恒流恒压电路方案
Lm358恒压恒流控制回路工作原理及参数计算

Lm358恒压恒流控制回路工作原理及参数计算1.精密恒压/恒流控制环的工作原理精密恒压/恒流控制环的单元电路如图所示。
IC2为低功耗双运放LM358,内部包括IC2A和IC2B两个运放。
该电路具有以下特点:①利用IC2B、取样电阻R3和R4、IC3构成电压控制环,IC2A则组成电流控制环;②电压控制环与电流控制环按照逻辑“或门”的原理工作,即在任何时刻,输出为高电平的环路起控制作用。
IC2A为电流控制环中的电压比较器,其同相输入端接电流检测信号UR6,反相输入端接分压器电压UFY。
分压器是由R9、R10和TL431构成的。
IC2A将UR6与UFY 进行比较后,输出误差信号U r2,再通过D4和R1变成电流信号,流入光耦合器中的LED,进而控制PWM控制器的占空比,使电源输出电流I OH在恒流区内维持恒定。
显然D3和D4就相当于一个“或门”。
若电流控制环输出为高电平,电压控制环输出低电平,则电源工作在恒流输出状态;反之,电压控制环输出为高电平,电源就工作在恒压输出状态。
2.精密恒压/恒流控制环的电路设计(1)电压控制环的设计。
该电源在恒压区内的输出电压依下式而定U O=U REF R3+R4R4=2.5V×(1+R3R4)R3与R4的串联总阻值应取得合适,阻值过大易产生噪声干扰,阻值过小会增加电路损耗。
通常可取R=10.0kΩ,代入式中求出R=50.1kΩ。
与之最接近的标准阻值为49.9kΩ。
(2)电流控制环的设计。
该电源恒流输出的期望值I OH由下式而定I OH=U REF R9 R6R10选择R9的阻值时,应当考虑负载对TL431的影响以及LM358输入偏流所产生的误差。
一般取R9=2kΩ。
当R6=0.1Ω、I OH=2A时,电流检测信号UR6=O.2V。
将U REF=2.50V和R9、R6值一并代入式中计算出R10=25kΩ。
锂电池充电器中恒流恒压控制电路的设计

锂电池充电器中恒流恒压控制电路的设计应建华,陈建兴,唐 仙,黄 杨(华中科技大学电子科学与技术系,武汉 430074)摘 要: 设计了一种采用开漏输出MOS管取代二极管的恒流恒压控制电路,对电路处于过渡区的原理进行了详细分析;通过在放大器内部引入负反馈的方式,优化了恒流向恒压过渡时的稳定性。
电路采用德国XFAB公司的0.6μm BiCMOS工艺模型,得到最终测试电压为4.192V,充电精度为0.19%。
关键词: 恒流;恒压;锂电池充电器;过渡区中图分类号: TN432 文献标识码: A文章编号:100423365(2008)0320445204 Design of Constant2Current/Constant2Voltage R egulation Loopin Li2ion B attery ChargerYIN G Jianhua,C H EN Jianxing,TAN G Xian,HUAN G Yang (Dept.of Elect ronic S cience and Technolog y,H uaz hong Universit y of Science&Technolog y,W uhan430074,P.R.China) Abstract: A constant2current/constant2voltage regulation circuit was designed using open2drain MOSFET to re2 place diode.The principle of the transition was analyzed in detail.The stability of the system was improved by in2 troducing negative feedback into amplifier.The circuit was implemented in XFAB’s0.6μm n2well BiCMOS mixed2 signal technology.Test results showed that the circuit had a constant voltage of4.192V and an accuracy error of only0.19%.K ey w ords: Constant current;Constant voltage;Li2ion battery charger;Transition regionEEACC: 2570F1 引 言锂离子电池具有较高的能量重量比、无记忆效应、可重复充电多次、使用寿命长、价格低等优点。
ap4310恒流恒压电路原理

ap4310恒流恒压电路原理AP4310恒流恒压电路是一种常见的电路设计,主要用于稳定输出电流和电压。
它由一个集成电路和几个外部元件组成,可以实现对负载的精准控制和保护。
恒流恒压电路的原理是利用负反馈控制的原理,通过不断调整输出电流和电压来维持恒定的数值。
在这个电路中,AP4310是一个常用的负反馈控制器,它能够感知输出端的电流和电压,并根据设定值进行调整,以达到恒流和恒压的目标。
在恒流恒压电路中,AP4310起到了关键作用。
它可以通过调整电流样品电阻的电压来控制输出电流,通过调整电流样品电阻的电流来控制输出电压。
在电路中,AP4310通过比较采样电压和参考电压的大小来调整输出电流和电压。
当电流或电压偏离设定值时,AP4310会输出一个负反馈信号,通过控制外部元件的工作状态来调整输出电流和电压,使其保持在恒定的数值。
为了保证恒流恒压电路的稳定性和精确性,需要合理选择外部元件的参数。
例如,电流样品电阻的阻值决定了输出电流的大小,而电流样品电阻的功率决定了电路的稳定性。
此外,恒流恒压电路还可以添加过流保护和过压保护等功能,以提高电路的安全性和可靠性。
在实际应用中,恒流恒压电路有着广泛的应用。
例如,它可以用于电池充电器中,通过控制输出电流和电压,实现对电池的快速充电和保护。
此外,恒流恒压电路还可以用于LED驱动电路、恒温恒湿设备等领域,以实现对负载的精准控制和保护。
AP4310恒流恒压电路是一种常见的电路设计,通过负反馈控制实现对负载的恒流和恒压控制。
它具有稳定性高、精度高和可靠性强的特点,广泛应用于各个领域。
在实际应用中,需要合理选择外部元件的参数,并添加必要的保护功能,以确保电路的稳定性和安全性。
基于tl431的恒压恒流电路

基于tl431的恒压恒流电路基于TL431的恒压恒流电路恒压恒流电路是一种常用的电路设计,它能够提供稳定的电压和电流输出,适用于许多电子设备和实验室应用。
基于TL431的恒压恒流电路是其中一种常见的实现方案。
TL431是一种具有可调节参考电压的精密电压比较器。
它可以通过调整参考电压来实现恒压或恒流输出。
在恒压恒流电路中,TL431被用作反馈元件,对输出电压和电流进行监测和控制。
在恒压恒流电路中,TL431的引脚可以连接到负载电路的输出端和负载电流传感器之间。
通过在TL431的控制引脚上加上一个电阻网络,可以对其参考电压进行调整。
当负载电路的电压或电流超过设定的阈值时,TL431会自动调整输出来保持恒定的电压或电流。
为了实现恒压输出,可以将TL431的控制引脚连接到一个电压分压电阻网络。
该网络将输出电压与参考电压进行比较,并将差异信号反馈给TL431。
通过调整电阻网络的比例,可以设置所需的恒定输出电压。
当负载电路的电压下降时,TL431会自动调整输出电流以保持恒定的电压输出。
而要实现恒流输出,可以将TL431的控制引脚连接到一个电流传感器。
该传感器用于监测负载电路的电流,并将差异信号反馈给TL431。
通过调整电流传感器的灵敏度,可以设置所需的恒定输出电流。
当负载电路的电流变化时,TL431会自动调整输出电压以保持恒定的电流输出。
基于TL431的恒压恒流电路具有许多优点。
首先,它能够提供稳定的输出电压和电流,适用于对电源要求较高的应用。
其次,它具有很高的精度和稳定性,可以满足精密测量和实验要求。
此外,它还可以提供快速响应的调整速度,以适应负载电路的变化。
然而,基于TL431的恒压恒流电路也存在一些局限性。
首先,由于TL431是一个有源元件,它需要一定的电源供电才能正常工作。
其次,由于电阻网络和电流传感器的误差,恒压恒流电路的输出可能存在一定的偏差。
最后,由于TL431的工作原理和特性,它在高温或高压环境下可能会受到影响。
开关电源恒流恒压原理

开关电源恒流恒压原理
一、开关电源工作原理
开关电源是指通过开关电路控制电源输出电压和电流的一种电源设备。
其工作原理是通过开关管对电路进行开关控制,使输入电压产生高频振荡,经过整流、滤波、稳压等处理,最终输出稳定的电压和电流。
二、恒压工作原理
开关电源恒压是指在负载发生变化时,能够自动调整输出电压,使输出电压稳定不变。
其实现原理是通过反馈控制电路,检测输出电压,根据反馈信号自动调整开关管的导通时间,从而实现输出电压的稳定性。
三、恒流工作原理
开关电源恒流是指在负载变化时,能够自动调整输出电流,使输出电流稳定不变。
其实现原理是通过检测负载电流,通过反馈控制电路,调整开关管的导通时间,从而实现输出电流的稳定性。
ap4310恒流恒压电路原理

ap4310恒流恒压电路原理AP4310是一种常用的恒流恒压电路,可以用于电池充电、LED驱动等应用中。
它的工作原理是通过反馈控制,使输出电流保持恒定,同时保持输出电压恒定。
恒流恒压电路的设计目的是为了保持输出电流和输出电压的稳定性,以满足特定的应用需求。
在电池充电应用中,恒流恒压电路可以根据电池的特性,控制充电电流和充电电压,以实现高效、安全的充电过程。
在LED驱动应用中,恒流恒压电路可以保持LED的亮度稳定,延长LED的使用寿命。
AP4310是一种集成了恒流恒压控制功能的电路芯片。
它包括一个比较器、一个误差放大器和一个可调电流源。
比较器用于比较输出电流和参考电流,根据比较结果调整误差放大器的输出电压。
误差放大器的输出电压通过可调电流源驱动负载电流,从而实现恒流输出。
同时,AP4310还集成了过流保护和过温保护功能,以确保电路的安全运行。
恒流恒压电路的工作过程如下:首先,根据应用需求设置恒流和恒压的目标值。
然后,AP4310通过比较器和误差放大器实现对输出电流和输出电压的反馈控制。
当输出电流小于目标值时,比较器会调整误差放大器的输出电压,从而增大负载电流;当输出电流大于目标值时,比较器会相应调整误差放大器的输出电压,以减小负载电流。
同时,AP4310还可以根据过流保护和过温保护功能,对电路进行保护,以防止负载过载和温度过高。
恒流恒压电路的设计需要考虑多个因素。
首先是选择合适的电路拓扑结构,常见的有线性稳压电路和开关稳压电路。
线性稳压电路简单可靠,但效率较低;开关稳压电路效率较高,但设计和调试难度较大。
其次是根据应用需求选择合适的控制电路和元器件,如比较器、误差放大器、可调电流源等。
还需要考虑电路的稳定性和可靠性,如输入电压范围、负载变化范围等。
最后,还需要进行电路的仿真和验证,以确保设计的正确性和可行性。
恒流恒压电路是一种常用的电路设计方案,可以实现对输出电流和输出电压的精确控制。
AP4310作为一种集成了恒流恒压控制功能的电路芯片,可以简化电路设计和调试过程,提高电路的稳定性和可靠性。
某恒压恒流电源的电路图及解释

图解电源(转贴,讲得非常好)电源是最常用的电器,作用是把220V交流转变成需要的直流电,供各种电器使用。
除了商品上各种独立的电源外,我们常见的各种适配器、充电器、机箱里用的模块化的(比如计算机用的),都可以认为是电源。
对于动手一族(DIY族),电源不仅是最常用的工具,往往也是DIY的对象。
也就是说,电源本身构造相对简单,往往可以DIY。
按照类别,电源可以分成线性电源和开关电源两类。
线性电源是先采用工频变压器降压,然后整流滤波,再用线性调整管进行稳压的方式,性能可以做得比较好。
开关电源是先整流滤波,然后高频振荡,再变压,再整流滤波。
由于初始滤波电容电压比较高,因此比能量比较大所以体积比较小,更因为高频振荡频率比工频高得多,因此变压器的体积和重量大大减少,再加上可以采用PWM反馈调节的方式,使得开关电源的效率很高,因此也不需要大体积的散热片,这样,开关电源的体积、重量与同功率的线性电源比大大减少。
但是,由于采用高频振荡,其谐波很可能向外发射或通过输出电源和输出电源传到外部,对通讯设备造成干扰。
值得注意的是,这种干扰并非是全频段的,而是在一些频率上(主要是谐波)有干扰。
同时,由于开关电源频率的不确定性,因此干扰频率也是不确定的,大多是变化的。
因此,不能简单的用收音机或者电台检查几个频点没有发现有干扰,就能确定某开关电源对通讯设备没有干扰。
正规的检查方法是要用频谱仪。
另外,有些电源是固定输出的,有些电源的电压可以在一定范围内可调,还有一些电源可以从0V起调。
可调的线性电源要解决好低压输出效率低下的问题,而可调的开关电源要解决大范围占宽比变化的问题。
大部分电源具备输出显示。
一般至少有一个电压表,也有的具备电流表,也有的是电压电流可以转换。
根据电压、电流表的类型,可以分成模拟显示电源和数字显示电源,前者用模拟表头显示,而后者用数字表显示。
数字显示电源有的是3位显示,也有高精度一些用4位表头显示,甚至更高的位数。
XL6019 30W升压恒压恒流方案(官方版)

100 95 90 85
Efficiency(%)
80 75 70 65 60 55 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
VIN=12V,VOUT=24V
Output current(A)
XL6019
Recommend output current safe work range
VOUT=12V Output current(mA)
VOUT=24V
2000 1800 1600 1400 1200 1000 800 600 400 200 0
Ouput current(mA)
8
9
10
11
典型系统应用(VIN=10~32V,VOUT=36V) XL6019
图 13. XL6019 系统参数测量电路(VIN=10~32V,VOUT=36V)
Efficiency VS Output current
100 95 90 85
Efficiency(%)
80 75 70 65 60 55 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
VIN=12V,VOUT=36V VIN=24V,VOUT=36V
Output current(A)
图14. XL6019系统效率曲线
9
Datasheet
220KHz 60V 5A开关电流升压/升降压型DC-DC转换器
典型系统应用(VIN=20~40V,VOUT=48V)
L1 47uH/5A D1 B560C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED路灯是低电压、大电流的驱动器件,其发光的强度由流过LED的电流决定,电流过强会引起LED的衰减,电流过弱会影响LED的发光强度,因此LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。
用市电驱动大功率LED 需要解决降压、隔离、PFC(功率因素校正)和恒流问题,还需有比较高的转换效率,有较小的体积,能长时间工作,易散热,低成本,抗电磁干扰,和过温、过流、短路、开路保护等。
本文设计的PFC开关电源性能良好、可靠、经济实惠且效率高,在LED路灯使用过程中取得满意的效果。
1 基本工作原理
采用隔离变压器、PFC控制实现的开关电源,输出恒压恒流的电压,驱动LED路灯。
电路的总体框图如图1所示。
LED抗浪涌的能力是比较差的,特别是抗反向电压能力。
加强这方面的保护也很重要。
LED路灯装在户外更要加强浪涌防护。
由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。
因此LED驱动电源应具有抑制浪涌侵入,保护LED不被损坏的能力。
EMI滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。
三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。
主开关DC/AC电路将直流电转换为高频脉冲电压在变压器的次级输出。
变压器输出的高频脉冲经过高频整流、LC滤波和EMI滤波,输出LED路灯需要的直流电源。
PWM控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。
反馈网络采用恒流恒压器件TSM101和比较器,反馈信号通过光耦送给PFC器L6561。
由于使用了PFC器件使模块的功率因数达到0.95。
2 DC/DC变换器
DC/DC变换器的类型有多种,为了保证用电安全,本设计方案选为隔离式。
隔离式DC/DC变换形式又可进一步细分为正激式、反激式、半桥式、全桥式和推挽式等。
其中,半桥式、全桥式和推挽式通常用于大功率输出场合,其激励电路复杂,实现起来较困难;而正激式和反激式电路则简单易行,但由于反激式比正激式更适应输入电压有变化的情况,且本电源系统中PFC输出电压会发生较大的变化,故DC/DC变换采用反激方式,有利于确保输出电压稳定不变。
反激式开关电源主要应用于输出功率为5~150 W的情况。
这种电源结构是由
Buck-Boost结构推演并加上隔离变压器而得到,如图2所示。
在反激式拓扑中,由变压器作为储能元件。
开关管导通时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。
图中T1为高频隔离变压器,VQ1为CMOS功率三极管17N80C3,VD7和VD8是瞬变抑制二极管,VD6为快恢复二极管,VD5为双二极管,C3、C4、C5和C6为电解电容器。
Ubout是来自整流桥的脉动直流信号,GD是来自功率因数校正电路的控制信号。
变压器的引线l和2组成一个绕组,给PFC器件提供工作电源,引线11和12组成一个绕组,
为恒流恒压器件和比较器提供工作电源。
3 反馈网络电路
3.1 恒流恒压电路
本设计使用恒流恒压控制器件TSM101调节输出电压和电流,使之稳定。
电路如图3所示。
通过TSM101的控制作用,保证了电源恒流(CC)和恒压(CV)工作。
图3中,Uout+和Uout-是隔离变压器经过双二极管和电解电容器滤波的电压,再经电感L4和电容滤波后的输出为Uout+和Uout-,为本电源模块的输出电压,直接加在LED路灯上。
可调电阻器RV1和RV2分别调节输出电压和电流的大小。
R10和R11为22 mΩ的电阻,分别对电源输出的电压和电流采样。
TMS101的输出TOUT通过光电耦合器、可控硅和三极管等电路送到L6561的引脚5,通过反馈电路实现恒流控制。
器件引脚8接辅助电源,引脚4接变压器T1副边地。
3.2 比较器电路
采用比较器LM258,电路如图4所示。