温、过流、短路、开路保护等。

本文设计的PFC开关电源性能良好、可靠、经济实惠且效率高,在LED路灯使用过程中取得满意的效果。

1 基本工作原理
采用隔离变压器、PFC控制实现的开关电源,输出恒压恒流的电压,驱动LED路灯。

电路的总体框图如图1所示。

LED抗浪涌的能力是比较差的,特别是抗反向电压能力。

加强这方面的保护也很重要。

LED路灯装在户外更要加强浪涌防护。

由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。

因此LED驱动电源应具有抑制浪涌侵入,保护LED不被损坏的能力。

EMI滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。

三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。

主开关DC/AC电路将直流电转换为高频脉冲电压在变压器的次级输出。

变压器输出的高频脉冲经过高频整流、LC滤波和EMI滤波,输出LED路灯需要的直流电源。

PWM控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。

反馈网络采用恒流恒压器件TSM101和比较器,反馈信号通过光耦送给PFC器L6561。

由于使用了PFC器件使模块的功率因数达到0.95。

2 DC/DC变换器
DC/DC变换器的类型有多种,为了保证用电安全,本设计方案选为隔离式。

隔离式DC/DC变换形式又可进一步细分为正激式、反激式、半桥式、全桥式和推挽式等。

其中,半桥式、全桥式和推挽式通常用于大功率输出场合,其激励电路复杂,实现起来较困难;而正激式和反激式电路则简单易行,但由于反激式比正激式更适应输入电压有变化的情况,且本电源系统中PFC输出电压会发生较大的变化,故DC/DC变换采用反激方式,有利于确保输出电压稳定不变。

反激式开关电源主要应用于输出功率为5~150 W的情况。

这种电源结构是由
Buck-Boost结构推演并加上隔离变压器而得到,如图2所示。

在反激式拓扑中,由变压器作为储能元件。

开关管导通时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。

图中T1为高频隔离变压器,VQ1为CMOS功率三极管17N80C3,VD7和VD8是瞬变抑制二极管,VD6为快恢复二极管,VD5为双二极管,C3、C4、C5和C6为电解电容器。

Ubout是来自整流桥的脉动直流信号,GD是来自功率因数校正电路的控制信号。

变压器的引线l和2组成一个绕组,给PFC器件提供工作电源,引线11和12组成一个绕组,为恒流恒压器件和比较器提供工作电源。

3 反馈网络电路
3.1 恒流恒压电路
本设计使用恒流恒压控制器件TSM101调节输出电压和电流,使之稳定。

电路如图3所示。

通过TSM101的控制作用,保证了电源恒流(CC)和恒压(CV)工作。

图3中,Uout+和Uout-是隔离变压器经过双二极管和电解电容器滤波的电压,再经电感L4和电容滤波后的输出为Uout+和Uout-,为本电源模块的输出电压,直接加在LED路灯上。

可调电阻器RV1和RV2分别调节输出电压和电流的大小。

R10和R11为22 mΩ的电阻,分别对电源输出的电压和电流采样。

TMS101的输出TOUT通过光电耦合器、可控硅和三极管等电路送到L6561的引脚5,通过反馈电路实现恒流控制。

器件引脚8接辅助电源,引脚4接变压器T1副边地。

3.2 比较器电路
采用比较器LM258,电路如图4所示。

相关文档
最新文档