驱动桥5000字外文翻译文献

驱动桥5000字外文翻译文献
驱动桥5000字外文翻译文献

As the bearing cage rotates, read the value

7. indicated on the scale.

Preload normally is specified as torque re-8. quired to rotate the pinion bearing cage, so take a reading only when the cage is rotating. Starting torque will give a false reading.

To calculate the preload torque, measure the 9. diameter of the bearing cage where the cord was wound. Divide this dimension in half to get the radius.

10. U se the following procedure to calculate the

bearing preload torque:Standard.

Pull (lb) 3 radius (inches) 5 preload (lb-in.)or

Preload (lb-in.) 3 0.113 (a conversion constant) 5 preload (N .m)

Install the yoke, flat washer, and nut. Tighten 6. the nut snugly. Tap the end of the input shaft lightly to seat the bearings.

Measure the input shaft endplay again with 7. the dial indicator. If endplay is still incorrect, repeat steps 3 through 7.

With the endplay correct, seal the shim pack 8. to prevent lube leakage. Then torque the i nput shaft nut and cover capscrews to the correct value.

24.5 A XLE ADJUSTMENTS

AND CHECKS

This section introduces the differential carrier adjust-ments, checks, and tests that the truck technician must be capable of performing; some have been

r eferred to previously in the text. For the most part, the procedures described here are general in nature. The truck technician should refer to OEM service

l iterature for specific procedures.PINION BEARING PRELOAD

Most differential carriers are provided with a press-fit outer bearing on the drive pinion gear. Some older rear drive axles use an outer bearing, which slips over the drive pinion. The procedures for adjusting both types follow.

Press-Fit Method Adjustment

To adjust the pinion bearing preload using the press-fit method, use the following procedure:

Assemble the pinion bearing cage, bearings, 1. spacer, and spacer washer (without drive pin-ion or oil seal). Center the bearing spacer and spacer washer between the two bearing cones (Figure 24–49).

When a new gear set or pinion bearings are 2. used, select a nominal size spacer based on OEM specifications. If original parts are used, use a spacer removed during disassembly of the drive.

Place the drive pinion and cage assembly in a 3. press, with the gear teeth toward the bottom.Apply and hold the press load to the pinion 4. bearing. As pressure is applied, rotate the bearing cage several times so that the bear-ings make normal contact.

While pressure is held against the assembly, wind 5. a cord around the bearing cage several times.Attach a spring scale to the end of the cord 6. (Figure 24–50). Pull the cord with the scale on

a horizontal line.

FIGURE 24–49 Assembly of the pinion bearing cage.

(Courtesy of Dana Corporation)

FIGURE 24–50 Cage in press to check bearing

p reload.

Sleeve must apply

must be against the outer bearing. If the fit between the yoke or flange splines and drive pinion splines is tight, use a press to install the yoke or flange (Figure 24–51).

Temporarily install the drive pinion and cage 4. assembly in the carrier (Figure 24–52). Do not install shims under the bearing cage.

Install the bearing cage to the carrier cap-5. screws. Washers are not required at this time. Hand-tighten the capscrews.

Fasten a yoke or flange bar to the yoke or 6. flange (Figure 24–53). The bar will hold the drive pinion in position when the nut is

t ightened.Metric.

Pull (kg) 3 radius (cm) 5 preload (kg-cm) or

Preload (kg-cm) 3 0.098 (a conversion constant) 5 preload (N .m)

Examples. We can convert the foregoing equa-tions into examples by applying some data to them:

Standard

7.5 lb 3 3.31 in. 5 24.8 lb-in. (preload) or

24.8 lb-in. 3 0.113 5 2.8 N .m (preload)

Metric

3.4 kg 3 8.4 cm 5 28.6 kg-cm (preload) or

28.6 kg-cm 3 0.098 5 2.8 N .m (preload)

11. I f necessary, adjust the pinion bearing preload

by changing the pinion bearing spacer. A thicker spacer will decrease preload, whereas a thinner spacer will increase the preload.

12. O nce the correct bearing preload has been

established, note the spacer size used. Select a spacer 0.001 inch (0.025 mm) larger for use in the final pinion bearing cage assembly pro-cedures. The larger spacer compensates for slight expansion of the bearing, which occurs when pressed on the pinion shank. The trial spacer pack should result in correct pinion bearing preload in three times out of four cases.

Y oke Method of Adjustment

To adjust the pinion bearing preload using the yoke or flange method, proceed as follows:

Assemble the complete pinion bearing cage 1. as recommended in the press-fit method.A forward axle pinion is equipped with a heli-2. cal gear. For easier disassembly during bear-ing adjustment procedures, use a dummy yoke (if available) in place of the helical gear.Install the input yoke or flange, nut, and 3.

washer on the drive pinion. The yoke or flange

FIGURE 24–51 Using a press to install the yoke or

flange to the drive pinion. (Courtesy of Arvin Meritor)

FIGURE 24–52 Install the pinion and cage assembly in the carrier housing. (Courtesy of Arvin Meritor)

i

ndicated on the torque wrench (see Figure 24–55). Typical value is 50 lb-ft. (68 N .m)

m aximum applied to one side gear.If the torque value exceeds the specification, 5. disassemble the differential gears from the case halves.

Check the case halves, spider, gears, and 6. thrust washers for the problem that caused the torque value to exceed specifications. Re-pair or replace defective parts as required. Remove any foreign debris.

Check/Adjust Pinion Cage Shim Pack

This procedure is used to check and adjust the thick-ness of the shim pack used in the pinion bearing cage. Use this procedure if a new drive pinion and crown

Tighten the nut on the drive pinion to specifi-7. cation, typically 400 to 700 lb-ft. (542 to 950 N .m).

Remove the yoke or flange bar.

8. Attach a torque wrench to the drive pinion 9. nut. Rotate the drive pinion and read the value indicated on the torque wrench. Preload is correct when the torque required to rotate the pinion bearing cage is from 15 to 35 lb-in. (1.7 to 4.0 N .m).

To adjust the pinion bearing preload, disas-10. semble the pinion bearing cage and change the pinion bearing spacer size. A thicker spacer will decrease preload, whereas a thin-ner spacer will increase preload.

Differential Rolling Resistance

A check to measure and establish differential rolling resistance follows. To perform this check, a special tool must be made. You can easily make this tool from an old axle shaft that matches the spline size of the differential side gear. Figure 24–54 illustrates the fab-rication specifications for this special tool.

To check differential resistance to rotation, use the following procedure:

Install soft metal covers over the vise jaws to 1. protect the ring gear (Figure 24–55).

Place the differential and crown gear assem-2. bly in the vise.

Install the special tool into the differential until 3. the splines of the tool and one side gear are engaged.

Attach a torque wrench to the nut of the spe-4. cial tool and rotate the differential gears. As the differential gears rotate, read the value

FIGURE 24–55 Reading the torque value to check the rolling resistance. (Courtesy of Arvin Meritor)

FIGURE 24–53 Using a flange bar to hold the drive

pinion in position. (Courtesy of Arvin Meritor)

FIGURE 24–54 Fabrication details for a tool to check

the rolling resistance. (Courtesy of Arvin Meritor)

If the new pinion cone number is a minus (–), sub-8. tract the number from the standard shim pack

thickness that was calculated in step 3 or 4.

The value calculated in step 7 or 8 is the 9.

t hickness of the new shim pack that will be

i nstalled. Figure 24–59 illustrates several e xamples of determining shim pack t hickness.Install the drive pinion, bearing cage, and new

10. shim pack into the differential carrier.

gear set is to be installed, or if the depth of the drive pinion has to be adjusted. You are checking the rolling resistance using a torque wrench.

To check/adjust the shim pack thickness (Figure 24–56), do the following:

With a micrometer, measure the thickness of 1. the old shim pack removed from under the pinion cage (Figure 24–57). Record the mea-surement for later use.

Look at the pinion cone (PC) variation number 2. on the drive pinion being replaced (Figure 24–58). Record this number for later use also.If the old pinion cone number is a plus (+), 3. subtract the number from the old shim pack thickness that was recorded in step 1.

If the old pinion cone number is a minus (–), 4. add the number to the old shim thickness that was measured in step 1.

The value calculated in step 3 or 4 is the 5.

t hickness of the standard shim pack without variation.

Look at the PC variation number on the new 6. drive pinion that will be installed. Record the number for later use.

If the new pinion cone number is a plus (+), 7. add the number to the standard shim pack

thickness that was calculated in step 3 or 4.

FIGURE 24–56 Drive pinion depth controlled by shim

pack thickness. (Courtesy of Arvin Meritor)

FIGURE 24–57 Measuring the thickness of the old shim pack. Mike each shim individually then add to

calculate total thickness. (Courtesy of Arvin Meritor)

FIGURE 24–58 Location of the pinion cone (PC)

v ariation number. (Courtesy of Arvin Meritor)

Adjust Differential Bearing Preload

One of two methods can be used to check and adjust the preload of the differential bearings.

Method One.

Attach a dial indicator onto the mounting 1. flange of the carrier and adjust the indicator so that the plunger rides on the back surface of the crown ring gear (Figure 24–60).

Loosen the bearing adjusting ring that is op-2. posite the ring gear so that a small amount of endplay is indicated on the dial indicator. To turn the adjusting rings, use a T-bar wrench that engages two or more opposite notches in the ring (Figure 24–61).

Move the differential and crown gear to the 3. left and right using prybars as you read the dial indicator. Use two prybars that fit be-tween the bearing adjusting rings and the ends of the differential case (Figure 24–62). You also can use two prybars between the differential case or crown gear and the carrier at locations other than those just described. In either case, the prybars must not touch the differential bearings.

EXAMPLES:

Inches

mm 1.

Old Shim Pack Thickness Old PC Number, PC +2

Standard Shim Pack Thickness New PC Number, PC +5New Shim Pack Thickness .030.76–.002–.05.028.71+.005+.13.033.842.

Old Shim Pack Thickness Old PC Number, PC –2

Standard Shim Pack Thickness New PC Number, PC +5New Shim Pack Thickness .030.76+.002+.05.032.81+.005+.13.037.943.

Old Shim Pack Thickness Old PC Number, PC +2

Standard Shim Pack Thickness New PC Number, PC –5New Shim Pack Thickness .030.76–.002–.05.028.71–.005–.13.023.584.

Old Shim Pack Thickness Old PC Number, PC –2

Standard Shim Pack Thickness New PC Number, PC –5New Shim Pack Thickness

.030.76+.002+.05.032.81–.005–.13.027

.68

FIGURE 24–59 Determining shim pack thickness.

(Courtesy of ArvinMeritor Inc.)

FIGURE 24–60 Dial indicator attached to carrier-

mounted flange. (Courtesy of Arvin Meritor)

FIGURE 24–61 Turning the adjusting ring using a

T-bar wrench. (Courtesy of Arvin Meritor)

FIGURE 24–62 Using pry bars to adjust play in the crown gear. (Courtesy of Arvin Meritor)

Tighten the same bearing adjusting ring

4.

so that no endplay shows on the dial

i ndicator.

Move the differential and crown gear to the

5.

left and right as needed. Repeat step 3 until

zero endplay is achieved.

Tighten each bearing adjusting ring one

6.

notch from the zero endplay measured in

step 4.

Method Two.A second method of checking pre-load is to measure the expansion between the bearing caps after you tighten the adjusting rings. Use the following procedure:

Turn both adjusting rings hand tight against

1.

the differential bearings.

Measure the distance X or Y between oppo-

2.

site surfaces of the bearing caps (Figure

24–63A) using a large micrometer of the

c orrect size (Figure 24–63B). Make a note of

the m easurement.

Tighten each bearing adjusting ring one

3.

notch.

Measure the distance X or Y again. Compare

4.

the dimension with the distance X or Y mea-

sured in step 2. The difference between the

two dimensions is the amount that the bear-

ing caps have expanded.

Example: Measurements of a carrier.

Distance X or Y before tightening adjusting rings

5 15.315 inches (389.00 mm)

Distance X or Y after tightening adjusting rings

5 15.324 inches (389.23 mm)

15.324 inches minus 15.315 inches

5 0.009 inch (0.23 mm) difference

If the dimension is less than specification, repeat steps 3 and 4 as needed.

Crown Gear Runout Check

To check the runout of the crown/ring gear, do the f ollowing:

Attach a dial indicator on the mounting flange

1.

of the differential carrier (Figure 24–64).

Adjust the dial indicator so that the plunger or

2.

pointer is against the back surface of the

crown gear.FIGURE 24–63 (A) Location of distances measured to check expansion between bearing caps after

t ightening adjusting rings; (B) measuring this distance.

(Courtesy of Arvin Meritor)

FIGURE 24–64 Checking crown gear runout. (Courtesy of Arvin Meritor)

Pinion and Crown Tooth Contact

A djustment Correct tooth contact between the pinion and crown gear cannot be overemphasized, because improper tooth contact results in noisy operation and prema-ture failure. The tooth contact pattern consists of the lengthwise bearing (along the tooth of the ring gear) and the profile bearing (up and down the tooth). F igure 24–68 shows crown gear tooth

n omenclature.Adjust the dial of the indicator to zero.

3. Rotate the differential and crown gear when

4. reading the dial indicator. The runout of the crown gear must not exceed 0.008 inch (2 mm) (a typical value; refer to the applicable OEM service literature for the specific

v alues).If runout of the crown gear exceeds the speci-5. fication, remove the differential and crown gear assembly from the carrier. Check the dif-ferential components, including the carrier, for the problem causing the runout of the gear to exceed specification. Repair or replace defec-tive components.

After the components are repaired or re-6. placed, install the differential and crown gear into the carrier.

Repeat the preload adjustment of the 7. differential bearings. Then repeat this runout procedure.

Check/Adjust Crown Gear Backlash

If the used crown and pinion gear set is installed, ad-just the backlash to the setting that was measured before the carrier was disassembled. If a new gear set is to be installed, adjust backlash to the correct speci-fication for the new gear set.

To check and adjust ring gear backlash, do the

f ollowing: Attach a dial indicator onto the mounting

1. flange of the carrier (see Figure 24–64).

Adjust the dial indicator so that the plunger is 2. against the tooth surface at a right angle.

Adjust the dial of the indicator to zero, making 3. sure that the plunger is loaded through at least one revolution.

Hold the drive pinion in position.

4. When reading the dial indicator, rotate the

5. crown gear a small amount in both directions against the teeth of the drive pinion (Figure 24–65). If the backlash reading is not within specification (typically ranging from 0.010 to 0.020 inch or 254 to 508 mm), adjust backlash as outlined in steps 6 and 7.

Loosen one bearing adjusting ring one notch 6. and then tighten the opposite ring the same amount. Backlash is increased by moving the crown gear away from the drive pinion (Figure 24–66). Backlash is decreased by moving the crown gear toward the drive pin-ion (Figure 24–67).

Repeat steps 2 through 5 until the backlash is 7.

within specifications.

FIGURE 24–65 Check crown gear backlash. ( C

ourtesy of Arvin Meritor)

FIGURE 24–66 Adjustments to increase backlash. (Courtesy of Arvin Meritor)

the pattern in an unloaded condition (such as when you are performing this test) will be approximately one-half to two-thirds of the crown gear tooth in most models and ratios.

Checking Tooth Contact Pattern on a Used Gear Set. Used gearing will not usually display the square, even contact pattern found in new gear sets. The gear will normally have a pocket at the toe-end of the gear tooth (Figure 24–71) that tails into a contact line along the root of the tooth. The more use a gear has had, the more the line becomes the dominant characteristic of the pattern.

Adjusting Tooth Contact Pattern. When dis-assembling, make a drawing of the gear tooth con-tact pattern so that when reassembling it is possible to replicate approximately the same pattern. A cor-rect pattern should be clear of the toe and centers evenly along the face width between the top land and the root. Otherwise, the length and shape of the pattern can be highly variable and are usually con-sidered acceptable—providing the pattern does not run off the tooth at any time. If necessary, adjust the contact pattern by moving the crown gear and drive pinion.

Checking Tooth Contact Pattern on a New Gear Set. Paint 12 crown gear teeth with a marking compound (Figure 24–69) and roll the gear to obtain a tooth contact pattern. A correct pattern should be well centered on the crown gear teeth with lengthwise contact clear of the toe (Figure 24–70

). The length of

FIGURE 24–67 Adjustments to decrease backlash.

(Courtesy of Arvin Meritor)

FIGURE 24–68 Crown gear tooth nomenclature.

(Courtesy of Dana Corporation)

FIGURE 24–69 Application of a marking compound

to check tooth contact. (Courtesy of Dana Corporation)FIGURE 24–70 Correct tooth contact pattern

for new gearing. (Courtesy of Dana Corporation)

FIGURE 24–71 Correct tooth contact pattern for used gearing. (Courtesy of Dana Corporation)

making adjustments, first adjust the pinion and then the backlash. Continue this sequence until the pattern is satisfactory.

Thrust Screw Adjustment

For those differential carriers equipped with a thrust screw, perform the following procedure. (If the carrier assembly does not have a thrust block, proceed to step 4 of this procedure.)

Rotate the carrier in the repair stand until the 1. back surface of the crown gear is toward the top.

Put the thrust block on the back surface of 2. the ring gear. The thrust block must be in the center between the outer diameter of the gear and the differential case.

Rotate the crown gear until the thrust block 3. and hole for the thrust screw, in the carrier, are aligned.

Install the jam nut on the thrust screw, one-4. half the distance between both ends (Figure 24–74).

Install the thrust screw into the carrier until the 5. screw stops against the crown gear or thrust block.

Loosen the thrust screw one-half turn, or 180 6. degrees.

Tighten the jam nut to the correct torque value 7. against the carrier (typical values range from 150 to 295 lb-ft. or 200 to 400 N .m) (Figure 24–75).

Axle Tracking

Axle tracking can be measured using the older tram bar method or electronic alignment equipment. The procedures for setting axle alignment and tracking are

explained in Chapter 25.

FIGURE 24–72 Two incorrect patterns when adjusting pinion position. (Courtesy of Dana Corporation)

Crown gear position controls the backlash setting. This adjustment also moves the contact pattern along the face width of the gear tooth (Figure 24–72). Pinion position is determined by the size of the pinion bear-ing cage shim pack. It controls contact on the tooth depth of the gear tooth (Figure 24–73).

These adjustments are interrelated. As a result, they must be considered together even though the

pattern is altered by two distinct operations. When

FIGURE 24–73 Two incorrect patterns when adjusting backlash. (Courtesy of Dana Corporation)

? Most differential carriers are replaced as rebuilt/exchange units, so the role of the technician is, more often than not, to diagnose the problem and then, if necessary, to replace the defective assembly as a unit.

? The technician who has disassembled and reas-sembled differential carriers should find trouble-shooting procedures easier to follow.

? Follow the OEM procedure when disassem-bling differential carriers. Taking a few mo-ments to measure shim packs and gear tooth contact patterns on disassembly can save considerable time when reassembling the

c arrier.? A crown an

d pinion gear set often can be

r eused when rebuilding a differential carrier. Make sure that you inspect it properly on

d isassembly.? Crown and pinion gear sets ar

e always replaced as a matched pair during a rebuild.

? When setting crown and pinion backlash, it is increased by moving the crown gear away from the drive pinion and decreased by moving the crown gear toward the drive pinion.

? Adhering to OEM-recommended lubrication schedules is the key to ensuring the longest service life from both drive and dead axles.

? Knowing the correct procedure to check lubricant level is essential. The level is correct when lubri-cant is exactly level with the bottom of the fill hole.? Because most OEMs approve of the use of syn-thetic lubricants in final drive carriers, lubrication drain schedules have been greatly increased in recent years. Drain schedules are determined by the actual lubricant used and the type of appli-cation to which the vehicle is subjected.

? Servicing of axles on heavy-duty trucks consists of routine inspection, lubrication, cleaning, and, when required, troubleshooting and component overhaul.

? Failure analysis is required to prevent recurrent failures.

? Drive axle carrier components usually fail for one of the following reasons: Shock load Fatigue Spinout Lubrication problems

Normal wear

FIGURE 24–74 Installing the jam nut on the thrust screw. (Courtesy of Arvin Meritor)

FIGURE 24–75 Tighten the jam nut to the correct torque value. (Courtesy of Arvin Meritor)

SUMMARY

企业风险管理外文文献翻译2014年译文5000字

文献出处:Bedard J C, Hoitash R, et al. The development of the enterprise risk management theory [J]. Contemporary Accounting Research, 2014, 30(4): 64-95. (声明:本译文归百度文库所有,完整译文请到百度文库。) 原文 The development of the enterprise risk management theory Bedard J C, Hoitash R Abstract Enterprise risk management as an important field of risk management disciplines, in more than 50 years of development process of the implementation of dispersing from multiple areas of research to the integration of comprehensive risk management framework evolution, the theory of risk management and internal audit and control theory are two major theoretical sources of risk management theory has experienced from the traditional risk management, financial volatility to the development of the enterprise risk management, risk management and internal audit and control theory went through the internal accounting control and internal control integrated framework to the evolution of enterprise risk management, the development of the theory of the above two points to the direction of the enterprise risk management, finally realizes the integration development, enterprise risk management theory to become an important part of enterprise management is indispensable. Keywords: enterprise risk management, internal audit the internal control 1 The first theory source, evolution of the theory of risk management "Risk management" as a kind of operation and management idea, has a long history: thousands of years ago in the west have "don't put all eggs in one basket" the proverb, the ancient Chinese famous "product valley hunger" allusions and "yicang ("

驱动桥外文翻译

驱动桥设计 随着汽车对安全、节能、环保的不断重视,汽车后桥作为整车的一个关键部件,其产品的质量对整车的安全使用及整车性能的影响是非常大的,因而对汽车后桥进行有效的优化设计计算是非常必要的。 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。驱动桥设计应当满足如下基本要求: 1、符合现代汽车设计的一般理论。 2、外形尺寸要小,保证有必要的离地间隙。 3、合适的主减速比,以保证汽车的动力性和燃料经济性。 4、在各种转速和载荷下具有高的传动效率。 5、在保证足够的强度、刚度条件下,力求质量小,结构简单,加工工艺性 好,制造容易,拆装,调整方便。 6、与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。智能电子技术在汽车上得以推广使得汽车在安全行驶和其它功能更上一层楼。通过各种传感器实现自动驾驶。除些之外智能汽车装备有多种传感器能充分感知交通设施及环境的信息并能随时判断车辆及驾驶员是否处于危险之中,具备自主寻路、导航、避撞、不停车收费等功能。有效提高运输过程中的安全,减少驾驶员的操纵疲劳度,提高乘客的舒适度。当然蓄电池是电动汽车的关键,电动汽车用的蓄电池主要有:铅酸蓄电池、镍镉蓄电池、钠硫蓄电池、钠硫蓄电池、锂电池、锌—空气电池、飞轮电池、燃料电池和太阳能电池等。在诸多种电池中,燃料电池是迄今为止最有希望解决汽车能源短缺问题的动力源。燃料电池具有高效无污染的特性,不同于其他蓄电池,其不需要充电,只要外部不断地供给燃料,就能连续稳定地发电。燃料电池汽车(FCEV)具有可与内燃机汽车媲美的动力性能,在排放、燃油经济性方面明显优于内燃机车辆。

五分钟搞定5000字-外文文献翻译【你想要的工具都在这里】-2

五分钟搞定5000字-外文文献翻译 工具大全 建议收藏 在科研过程中阅读翻译外文文献是一个非常重要的环节,许多领域高水平的文献都是外文文献,借鉴一些外文文献翻译的经验是非常必要的。由于特殊原因我翻译外文文献的机会比较多,慢慢地就发现了外文文献翻译过程中的三大利器:G oogle“翻译”频道、金山词霸(完整版本)和CNKI“翻译助手"。 具体操作过程如下: 1.先打开金山词霸自动取词功能,然后阅读文献; 2.遇到无法理解的长句时,可以交给Google处理,处理后的结果猛一看,不堪入目,可是经过大脑的再处理后句子的意思基本就明了了; 3.如果通过Google仍然无法理解,感觉就是不同,那肯定是对其中某个“常用单词”理解有误,因为某些单词看似很简单,但是在文献中有特殊的意思,这时就可以通过CNKI的“翻译助手”来查询相关单词的意思,由于CNKI的单词意思都是来源与大量的文献,所以它的吻合率很高。 另外,在翻译过程中最好以“段落”或者“长句”作为翻译的基本单位,这样才不会造成“只见树木,不见森林”的误导。 注: 1、Google翻译: google,众所周知,谷歌里面的英文文献和资料还算是比较详实的。我利用它是这样的。一方面可以用它查询英文论文,当然这方面的帖子很多,大家可以搜索,在此不赘述。回到我自己说的翻译上来。下面给大家举个例子来说明如何用

吧 比如说“电磁感应透明效应”这个词汇你不知道他怎么翻译, 首先你可以在CNKI里查中文的,根据它们的关键词中英文对照来做,一般比较准确。 在此主要是说在google里怎么知道这个翻译意思。大家应该都有词典吧,按中国人的办法,把一个一个词分着查出来,敲到google里,你的这种翻译一般不太准,当然你需要验证是否准确了,这下看着吧,把你的那支离破碎的翻译在g oogle里搜索,你能看到许多相关的文献或资料,大家都不是笨蛋,看看,也就能找到最精确的翻译了,纯西式的!我就是这么用的。 2、CNKI翻译: CNKI翻译助手,这个网站不需要介绍太多,可能有些人也知道的。主要说说它的有点,你进去看看就能发现:搜索的肯定是专业词汇,而且它翻译结果下面有文章与之对应(因为它是CNKI检索提供的,它的翻译是从文献里抽出来的),很实用的一个网站。估计别的写文章的人不是傻子吧,它们的东西我们可以直接拿来用,当然省事了。网址告诉大家,有兴趣的进去看看,你们就会发现其乐无穷!还是很值得用的。 3、网路版金山词霸(不到1M): 翻译时的速度: 这里我谈的是电子版和打印版的翻译速度,按个人翻译速度看,打印版的快些,因为看电子版本一是费眼睛,二是如果我们用电脑,可能还经常时不时玩点游戏,或者整点别的,导致最终SPPEED变慢,再之电脑上一些词典(金山词霸等)在专业翻译方面也不是特别好,所以翻译效果不佳。在此本人建议大家购买清华

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

驱动桥5000字外文翻译文献

As the bearing cage rotates, read the value 7. indicated on the scale. Preload normally is specified as torque re-8. quired to rotate the pinion bearing cage, so take a reading only when the cage is rotating. Starting torque will give a false reading. To calculate the preload torque, measure the 9. diameter of the bearing cage where the cord was wound. Divide this dimension in half to get the radius. 10. U se the following procedure to calculate the bearing preload torque:Standard. Pull (lb) 3 radius (inches) 5 preload (lb-in.)or Preload (lb-in.) 3 0.113 (a conversion constant) 5 preload (N .m) Install the yoke, flat washer, and nut. Tighten 6. the nut snugly. Tap the end of the input shaft lightly to seat the bearings. Measure the input shaft endplay again with 7. the dial indicator. If endplay is still incorrect, repeat steps 3 through 7. With the endplay correct, seal the shim pack 8. to prevent lube leakage. Then torque the i nput shaft nut and cover capscrews to the correct value. 24.5 A XLE ADJUSTMENTS AND CHECKS This section introduces the differential carrier adjust-ments, checks, and tests that the truck technician must be capable of performing; some have been r eferred to previously in the text. For the most part, the procedures described here are general in nature. The truck technician should refer to OEM service l iterature for specific procedures.PINION BEARING PRELOAD Most differential carriers are provided with a press-fit outer bearing on the drive pinion gear. Some older rear drive axles use an outer bearing, which slips over the drive pinion. The procedures for adjusting both types follow. Press-Fit Method Adjustment To adjust the pinion bearing preload using the press-fit method, use the following procedure: Assemble the pinion bearing cage, bearings, 1. spacer, and spacer washer (without drive pin-ion or oil seal). Center the bearing spacer and spacer washer between the two bearing cones (Figure 24–49). When a new gear set or pinion bearings are 2. used, select a nominal size spacer based on OEM specifications. If original parts are used, use a spacer removed during disassembly of the drive. Place the drive pinion and cage assembly in a 3. press, with the gear teeth toward the bottom.Apply and hold the press load to the pinion 4. bearing. As pressure is applied, rotate the bearing cage several times so that the bear-ings make normal contact. While pressure is held against the assembly, wind 5. a cord around the bearing cage several times.Attach a spring scale to the end of the cord 6. (Figure 24–50). Pull the cord with the scale on a horizontal line. FIGURE 24–49 Assembly of the pinion bearing cage. (Courtesy of Dana Corporation) FIGURE 24–50 Cage in press to check bearing p reload. Sleeve must apply

汽车车辆类驱动桥的设计外文文献翻译、外文翻译、中英文翻译

附录I Drive axle powertrain at the end of their basic function is to increase the transmission came from the drive shaft or torque, and a reasonable distribution of power to the left and right wheel, in addition to acting on the road and under the frame or body legislation between the vertical, longitudinal and lateral force. General from the main drive axle reducer, differential, gear wheels and drive axle housings and other components. The design of the Drive axle: Drive axle should be designed to meet the basic requirements are as follows: 1. Select the main reduction ratio should be able to ensure the car has the best power and fuel economy. 2. Smaller size, to ensure that the necessary ground clearance. 3. Gear and other pieces of the work of a smooth transmission,and small noise. 4. In a variety of speed and load with a high transmission efficiency. 5. In ensuring adequate strength and stiffness conditions, should strive for the quality of small, especially under the mass-spring should be as small as possible in order to improve vehicle ride comfort. 6. And suspension movement-oriented coordination of steering drive axle, but also with the coordination of steering movement. 7. The structure of simple, good processing, manufacturing, easy disassembly, to facilitate adjustment. Drive axle classification -1-

驱动桥设计_毕业设计论文

驱动桥设计 摘要 现代工程车辆技术追求高效节能、高舒适性和高安全性等目标。前一项目标与环境保护密切相关,是当代全球性热门话题,后两项目标是车辆朝着高性能化方向发展必须研究和解决的重要课题。转向系统的高性能化是指其能够根据车辆的运行状况和驾驶员的要求实行多目标控制,以获得良好的转向轻便性、较好的路感和较快的响应性。 汽车转向系统是影响汽车操纵稳定性、行驶安全性和驾驶舒适性的关键部分。在追求高效节能\高舒适性和高安全性的今天,电控液压助力转向系统作为一种新的汽车动力转向系统,以其节能、环保、更佳的操纵特性和转向路感,成为动力转向技术研究的焦点。 本文通过查阅相关的文献,介绍了EHPS系统的结构组成和工作原理,在参考现有车型的结构数据的基础上,设计计算转向系的主要参数,确定转向器的结构参数和动力转向部分结构参数,在分析其助力特性的基础上,设计合理的助力特性曲线,并通过MATLAB作出助力特性图,同时提出一种基于车速和转向盘转动角速度的控制策略,根据EHPS系统的特点,通过AMESim和Simulink建立整个系统的模型。通过联合仿真可以得出EHPS系统比HPS系统能提供更好的助力特性和转向路感。 关键词:EHPS;助力特性;结构设计;AMESim与Simulink建模 ABSTRACT

High effective energy saving,high comfort performance and high security are thegoals of contemporary.The first goal closely concerns with environment protecting,is also the popular topic around the world.The last two goals are the important subjects must be researched and solved in making automobile high performance.To make the steering system high performance is that the system can carry out mufti-goals control according to the vehicle states and drive requirements to acquire the steering handiness,better road feeling,better anti-interfering performance and faster response. The motor turing system is the essential part which affects the automobile operation stability,the travel security and the driving comfortablet.Nowadays we pursue highly effective energy conservation,the high comforrtableness and high secure.The electrically hydraulic power steering (EHPS) taking as one kind of new automobile power steering system,it takes the power steering engineering research the focal point by its energy conservation,the environmental protection,the better handling characteristic and changes the road feeling. According to consult relevant literature, this paper introduces the structure and the principle of EHPS, bases the further study of EHPS on the structural parameter date of a certain type of the light lorry, calculates the main parameters of steering system and power steering and devises the hydraulic circuit of EHPS. On the basis of the analysis of EHPS, this paper designs a reasonable EHPS power curve, including plotting the curve with the technique of MATLAB. Taking into account the steady steering and emergency steering, it advances the control strategy plan based on speed, steering wheel angle velocity, the steering wheel torque. Based on the structural characteristics of EHPS, this paper proposed AMESIM and SIMULINK joint simulation of the entire EHPS system. Accord to the result we can know that EHPS can offer more secure handle, more saving energy and way feeling. Key words:EHPS;Characteristics of power; Structure design; AMESim and Simulink Modeling

驱动桥设计外文翻译

驱动桥设计外文翻译 驱动桥设计 随着汽车对安全、节能、环保的不断重视,汽车后桥作为整车的一个关键部件,其产品的质量对整车的安全使用及整车性能的影响是非常大的,因而对汽车后桥进行有效的优化设计计算是非常必要的。 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。驱动桥设计应当满足如下基本要求: 1、符合现代汽车设计的一般理论。 2、外形尺寸要小,保证有必要的离地间隙。 3、合适的主减速比,以保证汽车的动力性和燃料经济性。 4、在各种转速和载荷下具有高的传动效率。 5、在保证足够的强度、刚度条件下,力求质量小,结构简单,加工工艺性 好,制造容易,拆装,调整方便。 6、与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。智能电子技术在汽车上得以推广使得汽车在安全行驶和其它功能更上一层楼。通过各种传感器实现自动驾驶。除些之外智能汽车装备有多种传感器能充分感知交通设施及环境的信息并能随时判断车辆及驾驶员是否处于危险之中,具备自主寻路、导航、避撞、不停车收费等功能。有效提高运输过程中的安全,减少驾驶员的操纵疲劳度,提高乘客的舒适度。当然蓄电池是电动汽车的关键,电动汽车用的蓄电池主

要有:铅酸蓄电池、镍镉蓄电池、钠硫蓄电池、钠硫蓄电池、锂电池、锌—空气电池、飞轮电池、燃料电池和太阳能电池等。在诸多种电池中,燃料电池是迄今为止最有希望解决汽车能源短缺问题的动力源。燃料电池具有高效无污染的特性,不同于其他蓄电池,其不需要充电,只要外部不断地供给燃料,就能连续稳定地发电。燃料电池汽车(FCEV)具有可与内燃机汽车媲美的动力性能,在排放、燃油经济性方面明显优于内燃机车辆。 这项发明通常涉及到多能源动力总成的车辆,以及,尤其是多能源动力总成,有多个电源包括电动马达来驱动的汽车轮子。混合动力电动动力系统已经被发展成为包括电机(IC)做内燃机引擎,自主经营的或者联合根据行驶条件下,国家费用的牵引电池,与电源,最有效地满足当前所产生的电力需求车辆操作。大部分电子混合动力汽车可以在市场上买到是前轮驱动车辆,只不过前轮带动起来的。混合动力电动动力系统被开发用于四轮驱动车,允许两个电机和引擎传送权力后方的驱动轮。当包装电动马达驱动后桥机组是较好的使用躺轴功率流,马达驱动单元被放在后桥中心线。这样的电的混合动力系统,然而,现在的包装设计很困难,特别是当副轴车辆传动是用来传输动力,纵向驱动轴后轴。需要混合动力电动存在的动力,在其中轴是靠电动机驱动的或的内燃机结合电机。以减少成本,电动机器将提供所有混合功能,包括电气能源的产生、电动汽车、电子发动机启动投放 提高发动机的功率,再生式制动。一个驱动器单位是混合动力电动汽车包括市场, 发动机,电动机器包括转子,副轴,齿轮组包括一个输入可驱动的连接到发动机和输出,用来传送之间权限投入与产出和生产第一速度微分导致一个录入速度超过每小时的速度输出,第一和第二驾车轴差动机构可驱动的连接到输出线时,因为传输功率和输出之间驾车轴,可驱动的行星齿轮装置连接到输出和转子,说之间权限传输转子和输出线,制作了第二速度微分导致转子速度超过速度输出。转矩反应为减速

机械毕业设计英文外文翻译399驱动桥

附录A 英文文献 Drive Axle All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road. Powerflow The drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels. This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels. Rear-wheel drive Rear-wheel-drive vehicles are mostly trucks, very large sedans and many sports car and coupe models. The typical rear wheel drive vehicle uses a front mounted engine and transmission assemblies with a driveshaft coupling the transmission to the rear drive axle. Drive in through the layout of the bridge, the bridge drive shaft arranged vertically in the same vertical plane, and not the drive axle shaft, respectively, in their own sub-actuator with a direct connection, but the actuator is located at the front or the back of the adjacent shaft

外文翻译五分钟搞定5000字

五分钟搞定5000字-外文文献翻译,你想要的工具都在这里。【大四的时候写毕业论文老师就要求得翻译外文文献并写入论文】来源:董绪的日志 五分钟搞定5000字-外文文献翻译 工具大全https://www.360docs.net/doc/2012334170.html,/node/2151 建议收藏 在科研过程中阅读翻译外文文献是一个非常重要的环节,许多领域高水平的文献都是外文文献,借鉴一些外文文献翻译的经验是非常必要的。由于特殊原因我翻译外文文献的机会比较多,慢慢地就发现了外文文献翻译过程中的三大利器:G oogle“翻译”频道、金山词霸(完整版本)和CNKI“翻译助手"。 具体操作过程如下: 1.先打开金山词霸自动取词功能,然后阅读文献; 2.遇到无法理解的长句时,可以交给Google处理,处理后的结果猛一看,不堪入目,可是经过大脑的再处理后句子的意思基本就明了了; 3.如果通过Google仍然无法理解,感觉就是不同,那肯定是对其中某个“常用单词”理解有误,因为某些单词看似很简单,但是在文献中有特殊的意思,这时就可以通过CNKI的“翻译助手”来查询相关单词的意思,由于CNKI的单词意思都是来源与大量的文献,所以它的吻合率很高。 另外,在翻译过程中最好以“段落”或者“长句”作为翻译的基本单位,这样才不会造成“只见树木,不见森林”的误导。 注: 1、Google翻译:https://www.360docs.net/doc/2012334170.html,/language_tools google,众所周知,谷歌里面的英文文献和资料还算是比较详实的。我利用它是这样的。一方面可以用它查询英文论文,当然这方面的帖子很多,大家可以搜

索,在此不赘述。回到我自己说的翻译上来。下面给大家举个例子来说明如何用吧 比如说“电磁感应透明效应”这个词汇你不知道他怎么翻译, 首先你可以在CNKI里查中文的,根据它们的关键词中英文对照来做,一般比较准确。 在此主要是说在google里怎么知道这个翻译意思。大家应该都有词典吧,按中国人的办法,把一个一个词分着查出来,敲到google里,你的这种翻译一般不太准,当然你需要验证是否准确了,这下看着吧,把你的那支离破碎的翻译在g oogle里搜索,你能看到许多相关的文献或资料,大家都不是笨蛋,看看,也就能找到最精确的翻译了,纯西式的!我就是这么用的。 2、CNKI翻译:https://www.360docs.net/doc/2012334170.html, CNKI翻译助手,这个网站不需要介绍太多,可能有些人也知道的。主要说说它的有点,你进去看看就能发现:搜索的肯定是专业词汇,而且它翻译结果下面有文章与之对应(因为它是CNKI检索提供的,它的翻译是从文献里抽出来的),很实用的一个网站。估计别的写文章的人不是傻子吧,它们的东西我们可以直接拿来用,当然省事了。网址告诉大家,有兴趣的进去看看,你们就会发现其乐无穷!还是很值得用的。https://www.360docs.net/doc/2012334170.html, 3、网路版金山词霸(不到1M):https://www.360docs.net/doc/2012334170.html,/694690163794 4806 翻译时的速度: 这里我谈的是电子版和打印版的翻译速度,按个人翻译速度看,打印版的快些,因为看电子版本一是费眼睛,二是如果我们用电脑,可能还经常时不时玩点游戏,

中英文文献翻译-驱动桥 微分

附录 (1)外文文献 Drive axle/differential All vehicles have some type of drive axle/differential assembly incorporated into the driveline. Whether it is front, rear or four wheel drive, differentials are necessary for the smooth application of engine power to the road. Powerflow See Figure 1 The drive axle must transmit power through a 90°angle. The flow of power in conventional front engine/rear wheel drive vehicles moves from the engine to the drive axle in approximately a straight line. However, at the drive axle, the power must be turned at right angles (from the line of the driveshaft) and directed to the drive wheels. This is accomplished by a pinion drive gear, which turns a circular ring gear. The ring gear is attached to a differential housing, containing a set of smaller gears that are splined to the inner end of each axle shaft. As the housing is rotated, the internal differential gears turn the axle shafts, which are also attached to the drive wheels.

如何看英文文献的方法-----总结

(从Ph.D到现在工作半年,发了12 篇paper, 7 篇first author.)我现在每天还保持读至少2-3 篇的文献的习惯.读文献有不同的读法.但最重要的自己总结概括这篇文献到底说了什么,否则就是白读,读的时候好像什么都明白,一合上就什么都不知道,这是读文献的大忌,既浪费时间,最重要的是,没有养成良好的习惯,导致以后不愿意读文献. 1. 每次读完文献(不管是细读还是粗读), 合上文献后,想想看,文章最重要的take home message 是什么, 如果不知道,就从abstract,conclusion 里找, 并且从discuss 里最好确认一下. 这样一来, 一篇文章就过关了. take home message 其实都不会很多, 基本上是一些concepts, 如果你发现你需要记得很多,那往往是没有读到重点. 2. 扩充知识面的读法, 重点读introduction, 看人家提出的问题,以及目前的进展类似的文章, 每天读一两篇,一个月内就基本上对这个领域的某个方向有个大概的了解.读好的review 也行, 但这样人容易懒惰. 3. 为了写文章的读法, 读文章的时候, 尤其是看discussion 的时候,看到好的英文句型, 最好有意识的记一下,看一下作者是谁,哪篇文章,哪个期刊, 这样以后照猫画虎写的时候,效率高些.比自己在那里半天琢磨出一个句子强的多. 当然,读的多,写的多,你需要记得句型就越少.其实很简单,有意识的去总结和记亿, 就不容易忘记. 科研牛人二告诉研究生怎么看文献,怎么写论文 一、先看综述 先读综述,可以更好地认识课题,知道已经做出什么,自己要做什么,,还有什么问题没有解决。对于国内文献一般批评的声音很多.但它是你迅速了解你的研究领域的入口,在此之后,你再 看外文文献会比一开始直接看外文文献理解的快得多。而国外的综述多为本学科的资深人士撰写,涉及范围广,可以让人事半功倍。 二、有针对地选择文献 针对你自己的方向,找相近的论文来读,从中理解文章中回答什么问题,通过哪些技术手段来 证明,有哪些结论?从这些文章中,了解研究思路,逻辑推论,学习技术方法. 1.关键词、主题词检索: 关键词、主题词一定要选好,这样,才能保证你所要的内容的全面。因为,换个主题词,可以有新的内容出现。 2. 检索某个学者: 查SCI,知道了某个在这个领域有建树的学者,找他近期发表的文章。 3. 参考综述检索: 如果有与自己课题相关或有切入点的综述,可以根据相应的参考文献找到那些原始的研究论文。 4. 注意文章的参考价值: 刊物的影响因子、文章的被引次数能反映文章的参考价值。但要注意引用这篇文章的其它文章是如何评价这篇文章的 三、如何阅读文献 1.注重摘要:摘要可以说是一个论文的窗口。多数文章看摘要,少数文章看全文。真正有用的全文并不多,过分追求全文是浪费,不可走极端。当然只看摘要也是不对的。多数文章题目、摘要简单浏览后,直接把几个Figure 及Title 与legend 一看,一般能掌握大部分。 2.通读全文:读第一遍的时候一定要认真,争取明白每句的大意,能不查字典最好先不查字典。因为读论文的目的并不是学英语,而是获取信息,查了字典以后思维会非常混乱,往往读完全文不知所谓。可以在读的过程中将生字标记,待通读全文后再查找其意思。

中英文文献翻译-驱动桥

Appendix China in the first half of 2008 about 93 million trucks accumulative total sales of cars, vans 61 million vehicles, year-on-year growth of 20.2%, visible light car in commercial car production has a large proportion. And driving axle is very important in the vehicle driving axle is the important car auto bearing assembly, auto frame and integral by suspension of body vertical force, to lead the longitudinal forces, transverse force and torque, and impact load; Driving axle also delivers the transmission, the maximum torque reaction is under. Automobile driving axle structure and design parameters in addition to the reliability of the automobile and durability have important influence on the outside, also for the automobile driving performance such as power, economy, smooth, through sex, mobility Automobile driving axle design involves the mechanical parts and components is widely to these varieties, spare parts, components and assemblies manufacturing also almost want to design to all modern machinery manufacturing process, design a simple structure, reliable operation and low cost, can greatly reduce the drive axle of the total cost of the vehicle production, promote economic development, and car to drive through the car studying and designing practice, can better learning and mastery of the modern car design and mechanical design of the comprehensive knowledge and skills, and the overall thinking and operation skill check, drawing, is the very important link, so ontology of a structure design of fine vans axles has certain Automobile driving axle is one of the main parts car, its basic function is to enlarge the shaft or by the torque transmission spread, then torque distribution to drive wheels, and make about driving wheel has about vehicle movement required differential function; Axles in the end of powertrain system, choose proper Lord slowdown, ensure cars than with sufficient ground clearance is achieved, gear and other transmission job need to ensure smooth are the parameters, and even bear effect on the pavement drive axle and frame or carrying body vertical force, the lead between transverse and longitudinal force and torque force. Driving axle quality, performance will have a direct impact on the vehicle's safety, economy, comfort and reliability. After the car driving axle design can make the students' comprehensive by using their This thesis research aims to overall matching car by driving axle Lord finish design of gear reducer, differential component such as type of design and calculation, and complete checking and comprehensive design single main reducer, then the batch Through the design of the vehicle driving axle should also master the understanding, including each component interaction between the body and the electrical

相关文档
最新文档