数学建模实验答案数学规划模型二
数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
A 题 飞机的降落曲线在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。
根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。
如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。
出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。
(1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。
B 题 铅球的投掷问题众所周知,铅球的投掷运动是运动员单手托住7.264kg(16磅)重的铅球在直径为2.135m 的投掷圆内将铅球掷出并且使铅球落入开角为45o 的有效扇形区域内。
以铅球的落地点与投掷圆间的距离度量铅球投掷的远度,并以铅球投掷远度的大小评定运动员的成绩。
在铅球的训练和比赛中,铅球投掷距离的远与近是人们最关心的问题。
而对于教练和运动员最为关心的问题是如何使铅球掷得最远。
影响铅球投掷远度的因素有哪些?建立一个数学模型,将预测的投掷距离表示为初始速度和出手角度的函数。
最优的出手角度是什么?如果在采用你所建议的出手角度时,该运动员不能使初始速度达到最大,那么他应该更关心出手角度还是出手速度?应该怎样折中?哪些是影响远度的主要因素?在平时训练中,应该更注意哪些方面的训练?试通过组建数学模型对上述问题进行分析,给教练和运动员以理论指导。
参考数据资料如下:实验报告:一、问题分析在研究飞机下落过程中,需要分析飞机下降的降落曲线,根据经验应该是一条五次多项式。
以降落点为原点O建立直角坐标系。
《数学建模实验》

《数学建模》上机作业信科05-3韩亚0511010305实验1 线性规划模型一、实验名称:线性规划模型—设备的最优配备问题。
二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。
三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。
四、实验要求:1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。
2、利用相应的数值方法求解此问题的数学模型。
3、谈一谈你对这类线性规划问题的理解。
4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。
5、用软件lindo 或lingo 求解上述问题。
(选做题)6、编写单纯形算法的MATLAB 程序。
(选做题) 五、实验内容:解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为:1211109871211109711109871211109875.232427252628252528262729)2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-=整理后得:90024255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件150030001500300015003000150030001500300015003000111210119108978710119108978791089787897877877≤-+-+-+-+-++≤≤-+-+-+-++≤≤-+-+-++≤≤-+-++≤≤-++≤≤+≤y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x又有年底库存量不少于300则:300300121112101191089787≥--+-+-+-+-++y y x y x y x y x y x x化为抽象的线性规划模型为:90024255.28275.2831255.25295.27295.31max 121110987121110987-------+++++=x x x x x x y y y y y y z ,;12,,8,7;0,0120030012003001200300120030012003001200300121112101191089787111210119108978710119108978791089787897877877 =≥≥--+-+-+-+-+≤-+-+-+-+-+≤-≤-+-+-+-+≤-≤-+-+-+≤-≤-+-+≤-≤-+≤-≤≤-i y x y y x y x y x y x y x x y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x STi i线性规划目标函数的系数:f = [31; 28.5; 27; 28.5;25;24;-31.5;-29;-27.5;-29;-25.5;-25]; 约束方程的系数及右端项: A=[1,0,0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,-1,0,0,0,0,0 1,1,1,0,0,0,-1,-1,0,0,0,0 1,1,1,1,0,0,-1,-1,-1,0,0,0 1,1,1,1,1,0,-1,-1,-1,-1,0,0 1,1,1,1,1,1,-1,-1,-1,-1,-1,0 -1,0,0,0,0,0,0,0,0,0,0,0 -1,-1,0,0,0,0,1,0,0,0,0,0 -1,-1,-1,0,0,0,1,1,0,0,0,0 -1,-1,-1,-1,0,0,1,1,1,0,0,0 -1,-1,-1,-1,-1,0,1,1,1,1,0,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,1];b=[1200;1200;1200;1200;1200;1200; 300; 300; 300; 300; 300; 300;0]; lb=zeros(12,1);[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);实验2 非线性规划模型一、实验名称:非线性规划模型。
数学建模实验报告

《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
数学建模实验报告2

糖果问题题目:某糖果厂用原料A,B,C,加工成三种不同牌号的糖果甲,乙,丙。
已知各种糖果中A,B,C的含量、原料成本、各种原料的每月限制用量、三种牌号的单位加工费及销售如下表所示。
甲 乙 丙 原料成本/元kg 每月限制用量/kg A 》60% 》15% 2 2000 B 1.5 2500 C《20% 《60% 《50% 1 1200 加工费/元kg 0.5 0.4 0.3 售价3.42.852.25问该厂每月生产这三种牌号的糖果各多少千克,使该厂获利最大?是建立这个问题的先行规划模型。
问题分析:由于甲、乙、丙三种糖果中A,B,C 的含量是未知的,我们若只设生产三种牌号的糖果各x, y, z 千克,要解决问题还要设出A,B,C 三种原料在他们当中所占的百分比,如此下来,在建立线性规划模型列方程时,方程中会出现二次式,很不利于我们解决问题。
为此,我们就想怎么设变量才能把各个变量都统一起来,并且使方程都是线性的。
经过思考之后,我们可以假设每个品牌的糖果当中只含A,B,C 三种原料,设甲中A,B,C 的含量分别为x1,x2,x3 ,乙中A,B,C 的含量分别为y1,y2,y3 , 丙中A,B,C 的含量分别z1,z2,z3 ,那么由假设我们知道x=x1+x2+x3 ,y=y1+y2+y3 ,z=z1+z2+z3 ,在由表中的各个约束条件我们可列出如下方程:甲: 乙: 丙:60%20%aa b c ca b cX X X X X X X X ≥++≤++ 15%60%aa b cc a b c Y Y Y Y Y Y Y Y ≥++≤++ 50%a a b c Z Z Z Z ≤++有每月限制用量:200025001200a b c a b c a b c X X X Y Y Y Z Z Z ++≤++≤++≤利润函数:()()(,,)()(3.40.5)()(2.850.4)()(2.250.3)2.00,1.50,1.00,,,,13.40.5,2.250.4,2.250.3,,11,,a b c a b c a a c a a a b b b c c c Ta a a a ab b bc c c f X Y Z X X X Y Y Y Z Z Z X Y Z X Y Z X Y Z X Y Z X YX Y Z X Y Z =++-+++-+++--++⎛⎫ ⎪++ ⎪ ⎪++⎝⎭⎛⎫⎛⎫ ⎪ ⎪=---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()()()1,,1 2.00,1.50,1.001,,,,,,3.40.511,1,1,, 2.250.4,,1 2.00,1.50,1.002.250.31,,,,a b b b c c c a a a a a a b b b b b b c c c c c c Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z X Y Z ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭程序源代码:clear; x=[];A=[-0.4,0.6,0.6,0,0,0,0,0,0 -0.2,-0.2,0.8,0,0,0,0,0,0 0,0,0,-0.85,0.15,0.15,0,0,0 0,0,0,-0.6,-0.6,0.4,0,0,0 0,0,0,0,0,0,-0.5,-0.5,0.5 1,0,0,1,0,0,1,0,00,1,0,0,1,0,0,1,00,0,1,0,0,1,0,0,1];B=[0;0;0;0;0;2000;2500;1200];C=[0.9,1.4,1.9,0.45,0.95,1.45,-0.05,0.45,0.95];xl=[0;0;0;0;0;0;0;0;0];xu=[2000;2500;1200;2000;2500;1200;2000;2500;1200];x=linprog(-C,A,B,A,B,xl,xu);x运行结果:x =1.0e+003 *2.00050.66680.66680.00020.00010.00000.00010.53400.5336问题结果有上述分析,通过matlab命令,我们求得最优解为甲乙丙使用总量A 2000.5 0.2 0.1 2000.8B 666.8 0.1 534 1200.9C 666.8 0 533.6 1200.4此时的利润为4748.5元。
数学建模第三版习题答案

数学建模第三版习题答案数学建模是一门应用数学的学科,通过建立数学模型来解决实际问题。
《数学建模第三版》是一本经典的教材,其中的习题对于学生来说是非常重要的练习材料。
在这篇文章中,我将为大家提供《数学建模第三版》习题的答案,希望能够帮助大家更好地理解和应用数学建模的知识。
第一章:数学建模的基础知识1. 数学建模的定义:数学建模是指将实际问题转化为数学问题,并通过建立数学模型来解决问题的过程。
2. 数学建模的基本步骤:问题的分析与理解、建立数学模型、求解数学模型、模型的验证与应用。
3. 数学建模的分类:确定性建模和随机建模。
4. 数学建模的特点:抽象性、理想化、简化性和应用性。
第二章:线性规划模型1. 线性规划模型的基本形式:目标函数和约束条件都是线性的。
2. 线性规划模型的求解方法:图形法、单纯形法和对偶理论。
3. 线性规划模型的应用:生产计划、资源分配、运输问题等。
第三章:整数规划模型1. 整数规划模型的基本形式:目标函数是线性的,约束条件中包含整数变量。
2. 整数规划模型的求解方法:分枝定界法、割平面法、动态规划法等。
3. 整数规划模型的应用:项目选择、装配线平衡问题、旅行商问题等。
第四章:动态规划模型1. 动态规划模型的基本思想:将一个大问题分解为若干个子问题,通过求解子问题的最优解来求解整个问题的最优解。
2. 动态规划模型的求解方法:递推法、备忘录法和自底向上法。
3. 动态规划模型的应用:背包问题、最短路径问题、最长公共子序列问题等。
第五章:非线性规划模型1. 非线性规划模型的基本形式:目标函数和约束条件中包含非线性函数。
2. 非线性规划模型的求解方法:牛顿法、拟牛顿法、全局优化法等。
3. 非线性规划模型的应用:经济增长模型、生态系统模型、医学诊断模型等。
第六章:图论模型1. 图论模型的基本概念:顶点、边、路径、回路等。
2. 图论模型的求解方法:深度优先搜索、广度优先搜索、最短路径算法等。
数学建模报告数学规划求解模型过程

2012——20 13 学年第二学期合肥学院数理系实验报告 课程名称:数学模型实验项目: 数学规划模型求解过程实验类别:综合性□设计性□验证性□专业班级:10级数学与应用数学(1)班姓名: 汪勤学号:1007021004实验地点:35#611 实验时间:2013年4月25日指导教师: 闫老师成绩:一.实验目的:了解线性规划的基本内容及求解的基本方法,学习MATLAB,LINDO,LI NGO求解线性规划命令,掌握用数学软件包求解线性规划问题;了解非线性规划的基本内容,掌握数学软件包求解非线性规划问题。
二。
实验内容:1、加工奶制品的生产计划问题一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。
根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。
试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:(1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?(2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?(3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?2、奶制品的生产销售计划问题第1题给出的A1,A2两种奶制品的生产条件、利润及工厂的“资源"限制全都不变。
为增加工厂的获利,开发了奶制品的深加工技术:用2小时和3元加工费,可将1千克A1加工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品B2,每千克B1能获利44元,每千克B2能获利32元。
试为该厂制订一个生产销售计划,使每天的净利润最大,并讨论以下问题:(1)若投资30元可以增加供应1桶牛奶,投资3元可以增加1小时劳动时间,应否作这些投资?若每天投资150元可赚回多少?(2)每公斤高级奶制品B1,B2的获利经常有10%的波动,对制订的生产销售计划有无影响?若每公斤B1的获利下降10%,计划应该变化吗?(3)若公司已经签订了每天销售10千克 A1的合同并且必须满足,该合同对公司的利润有什么影响?3、货机装运某架货机有三个货舱:前仓、中仓、后仓。
数学建模习题及答案课后习题

第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支元,120g装的元,二者单位重量的价格比是:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3. + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。
★(1) 给出输入模型和求解结果(见[101]):model:TITLE汽车厂生产计划(LP);!文件名:;max=2*x1+3*x2+4*x3;*x1+3*x2+5*x3<600;280*x1+250*x2+400*x3<60000;end(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3. + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。
LINGO函数@gin见提示。
★(2) 给出输入模型和求解结果(见[102]模型、结果):model:TITLE汽车厂生产计划(IP);!文件名:;max=2*x1+3*x2+4*x3;*x1+3*x2+5*x3<600;280*x1+250*x2+400*x3<60000;@gin(x1); @gin(x2); @gin(x3);!将x1,x2,x3限定为整数;end2.(求解)原油采购与加工(非线性规划NLP,LP且IP)p104~107模型:已知⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(xxxxxxxc注:当500 ≤x≤ 1000时,c(x) = 10 × 500 + 8( x– 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max4.8()5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。
★(1) 给出输入模型(见[105]):注意:模型中不要出现变量相除的形式,转化! model:TITLE 原油采购与加工解法1(NLP ,非线性规划); !文件名:;max = *x11 + *x21 + *x12 + *x22 - 10*x1 - 8*x2 - 6*x3; x11 + x12 < x + 500; x21 + x22 < 1000;*x11 - *x21 > 0;*x12 - *x22 > 0;x = x1 + x2 + x3;( x1 - 500 )*x2 = 0;( x2 - 500 )*x3 = 0;x1 < 500;x2 < 500;x3 < 500;end★(2) 在缺省的局部最优解设置下运行。
给出求局部最优解(见[106]):★(3) 设置为全局最优解(见提示)后运行。
给出求全局最优解(见[106]):解法2(LP且IP)p104,107将模型变换为以下的整数规划模型:11211222123111221221111211212221232113223312312311122122max 4.8() 5.6()(1086)50010000.50.6500500500500500,,010,,500,,,,0z x x x x x x xx x xx xxx xxx xx x x xy x yy x yx yy y yx x xx x x x x=+++-+++≤++≤≥+≥+=++≤≤≤≤≤=≤≤≥或LINGO函数@bin见提示。
★给出输入模型(见[107])和运行结果(全局最优解)(比较[106]):model:TITLE 原油采购与加工解法2(LP,IP);!不允许用英文逗号;!文件名:;max= *x11 + *x21 + *x12 + *x22 - 10*x1 - 8*x2 - 6*x3;x11 + x12 < x + 500;x21 + x22 < 1000;*x11 - *x21 > 0;*x12 - *x22 > 0;x = x1 + x2 + x3;x1 < 500*y1;x2 < 500*y2;x3 < 500*y3 ;x1 > 500*y2;x2 > 500*y3;@bin(y1); @bin(y2); @bin(y3);!将y1,y2,y3限定为0 – 1 变量;end解法3(IP )p104,107~108将模型变换为以下的整数规划模型:1121122211122122111121121222111221221121232343123412312311max4.8()5.6()()500100015000.50.6,,,,0,,,1,0(1,2,3,4)1,,,01k z x x x x c x x x x x x x x x x x x x x x x x x z y z y y z y y z y z z z z z k y y y y y y x z b =+++-+≤++≤≤≥+≥+≥≤≤+≤+≤+++=≥=++===或22334411223344()()()()()z b z b z b c x z c b z c b z c b z c b +++=+++其中b 1=0, b 2=500, b 3=1000, b 4=1500c (b 1)=0, c (b 2)=5000, c (b 3)=9000, c (b 4)=12000 程序如下:★输入模型并给出运行结果(全局最优解)(比较[106]):附:输入模型sets:pn_1/1..3/: y;pn/1..4/: z,b,c;endsetsdata:b=0 500 1000 1500;c=0 5000 9000 12000;enddatamax= *x11 + *x21 + *x12 + *x22 - @sum(pn: c*z);x11 + x12 < x + 500;x21 + x22 < 1000;*x11 - *x21 > 0;*x12 - *x22 > 0;z(1)<y(1);@for(pn(I)|I#gt#1#and#I#lt#4: z(I)<y(I-1)+y(I));z(4)<y(3);@sum(pn: z)=1;@sum(pn_1: y)=1;@for(pn_1: @bin(y));x=@sum(pn: b*z);3.(验证)混合泳接力队的选拔(0-1规划)p108~111解法10-1规划模型:min Z=++87x13+++66x22++53x24+78x31++++70x41+++++71x52++subject tox11+x12+x13+x14<=1x21+x22+x23+x24<=1x31+x32+x33+x34<=1x41+x42+x43+x44<=1x11+x21+x31+x41+x51=1x12+x22+x32+x42+x52=1x13+x23+x33+x43+x53=1x14+x24+x34+x44+x54=1xij={0,1},i=1,2,3,4,5,j=1,2,3,4程序如下:★ 输入以上0-1规划模型。
给出运行结果(比较[110]):解法20-1规划模型:45114151min s.t. 1, 1,2,3,4,51, 1,2,3,4{0,1}ij ijj i ij j ij i ij z c x x i x j x =====≤====∑∑∑∑其中66.875.68758.657.26666.4537867.884.659.47074.269.657.267.47183.862.4c ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦程序如下:★输入以上0-1规划模型(见[110])。
给出运行结果(比较[110]):model:sets:person/1..5/;position/1..4/;link(person,position): c,x;endsetsdata:c=, , 87, ,, 66, , 53,78, , ,70, , , ,, 71, , ;enddatamin=@sum(link: c*x);@for(person(i): @sum(position(j): x(i,j))<=1;);@for(position(i): @sum(person(j): x(j,i))=1;);@for(link: @bin(x));end4.(求解)选课策略(0-1规划)p111~1120-1规划模型:Min Z=x1+x2+x3+x4+x5+x6+x7+x8+x9x1+x2+x3+x4+x5≥2x3+x5+x6+x8+x9≥3x4+x6+x7+x9≥22x3-x1-x2≤0x4-x7≤02x5-x1-x2≤0x6-x7≤0x8-x5≤02x9-x1-x2≤0xi={0,1},i=1,2,…,9★给出输入模型和运行结果(比较[112]):model:TITLE例2 选课策略;!文件名:;min=x1+x2+x3+x4+x5+x6+x7+x8+x9;x1+x2+x3+x4+x5>=2; !最少2门数学课程;x3+x5+x6+x8+x9>=3; !最少3门运筹学课程;x4+x6+x7+x9>=2; !最少2门计算机课程;2*x3-x1-x2<=0;x4-x7<=0;2*x5-x1-x2<=0;x6-x7<=0;x8-x5<=0;2*x9-x1-x2<=0;@bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5);@bin(x6); @bin(x7); @bin(x8); @bin(x9);end5.(求解)销售代理的开发与中断(0-1规划)p114~1160-1规划模型:min +130x12++115x14++100x21+96x22+92x23+88x24+84x25++116x32++103x34++85x41+82x42+79x43+76x44+73x45st511, 1,2,3,4 ittx i =≤=∑350x11+250x21+300x31+200x41>=400350(x11+x12)+250(x21+x22)+300(x31+x32)+200(x41+x42)>=500350(x11+x12+x13)+250(x21+x22+x23)+300(x31+x32+x33)+200(x41+x42+x43)>=600350(x11+x12+x13+x14)+250(x21+x22+x23+x24)+300(x31+x32+x33+x34)+200(x41+x42+x43+x44)>=700350(x11+x12+x13+x14+x15)+250(x21+x22+x23+x24+x25)+300(x31+x32+x33+x34+x35)+200(x41+x42+x43+x44+x45)>=800 xij={0,1},i=1,2,3,4, j=1,2,3,4,5★(1) 按表达式形式输入0-1规划模型。