五年级奥数上册学习内容
五年级奥数主要知识点

五年级奥数主要知识点五年级奥数是小学数学竞赛的一个重要阶段,它不仅要求学生掌握基础数学知识,还要求学生具备一定的逻辑思维能力和解决问题的能力。
以下是五年级奥数的主要知识点:一、数论基础- 整数的奇偶性:理解奇数和偶数的概念,掌握奇偶数的基本性质。
- 质数与合数:区分质数和合数,了解它们的定义和特点。
- 最大公约数和最小公倍数:学会求两个或多个数的最大公约数和最小公倍数,理解其在数学中的应用。
二、分数和小数- 分数的加减乘除:掌握分数的四则运算,包括通分、约分等技巧。
- 分数的大小比较:学会比较分数的大小,理解分数的性质。
- 小数的运算:熟练进行小数的加减乘除运算,理解小数点的移动规律。
三、比例和比例关系- 比例的基本性质:理解比例的概念,掌握比例的基本性质。
- 正比例和反比例:区分正比例和反比例,理解它们在实际问题中的应用。
四、几何图形- 平面图形:学习三角形、四边形、圆等基本平面图形的性质和面积计算。
- 立体图形:了解长方体、正方体、圆柱、圆锥等立体图形的体积和表面积计算。
五、排列组合与计数原理- 排列组合:掌握排列和组合的基本概念,学会解决相关的数学问题。
- 计数原理:理解加法原理和乘法原理,学会应用这些原理解决实际问题。
六、逻辑推理- 条件逻辑:学会根据给定条件进行逻辑推理,解决数学问题。
- 数学证明:了解数学证明的基本方法,学会用逻辑推理来证明数学命题。
七、应用题- 行程问题:解决涉及速度、时间和距离的行程问题。
- 工程问题:理解工作效率和工作时间的关系,解决相关的工程问题。
- 经济问题:学习解决涉及价格、成本和利润的经济问题。
八、数学思维和解题技巧- 归纳推理:通过观察和分析,归纳出数学规律和模式。
- 逆向思维:学会从问题的结果出发,逆向推导出解决问题的方法。
- 转化思维:将复杂问题转化为简单问题,或将不同类型问题相互转化。
五年级奥数的学习不仅能够提高学生的数学素养,还能培养他们的逻辑思维和创新能力。
五年级奥数培训教材(上)

莱特1+1思维教育辅导讲义莱特1+1思维教育辅导讲义莱特1+1思维教育辅导讲义分析:要根据已知条件先求出两只猴子现在各拿了多少个桃,问题就会迎刃而解.练习:1、在□里填上适当的数20×□÷8+16=262、一个数的3倍加上6,再减去9,最后乘以2,结果是60,就这个数。
3、小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁,"问王老师今年多少岁?4、粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原来有大米多少吨?5、甲乙丙三个小朋友共有贺年卡90张,如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同.问甲乙丙三个小朋友原来各有贺年卡多少张?6、王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片给李强,李强再拿出同样多的画片给王良,这是两个人都有24张,问王亮和李强原来各有画片多少张?7、有甲.乙。
丙三个数,从甲数中拿出15加到乙数,再从乙数中拿出18加到丙数。
最后从丙数拿出12加到甲数,这是三个数都是180。
问甲乙丙三个数原来各是多少?莱特1+1思维教育辅导讲义莱特1+1思维教育辅导讲义A 甲的周长比乙大B 甲乙周长相等C 甲的面积比乙大D 甲乙面积相等分析:可以从图中直接得出甲乙两图的大小关系例题4、如下图,阴影部分是正方形,DF=6厘米,AB=9厘米。
求最大的长方形的周长分析:根据题意,可分析出最大长方形的宽就是正方形的边长练习:1、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形,求这个正方形的周长2、有两个相同的长方形(图1),长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少?(图1)(图2)(图3)3、求下列图形的周长(图2) (单位:厘米)4、一个长12厘米,宽2厘米的长方形和两个正方形正好拼成下图长方形(图3),求所拼长方形的周长。
高斯小学奥数五年级上册含答案_第12讲_几何计数

第十二讲几何计数漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。
旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。
分割田地大概有3条横线、4条竖线左右,可适当增减。
人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。
后面给出问题:在图中,有多少个“井”字?几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.三角形应该是很简单的几何图形了,我们先从三角形数起吧.例题1.下列图形中各有多少个三角形?「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无目的的举例,一定要注意按照一定的顺序来枚举,并注意寻找规律.那么,本题应该按照怎样的顺序去枚举呢?下图中有多少个三角形?例题2.右图中共有多少个三角形?「分析」对于这道题目,我们也首先想到枚举法.应该按照怎样的顺序去枚举呢?你能发现其中的规律吗?练习2:.请数出这个图形中有多少个三角形.下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解决问题的规律和方法.例题3.下列图形中,分别有多少个正方形?「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?例题4.在右图中(下列各小题中,长方形均包括正方形)(1)一共有多少个长方形?(2)包含“★”的长方形共多少个?(3)包含“☆”的长方形共多少个?(4)两个五角星都包含的长方形共多少个?(5)至少包含一个五角星的长方形共多少个?(6)两个五角星都不包含的长方形共多少个?★☆「分析」如果还用枚举法处理这道题目,就会越数越复杂.那有没有好一点的方法?我们换一个角度来思考这个问题.同学们可以想想看,怎样才能在图中画出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以了,也就是只需要画出两条横线和两条竖线.如右图所示.因此,长方形的个数就是选择两条横线和两条竖线的所有方法数.下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.例题5.右图中共有多少个长方形?(注意:长方形包括正方形)「分析」我们可以考虑下方3×5的长方形和右边6×2的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的.哪些重复计算了?容易看出来重复计算的是右下角重叠的3×2的部分,那么把这部分中的长方形减去就能得到最后答案.例题6.右图中有多少个平行四边形?「分析」题目中要求数出平行四边形的个数,那么你能发现图中有几类平行四边形吗?如何数出每一种的数量呢?数学家的墓志铭一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287年—公元前212年)作业1. 右图中共有多少个三角形?作业2. 右图中共有多少个三角形?作业3. 右图是由12个11⨯的小正方形组成的,数一数图中一共有多少个正方形.作业4. 右图是由15个11⨯的小正方形组成的,数一数图中一共有多少个长方形.(长方形包括正方形.)作业5. 在右图中(下列各小题中,长方形均包括正方形)(1)包含“★”的长方形共多少个? (2)包含“☆”的长方形共多少个? (3)两个五角星都包含的长方形共多少个?第十二讲几何计数例题1.答案:16;15详解:注意有序枚举:(1)左图中由一部分组成的三角形有6个,由两部分组成的三角形有3个,由三部分组成的三角形有6个,由六部分组成的三角形有1个,共计16个.(2)右图中由一部分组成的三角形有4个,由两部分组成的三角形有6个,由三部分组成的三角形有2个,由四部分组成的三角形有2个,由六部分组成的三角形有1个,共计15个.例题2.答案:78详解:恰当分类,有序枚举.图中的三角形可以分为两类,一类是尖朝上的,一类是尖朝下的.设最小的三角形边长为1.(1)尖朝上的:边长为1的三角形有123410+++=个;边长为2的三角形有1236++=个;边长为3的三角形有123410+++=个;边长为4的三角形有1236++=个;边长为5的三角形有123+=个;边长为6的三角形有1个.共计56个.(2)尖朝下的:边长为1的三角形有1234515++++=个;边长为2的三角形有1236++=个;边长为3的三角形有1个.共计22个.图中一共有78个三角形.例题3.答案:91,112详解:分别考虑边长为1、2、3、4、5、6的正方形各有多少个即可.左图有66554433221191⨯+⨯+⨯+⨯+⨯+⨯=个,右图有766554433221112⨯+⨯+⨯+⨯+⨯+⨯=个.例题4.答案:(1)756;(2)216;(3)240;(4)108;(5)348;(6)408详解:(1)7条横线选2条作为长,9条竖线选2条作为宽,有22792136756C C⨯=⨯=个.(2)含★的长方形上下左右边分别有3、4、3、6种选法,这样长方形有3436216⨯⨯⨯=个.(3)含☆的长方形上下左右边分别有4、3、5、4种选法,这样长方形有4354240⨯⨯⨯=个.(4)两个五角星都含的长方形上下左右边分别有3、3、3、4种选法,长方形有3334108⨯⨯⨯=个.(5)根据容斥原理,至少包含一个五角星的长方形有216240108348+-=个.(6)用排除法,两个五角星都不包含的长方形有756348408-=个.例题5.答案:135个详解:如图,下方阴影部分中一共有长方形224690C C⨯=个;右方阴影部分中一共有长方形227363C C⨯=个.其中右下方3×2长方形中的长方形被重复计算了,共有224318C C⨯=个.所以图中一共包含长方形906318135+-=个.例题6.答案:45个.详解:所有平行四边形一共有三种不同的方向:尖朝右、尖朝左和尖朝上,如图:这就提示我们可以按这个特点来分类,因为根据图形的对称性,这三种平行四边形的个数是一样多的.只需数出其中的一种,就能算出最后的答案了.下面我们来数尖朝上的平行四边形.所有这种平行四边形的边都是斜的,没有横线,所以要数它们的个数,可以把图中的所有横线都去掉,变成如下图形:这样一来图形就简单了,这个图里的平行四边形很容易数出来:最小的平行四边形有10个,两个小平行四边形拼成的有12个,三个小平行四边形拼成的有6个,四个小平行四边形拼成的有5个,六个小平行四边形拼成的有2个,共35个.而对于另外两种平行四边形,也可根据同样的方法数出,都是35个.因此原来图形中一共有353105⨯=个平行四边形.练习1.答案:8个;12个简答:(1)左图中由一部分组成的三角形有3个,由两部分组成的三角形有4个,由四部分组成的三角形有1个,共计8个.(2)右图中由一部分组成的三角形有5个,由两部分组成的三角形有4个,由三部分组成的三角形有2个,由五部分组成的三角形有1个,共计12个.练习2.答案:48个简答:由1个小三角形组成的三角形有151025+=个;由4个小三角形组成的三角形有10313+=个;由9个小三角形组成的三角形有6个;由16个小三角形组成的三角形有3个;由25个小三角形组成的三角形有1个;共有48个.练习3.答案:2470个简答:按正方形的大小分类,共有2222191817119203962470++++=⨯⨯÷=个.练习4.答案:(1)450;(2)144简答:(1)5条横线选2条作为长,10条竖线选2条作为宽,有225101045450C C⨯=⨯=个.(2)含黑点的长方形上下左右边分别有2、3、6、4种选法,这样长方形有2364144⨯⨯⨯=个.作业1.答案:10个简答:由一个部分组成的三角形有5个,由两个部分组成的三角形有4个,由三个部分组成的三角形有1个,共计10个.作业2.答案:14个简答:边长为1的有10个,边长为2的有4个,共计14个.作业3.答案:20个简答:正方形数目:边长为1的12个,边长为2的6个,边长为3的2个,共计20个.作业4. 答案:90个简答:长方形有2246C C 90⨯=个.作业5. 答案:(1)180个;(2)192个;(2)108个简答:(1)3354180⨯⨯⨯=个;(2)4443192⨯⨯⨯=个;(3)3343108⨯⨯⨯=个.。
五年级上册奥数知识点

五年级上册奥数知识点五年级上册奥数课程是一个重要的学习阶段,它不仅巩固了学生在小学阶段所学的基本数学知识,还拓展了学生的数学思维能力。
以下是一些五年级上册奥数的知识点:1. 数论基础- 质数与合数:理解质数和合数的概念,掌握如何判断一个数是质数还是合数。
- 因数与倍数:学习如何找出一个数的所有因数以及它的倍数。
- 最大公约数和最小公倍数:掌握求两个或多个数的最大公约数和最小公倍数的方法。
2. 四则运算- 整数的四则运算:加强整数加减乘除的运算能力,包括简便计算方法。
- 分数的四则运算:学习分数的加减乘除,理解分数的运算规则。
3. 代数初步- 用字母表示数:理解代数表达式,学会用字母表示未知数。
- 简单的方程:学习解简单的一元一次方程。
4. 几何基础- 线段、射线和直线:区分线段、射线和直线的特点。
- 角度的计算:学习角度的基本概念,包括锐角、直角和钝角。
- 多边形的周长和面积:掌握三角形、四边形等基本多边形的周长和面积计算方法。
5. 组合问题- 排列组合:理解排列和组合的概念,学习排列组合的基本公式和计算方法。
- 简单的逻辑推理:通过逻辑推理解决一些组合问题。
6. 应用题- 速度、时间和距离:学习速度、时间和距离之间的关系,解决相关问题。
- 工程问题:理解工作效率和工作时间的概念,解决工程问题。
7. 数列问题- 等差数列:学习等差数列的概念,掌握等差数列的通项公式和求和公式。
- 等比数列:了解等比数列的特点,学习等比数列的通项公式和求和公式。
8. 概率初步- 可能性:理解概率的基本概念,学习计算简单事件的可能性。
9. 思维训练- 观察能力:培养观察问题、发现规律的能力。
- 空间想象能力:提高空间想象能力,解决立体几何问题。
10. 综合应用- 综合运用所学知识解决实际问题,提高解决复杂问题的能力。
学习奥数不仅能提高学生的数学成绩,还能培养学生的逻辑思维、空间想象和解决问题的能力。
希望同学们能够通过五年级上册的奥数学习,打下坚实的数学基础,为今后的数学学习奠定基石。
五年级 上 (基础奥数)第五讲到第八讲

1、计算下面各题。
1.4×4.2+0.8÷0.5 0.6×(3-0.9)÷4.2
9.74÷[(5-3.2)÷3.6] 9.6÷(2.4+1.6×0.5)
15.4÷[8×(6.34-4.59)] 4.9×[1.28+(1.45-0.31)]
2、计算。
2009.2009×200.9÷2.009 2005.20052005×2.005÷20.05
路程÷速度=时间 速度和×相遇时间=路程和
精讲精练
例题1:甲、乙两人开车从相距300千米的两地同时出发,相向而行,甲每小时行60千米,乙每小时行40千米,二人几小时后两人相遇?
练习1:(1)甲、乙两辆客车同时由相距680千米的两地相对出发,甲客车每小时行42千米,乙每小时行43千米,几小时后两车相遇?
(2)甲、乙两人骑自行车同时由相距1500米的两地相对出发,甲每分钟行220米,乙每分钟比甲多行60米,多少分钟后两人相遇?
例题2:甲、乙两人骑自行车分别从 、 两地同时出发,相向而行,甲每分钟350米,乙每分钟比甲多行28米,两人经过15分钟后在途中相遇,问 、 两地之间距离多少米?
思考题:计算:12.5×69+53×3.1+72×3.1
家庭作业
1、计算。
2×1.6×0.5 1.25×270×0.08 1.25×1.2×8
2、计算。
0.25×1.6 0.5×22.21.25×88
3.2×0.125×2.5 6.4×12.5×0.25×0.05
3、计算。
0.125×1083.14×9.9 0.788×0.99
精讲精练
例题1:填空,你能发现什么规律?
16÷0.1 = 16÷0.2 = 16÷0.25 =
16×10 = 16×5 = 16×4 =
(完整word版)五年级上册奥数讲义

↑↑↑↑↑优才家教 优等生同步奥数提高 五年级(下)↑↑↑↑↑第一讲 整数问题 第1课 数的整除一、知识要点1. 整除——因数、倍数2. 相关基础知识点回顾(1)0是任何整数的倍数. (2)1是任何整数的因数。
3. 数整除的性质例如:如果2|10,2|6,那么2|(10+6),并且2|(10-6).必要条件:(1)a 、b 、c 三个数是整数 (2)b ≠0 (3)a ÷b=c结论:整数a 能被整数b 整除,或b 能整除a,则a 叫做b 的倍数,b 叫做a 的因数。
记作:b|a例如:如果6|36,9|36,那么[6,9]|36.例如:如果2|72,9|72,且(2,7)=1,那么18|72.例:如果7|14,14|28,那么7|28。
4.数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数(即个位数是2、4、6、8、0),那么它必能被2整除。
(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除。
(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.例:1864能否被4整除?解:1864=1800+64,因为4|64,4是1864的因数,1864是4的倍数,所以4|1864。
(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除。
例:29375能否被125整除?解:29375=29000+375,因为125|375,125是375的因数,375是125的倍数,所以125|29375。
(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。
(奇数位指:这个数的个位、百位、万位……;偶数位指:这个数的十位、千位、十万位……)例:判断13574是否是11的倍数?解:这个数的奇数位上数字之和与偶数位上数字和的差是:(4+5+1)-(7+3)=0。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
高斯小学奥数五年级上册含答案_第09讲_流水行船问题

第九讲流水行船问题故事中飞机倒飞的情况真的会出现吗?学习完今天的课程,你就知道了.如同飞机在飞行的时候会受到风速的影响一样,当船在水中航行时,也会受到水速的影响,而具体是怎样的影响呢,我们今天就来研究一下.当船在水中航行时,如果水是静止不动的,那船的行驶速度就只由船本身决定,这个速度称为船的静水速度,即船本身的速度.大家可以设想一下,如果船本身停止运动,那么它还是会顺着水流前进,这时的速度等于水流的速度,我们可以把水流的速度简称为水速.当船顺水而行时,船的静水速度和水速会叠加起来,行驶速度会变快,此时的速度我们称之为顺水速度;相反的,如果船逆水而行,水速会抵消掉一部分船本身的速度,行驶速度会变慢,此时的速度我们称之为逆水速度.下面的两个基本公式就给出了对应的计算方法:顺水速度静水船速水速;=+逆水速度静水船速水速;=-很容易的,根据和差问题的计算方法,我们可以得到如下结论:()2=÷水速顺水速度-逆水速度;()2船速顺水速度+逆水速度.=÷这四个公式是流水行船问题中最基本的速度计算公式.下面我们就利用这四个公式,解决几个典型的流水行船问题.例题1.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【分析】能不能先把顺水速度和逆水速度算出来?一艘飞艇,顺风6小时行驶了900公里;在同样的风速下,逆风行驶600公里,也用了6小时.那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例题2. 甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水7小时后到达乙河,共航行133千米.这艘船在乙河逆水航行84千米,需要花多少小时?「分析」要求出船在乙河中航行84千米所用的时间,只需知道船在乙河行驶的速度,那么只需要知道船的静水速度就可以了.能通过船在甲河中的运动过程求出静水速度么?A 、B 两港相距120千米.甲船的静水速度是20千米/时,水流速度是4千米/时.那么甲船在两港间往返一次需要多少小时?在解答流水行船问题时,我们需要牢牢抓住水速对船速的影响.同一艘船在顺水航行与逆水航行中的速度不相同,所以我们在解题时应该把船在不同情况下的运动过程分开考虑. 对于有些问题,如果发现题目中条件不足,可以采用设具体数值的方法来解决.例题3. 轮船从A 城行驶到B 城需要3天,而从B 城回到A 城需要4天.请问:在A 城放出一个无动力的木筏,它漂到B 城需多少天?甲乙84千米 水流方向行驶方向133千米 水 流 方 向行 驶 方 向【分析】我们要求木筏从A城到B城的漂流时间,只需知道木筏漂流的速度即可.由于木筏是无动力的,也就是说木筏漂流的速度就等于水速.但现在只知道时间,不知道任何的速度或者距离,那该怎么办呢?一艘船在A、B两地往返航行,如果船顺水漂流,从A地到达B地需要60小时,而开船从B地到达A地需要30小时.那么这艘船从A地开到B地需要多长时间?对于有些复杂的流水行船问题,我们需要分段考虑.例题4.甲、乙两船分别从A港出发逆流而上驶向180千米外的B港,静水中甲船每小时航行15千米,乙船每小时航行12千米,水流速度是每小时3千米.乙船出发后两小时,甲船才出发,当甲船追上乙船的时候,甲已离开A港多少千米?若甲船到达B港之后立即返回,则甲、乙两船相遇地点离刚才甲船追上乙船的地点多少千米?「分析」乙船比甲船早两小时出发所行驶的距离,就是甲船追乙船时的路程差.练习4:A码头在B码头的上游,两个码头之间的距离是180千米.货船的静水速度是9千米/时,从A码头出发开往B码头;客船的静水速度是15千米/时,与货船同时出发,从B 码头开往A码头.水速是3千米/时.两船相遇后,货船马上掉头,与客船同时开向A码头.那么货船到达A码头的时间比客船晚几小时?下面我们来看看流水行船问题中的相遇与追及问题.通过一些具体的例子我们可以发现,如果两船相向而行,两船的速度和就是静水速度之和;如果两船同向而行,两船的速度差就是静水速度之差.因此,相遇时间和追及时间与水速大小无关.例题5. A 、B 两码头间河流长为300 千米,甲、乙两船分别从A 、B 码头同时起航.如果相向而行 5 小时相遇,如果同向而行10小时甲船追上乙船.求两船在静水中的速度.【分析】不妨设A 码头在上游,B 码头在下游.如果相向而行,甲船的实际速度为甲速+水速,乙船的实际速度为乙速-水速,两船的速度之和就是甲速+乙速,所以相遇时间和水速大小没有关系.如果同向而行,追及时间是不是也与水速大小没有关系呢?例题6. 某人在河里游泳,逆流而上.他在A 处掉了一只水壶,向前又游了20分钟后,才发现丢了水壶,立即返回追寻,在离A 处2千米的地方追到.假定此人在静水中的游泳速度为每分钟60米,求水流速度.【分析】游泳者丢失水壶时,他并没有发觉,仍旧逆流而上,此时游泳者的速度是:-静水速度水速,而水壶则顺流而下,速度和水速相同.两者背向而行,相当于一个相遇问题的逆过程.速度和为“()-+静水速度水速水速”,恰好为游泳者的静水速度.当游泳者返回的时候,他开始追自己的水壶,此时他和水壶的速度又是怎样的?追及时的速度差又是多少呢?帆船帆船起源于欧洲,其历史可以追溯到远古时代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数上册学习内容:一、消去问题二、尾数问题三、数学趣味题四、对应与分组五、较复杂的和、差、倍数应用题六、还原问题七、较复杂的盈亏问题八、反向思考九、较复杂的假设问题十、小数的巧算十一、循环小数问题十二、行程问题十三、环行问题十四、火车过桥问题十五、解简易方程十六、列方程解应用题十七、图形的剪拼十八、平面图形面积的计算五年级奥数下册学习内容:一、加法原理和乘法原理二、矩形图形解应用题三、平均数问题四、牛吃草问题五、数的整除六、质数合数和分解质因数七、奇数与偶数八、最大公约数与最小公倍数(一)九、最大公约数与最小工倍数(二)十、长方体和正方体十一、定义新运算十二、带余数除法十三、完全平方数十四、分数的基本性质十五、分数的大小比较十六、分数与小数的互化十七、单位分数的拆分十八、分数求和的一些技巧十九、逻辑推理
四年级奥数暑假班教学计划
暑假班共20天合计40课时周一到周五下午10:40——12:10
总的教学效果:学生通过暑假班的学习,学生不仅巩固三年级奥数基础,而且还会掌握各种解题技巧,衔接四年级部分知识(重点难点),从查漏补缺——错题解析——举一反三——旧题新解来发散思维,提高解题技巧。
让学生在今后的数数问题,速算与巧算问题、图形问题(几何)以及行程(应用题)问题上面能够游刃有余的解决问题。
一、总安排如下:
四年级奥数常考常错题18课时
五年级奥数常考常错题16课时
总复习2课时
总测试2课时
试卷评讲2课时
合计40课时
二、具体计划如下:
(一)四年级数学部分
1、摸底考试及就学生的基础来制定教学计划及分班2课时
2、数简单图形的个数8课时
(1)教学目的:学会数各类图形胡个数,掌握数数图形胡规律肯技巧
(2)教学效果:通过本章的学习,学生要会数线段、角、三角形、长方形、正方形等图形的总个数,学会举一反三,解类型题。
(3)教学知识点:
数线段总数的规律:总的线段数=(总的端点数-1)+……+2+1
数角的总数的规律:总的角数=(总的射线数-1)+……+2+1
数三角形总数的规律:总的三角形个数按照数总的线段数的方法来数数
数长方形的规律:长方形的总个数=长边上的线段数×宽边上的线段数
数正方形的规律:如果,方形的边长被分为n等分
那么,正方形的总个数=n×n+(n-1)×(n-1)+……+2×2+1×1 (4)章节小测及试卷的评讲
3、速算与巧算 8课时
(1)教学目的:掌握加减法的运算规律和技巧,能够灵活、准确、迅速地计算出结果。
(2)教学效果:学会运用加法交换律、结合律、减法的性质、乘法、除法的技巧方法解题等差数列求和的技巧
学会舔去括号的解题技巧
熟练掌握各类运算的方法
(3)教学知识点:加法的交换律:a+b=b+a
加法的结合律:a+b+c=a+(b+c)=(a+b)+c
减法的性质:a-b-c=a-(b+c)
a-(b+c)=a-b-c
a-b-c=a-c-b
乘法交换律:a×b=b×a
乘法结合律:a×b×c=a×(b×c)=(a×b)×c
乘法分配律:(a+b)×c=a×c+b×c
(a-b)×c=a×c-b×c
(a+b+c)×d=a×d+b×d+c×d
商不变的性质:如果a÷b=c,
那么(a×m)÷(b×m)=c
(a÷m)÷(b÷m)=c (m≠0)
在不能整除的情况下:(a+b)÷c=a÷c+b÷c
(a-b) ÷c=a÷c-b÷c
添括号去括号的原则:如果括号前面是“+”,不论添括号或者去括号,
括号里面的运算符号不变;如果括号前面是“-”,
不论添括号或者去括号,括号里面的运算符号要
变为相反的符号。
如果括号前面是“×”,不论添括号或者去括号,
括号里面的运算符号不变;如果括号前面是“÷”,
不论添括号或者去括号,括号里面的运算符号要
变为相反的符号。
等差数列:项数=(末项-首项)÷公差+1
等差数列求和法=(首项+末项)×项数÷2
带符号“搬家”法
凑整法
(4)章节小测及试卷的评讲
(二)五年级数学 8课时
1、巧求周长和面积
(1)教学目的:学会计算不规则的、复杂的几何图形的周长和面积
(2)教学效果:学会使用“平移”的方法将不规则图形转换成已学过的图形,再用长方形
和正方形求周长和面积的公式来解题。
(3)教学知识点:长方形的周长=(长+宽)×2
长方形的面积=长×宽
正方形的周长=边长×4
正方形的面积=边长×边长
平行四边形的面积=底×高
三角形的面积=(底×高)÷2
梯形的面积=(上底+下底)×高÷2
一个三角形的三个内角和是180度,n边形的内角和=(n-2)×180
重点学会平移的方法转移图形,再用已学过的知识来解决问题
(4)章节小测及试卷的评讲
2、行程问题8课时
(1)教学目的:学会解行程问题的应用题
(2)教学效果:通过学习要会解火车过桥,流水行船,相遇,追及问题等类型的行程问题。
(3)教学知识点:火车过桥(或隧道)问题:桥长(隧道)+车厂=路程
流水行船问题:顺水的船速=船速+水速
逆水的船速=船速-水速
顺水船速-逆水船速=水速×2
相遇(相离)问题:速度和×相遇时间=相遇(相离)路程
追及问题的基本数量关系:速度差×追及时间=相差路程
(4) 章节小测及试卷的评讲
(三)期末总复习 2课时
(四)期末考试 2课时
(五)试卷的评讲及重难点分析 2课时
扬州少年宫四年级奥数培训班
2008年2月至6月教学计划
上课时间:周六上午8:00-10:50;总课时:17课时授课教师:周港
扬州少年宫五年级学与玩培训班
2009年9月至2010年1月教学计划
上课时间: 周日上午8:00-9:45 总课时:17课时授课教师:周港。