最新级高等数学上期末考试试题及参考答案

合集下载

高等数学上期末试卷(含答案)

高等数学上期末试卷(含答案)

一. 选择题:(每小题3分,共15分)1. 若当0x →时,arctan x x -与nax 是等价无穷小,则a = ( ) B A. 3 B.13 C. 3- D. 13- 2. 下列函数在[1,1]-上满足罗尔定理条件的是 ( )C A. ()f x x = B. 3()f x x =C. ()e e xxf x -=+ D. 1,10()0,01x f x x -≤≤⎧=⎨<≤⎩3. 如果()e ,xf x -=则(ln )d f x x x'=⎰ ( )B A. 1C x -+ B. 1C x+ C. ln x C -+ D. ln x C + 4.曲线y x=渐近线的条数是( ) C A. 1 B. 2 C. 3 D. 45. 设函数()f x 与()g x 在[,]a a -上均具有二阶连续导数,且()f x 为奇函数,()g x 为偶函数,则[()()]d aa f x g x x -''''+=⎰( ) DA. ()()f a g a ''+B. ()()f a g a ''-C. 2()f a 'D. 2()g a '二. 填空题:(每小题3分,共15分)1. 要使函数2232()4x x f x x -+=-在点2x =连续,则应补充定义(2)f = .142. 曲线2e x y -=在区间 上是凸的.(,22-序号3.设函数322(21)e ,x y x x x =+++则(7)(0)y =______________.77!2+4. 曲线231x t y t⎧=+⎨=⎩在2t =点处的切线方程是 . 37.y x =- 5.定积分11(cos x x x -+=⎰ .π2三.解下列各题:(每小题10分,共40分)1.求下列极限(1)22011lim .ln(1)x x x →⎡⎤-⎢⎥+⎣⎦. 解:原式=2240ln(1)lim x x x x→-+ …………..2分 2302211lim.42x xx x x →-+== ………….3分 (2)()22220e d lim e d xt xx t t t t-→⎰⎰.解:原式= ()222202e d e limext x x x t x --→⋅⎰………….3分 22000e d e =2lim2lim 2.1x t xx x t x--→→==⎰ …………..2分2. 求曲线0πtan d (0)4x y t t x =≤≤⎰的弧长.解:s x x == …………..5分ππ440sec d ln sec tan |ln(1x x x x ==+=+⎰ ………..5分 3. 设()f x 满足e ()d ln(1e ),x x f x x C =-++⎰求()d .f x x ⎰解:1(),1e xf x -=+ …………..4分 1e ()d d d 1e 1e xx xf x x x x ---=-=++⎰⎰⎰ …………..3分 ln(1e ).x C -=++ …………..3分4. 已知2lim e d ,xc x x x c x x x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰求常数.c 解:2lim e ,xc x x c x c →+∞+⎛⎫= ⎪-⎝⎭………….4分 221e d (24cxc c x x -∞=-⎰ …………. 4分 5.2c = …………. 2分四.解下列各题:(每小题10分,共30分)1. 设()f x 在[,]a b 上连续,且()0,f x >且1()()d d ,()xba xF x f t t t f t =-⎰⎰求证: (1)[,],()2;x a b F x '∀∈≥(2)()F x 在(,)a b 内恰有一个零点.证明:(1)1()()2,()F x f x f x '=+≥= ……3分 (2)()F x 在[,]a b 上连续 ……1分11()()d d d 0,()()a bb aaa F a f t t t t f t f t =-=-<⎰⎰⎰ ……2分1()()d d ()d 0,()b bb aba Fb f t t t f t t f t =-=>⎰⎰⎰ ……2分由零点定理,()F x 在(,)a b 内至少有一个零点. ……1分 又()F x 在[,]a b 上严格单调增,从而()F x 在(,)a b 内恰有一个零点.……1分2. 设直线(01)y ax a =<<与抛物线2y x =所围成图形的面积为1,S 它们与直线1x =围成图形的面积为2.S(1)确定a 的值,使12S S S =+取得最小值,并求此最小值; (2)求该平面图形绕x 轴旋转一周所得的旋转体的体积.解:22(0,0),(,)y ax a a y x=⎧⇒⎨=⎩ ……..2分 1220()d ()d a aS ax x x x ax x =-+-⎰⎰31,323a a =-+21()0,22S a a a '=-=⇒=唯一驻点()20,S a a ''=>最小值2(.26S = ……..4分1222222π[()()]d π[()()]d 22x V x x x x x x =-+-1π.30+=……..4分 3. 设()f x 在[0,1]上二次可微,且(0)(1)0,f f ==证明:存在(0,1),ξ∈使得()()0.f f ξξξ'''+=证明:令()(),F x xf x '=则()F x 在[0,1]上可微, ……..3分(0)(1)0,f f ==()f x 在[0,1]上可微,由罗尔定理存在(0,1),η∈使()=0f η'……..3分(0)()0,F F η==由罗尔定理存在(0,)(0,1),ξη∈⊂使()=0F ξ' ()()(),F x f x xf x ''''=+(0,1),()()=0.f f ξξξξ'''∴∈+ ……..4分。

大一上学期(第一学期)高数期末考试题及答案

大一上学期(第一学期)高数期末考试题及答案

大一上学期(第一学期)高数期末考试题及答案高等数学I(大一第一学期期末考试题及答案)1.当 $\alpha x$ 和 $\beta x$ 都是无穷小时,$\alpha(x)+\beta(x)$ 不一定是无穷小。

2.极限 $\lim\limits_{x\to a}\dfrac{\sin x+e^{2ax}-1}{x}$ 的值是 $2a$。

3.如果 $f(x)=\begin{cases}\dfrac{\ln(x+a)-\ln a}{x},& x\neq 0\\ \quad\quad 1,& x=0\end{cases}$ 在 $x=a$ 处连续,则$a=e^{-1}$。

4.如果 $f(x)$ 在 $x=a$ 处可导,则$f'(a)=\dfrac{1}{3}(f(a+2h)-f(a-h))$。

5.极限 $\lim\limits_{x\to a}\dfrac{\ln(x+a)-\ln a}{x}$ 的值是 $1/a$。

6.确定函数 $y(x)$,使得 $y(x)$ 的导函数为$y'(x)=\dfrac{y}{2\sin(2x)}+\dfrac{y e^{xy}}{x}-\dfrac{x}{y\ln x}$,则 $y(x)=\dfrac{1}{\ln x}$。

7.过点 $M(1,2,3)$ 且与平面 $x+2y-z=0$ 和 $2x-3y+5z=6$ 平行的直线 $l$ 的方程为 $\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{2}$。

8.函数 $y=2x-\ln(4x)$ 的单调递增区间为 $(-\infty,0)\cup(1,+\infty)$。

9.计算极限 $\lim\limits_{x\to 0}\dfrac{(1+x)^{-e^x}-e}{x}$,结果为 $-1/2$。

10.设 $f(x)$ 在 $[a,b]$ 上连续,则 $F(x)=\int_a^x(x-t)f(t)dt$ 的二阶导数为 $F''(x)=f(x)$。

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。

高数期末考试题及答案大全

高数期末考试题及答案大全

高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。

答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。

在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。

切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。

试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。

则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。

利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。

积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案

第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。

大一第一学期期末高等数学(上)试题及答案

大一第一学期期末高等数学(上)试题及答案

(本小题5分)第一学期期末高等数学试卷、解答下列各题(本小题5分)x 3 12x 162x 3(本小题5分)求 x 2 2 dx. (1 x )(本小题5分)(本小题5分) 求-^dx. 1 x(本小题5分)求— 1 t 2 dt .dx 0(本小题5分)求 cot 6 x esc 4 xdx.(本小题5分)求-1 1 , 求 1 p cos dx. x x(本小题5分)设X e2t cost确定了函数y y e si nt(本小题5分)求'x 1 xdx .0 ■(本小题1、2、3、4、5、6、7、8、9、10、 11、 12、13、求函数 y 4 2xx 2的单调区间丫(本小题5分) sin x dx.求2 2 0 8 sin 2 x (本小题5分) 设 x(t) e kt(3cos t 4sin t),求 dx .设函数y y (x )由方程y 2 in y 2 x 6所确定,求史 dx (本大题共16小题, 总计80分)求极限 limx 2 9x 212x求极限 limarctan xx.1 arcsin xy(x),求乎dx14、 (本小题5分)求函数y 2e x e x 的极值15、 (本小题5分)2 2 2 2求极限 lim & “ (2x“ (3xD d°x Dx(10x 1)(11x 1)16、 (本小题5分)cos2x .求dx.1 sin xcosx二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省.(本大题6分)设f (x ) x (x 1)( x 2)( x 3),证明f (x ) 0有且仅有三个实根一学期期末高数考试(答案)、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)23x 212 26x 18x 122、(本小题3分)x 2\ 2x )1 d(1 x 2) 2(1 x 2)2c.3、(本小题3分) 因为 arctanx而 limarcsin — 02 x x2、(本小题7分)2求由曲线y -和y2三、解答下列各题所围成的平面图形绕 0X 轴旋转所得的旋转体的 体积.解:原式 limx 2lim 歿 x 212x18(19、 116 151故 limarcta n x arcs in o x x求—1 t2 dt .dx 0 '原式 2x 1 x 4cot 6 x(1 1 .7cot x 7(本小题4分) 2求1 工-x2cot x)d(cot x)1. 9cot x c.91cos^d(^) x x2(本小题4分)求 x 1 xdx.令 J 1 x ui u4、 5、(本小题3分)x .dx1 x1 x 1dx 1 x . dx dx1 xx ln 1 x(本小题3分)c.6、(本小题4分)cot 5 6 x csc 4 xd x8、1 (本小题4分) x e 2^st确定了函数y y e si nty(x),求 dy dx解:dy dxe 2t (2sin tt22e (cost 2tsin t ) e t (2 sint cost)22~(cost 2t sin t )cost)7、cos 1dx. x原式1 si n — x2u2)du 原式 2 (u41 \32(—)5 39、116 15解: dxx (t)dt13、(本小题6分)设函数y y (x )由方程y 2 ln y 2 x 6所确定,求鱼dx2yy 空 6x 5 y3yx 57厂14、(本小题6分)求函数y 2e x ex , 2x1、y 2e (e y1 1驻点:x -| n —2 2由于 y 2e x e x 0故函数有极小值,,1n "2)2 210、(本小题5分) 求函数 y 4 2x x 2的单调区间解: 函数定义域(11、 12、 设 y 当x当x 当xX)2 2x 2(1 1, y 01, y0函数单调增区间为,11, y 0函数的单调减区间为1,(本小题5分)sin x ,2— dx.8 sin x2d cosx 09 cos 2 x原式1, 3 cosx ln ---------- 6 3 cosx丄In 26(本小题x (t )6分)e kt (3cos t 4sin t),求dx .e kt (43k)cos t (4k 3 )sin t dtx的极值解.定义域),且连续V x264d(*si n2x 1) 1 丄 si n2x2 1In 1 -si n2x c2、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 沿, 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省•512设晒谷场宽为x,则长为 ----- 米,新砌石条围沿的总长为512xL 2x —— x (x 0)L c 51222x唯— •驻点 x 16 L1024 小3x即 x 16为极小值点 故晒谷场宽为16米,长为51232米时,可使新砌石条围沿16所用材料最省2、(本小题8分)15、(本小题 求极限 原式 2 2 2(x 1)(2x 1) (3x 1)2(10x 1)(10x 1)(11x 1)1 2 1 2 1 2 (1 -)2 (2 -)2 (3 -)2(10 丄)2x x x x1 1(10 -)(11 -)x x 10 11 216 10 11lim x lim x 16、(本小题7 210分) cos2x dx 1 sin xcosx cos2x 1 l sin2xdx2求由曲线y -和y2,8x 22x 3 x 10, x 1 4-)2x 32 (rdx 4x 40(匚6x)dx4J 1 5 (——x 4 5 1 1 7. -------x ) 64 7 04 1 1 512 44(—— )—5 7 35二、解答下列各题(本大题10分)设f (x) x(x 1)( x2)(x 3),证明f (x) 0有且仅有三个实根证明:f (x)在(,)连续,可导,从而在[0,3];连续,可导.又 f(0)f(1)f(2)f(3)则分别在[0,1],[1,2],[2,3]上对f(x)应用罗尔定理得,至少存在1(0,1), 2 (1,2), 3(2,3)使f ( !) f ( 2) f ( 3)即f (x) 0至少有三个实根,又f (x) 0,是三次方程,它至多有三个实根 由上述f (x)有且仅有三个实根高等数学(上)试题及答案D 、不存在2、下列变量中,是无穷小量的为(、填空题(每小题 3分,本题共 15分)1、2、时,f (x)x e 2x在x 0处连续.3、dx ln x ,则巴dyx/x+14、 曲线yx 在点(0, 1 )处的切线方程是y=x+15、 若 f (x)dxsin2x C ,C 为常数,则 f (x)2cos2x —。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
2007级高等数学(上)期末考试试题
班级学号姓名得分
一.选择题(每小题3分,共15分)
2ax?ax01?cosx?)与1.设当是等价无穷小,则时,(11?2?2(D) (C)
(A) (B) 222?x?1x?f(x)a,b1x?的值分别为(2.设处可导,则)在?x?1ax?b?1,22,?1?1,2?2,1(D) (B) (C) (A)
12?dx?1?x(x?1).( 3 )1????0(D) (C) (A)
(B) 24x y?e y?exyA? ( 4.曲线轴所围成图形的面积与该曲线过原点的切线及) y eex??dy?lny()xex)d(e?(A)
??y)d?lny(x?ex)d(e(C) (D) e0022??y1x?2x轴(B) e11y11x
旋转一周所形成的曲面方程为( 5.曲线绕)?z?0?2222221x?2y?z?zx?2y??1(B)(A)2222221?2z?1x?2yz??2x?2y(C)(D)
分)分,共二.填空题(每小题315?xx18??(2,1,1)a?x?a共线,且,则.若向量
与6x3233(10)ef(x)?(x??1)?x?xf(x)?,则7.设
t x2??2ln?)dt?f(xF()(x)?Ff(x).设8 ,其中连续,则20
2x2x xe?y?ye都是某二阶常系数齐次线性微分方程的特解,则该微分方程与.设9为
精品文档.
精品文档
?)x?cosx(0?y?sinx,y?y x轴旋转一周所10.曲线轴所围成的平面图形绕与4V?形成的旋转体的体积x三、计算题(每小题5分,共60分)11???lim.11.求??2xtanxx??0x?n?x)?f(xy?xn,0)((1,1),(轴的交点为为正整数)在点12.设曲线处的切线与?)(limf.求n??x?arctant2?yddy? 13.设.及,求22dxdxy?ln(t?1)?y??y e?e?xy.14.设,求0x?43y?f(x)?x?2x?axa0?x的值,并求15.设的驻点,求常数是该曲线的凹凸区间与拐点.
f(x)??dxC?(x)dx?xsinxf.,求16.设cosx x1?dx.17.求
3?2x 3?xx ??y ?xe ?e ?xy0的通解. .求微分方程 182x ???e42yy ?3y ?? 的通解.19.求微分方程x ?1yz ?1??2)(0,1, ,且与直线平行,又与平面20.求过点 211x ?2y ?3z ?0垂
直的平面方程.
?
??????f((0))?1f(x)f 3x ?x)]sinx[f(x)?fd(. ,求,且连续,21.已知0
arctanx ??
?dx . .求
22
2x 1四、证明题(每小题5分,共10分) 4222e ?b ?e ?a(b ??lna ?a)lnb .23.证明:当时, 2ex,xf(x ?x)?f(x)?f(x))(xf , 对任意实数 .设函数24都满足221121x ??f(x)?e)f ?(x)f(x1f(0)?. ; )1 且,证明:( )2(
精品文档. 精品文档
参 考 答 案
一.选择题(每小题3分,共15分) 1.C 2.B 3.B 4.C 5.C 二.填空题(每小题3分,共15分)
103x
e32f(x))3?3,?(?6, 8. . .6 71????0??y4y ?4y
9. 10.
2 60分)三、计算题(每小题5分,共
22
xtan1x ?tanx ?xsec1tanx ?x ?lim ?lim ?lim ??lim ? 11.原式
22323x3xxtan3xx 0x ?0??0xx ?0x y ?1?n(x ?1)
12.切线方程
11n ??))=lim(1?limf(
en ????nn2yddy 2)t2(1???2t , . 13
2dxdx yyy ???x)1)??(e(?yye ?(e ??x)y1??????y ?y|y ??? 14. ; ;
x ?0y22y
)?x(e exe ?a ?0, . 15f(x)(??,0],[1,??)[0,1](0,0),(1,?1) ;拐点为 的凹区间
为 ;凸区间为
f(x)?sinx ?xcosx 16.
f(x)sinx12??C ?x ?)dx ??lncosx ?dx ?(x
cosxx2cos 11141 231
???]??=?[3t ?t(3?t)dtxt23?? 原式 ,.令17
3
22333xx e1xe ???y ?y 18.原方程变为:
xx 精品文档.
精品文档
11xx
xe ?e1???dxdx x ?
C)?(xe ??e[edx ?C]y xx 原方程的通解: xx 1x2x ??xx22???eY ?Ce ?C ey ?Ae ?0?y2y ?3y ? 19. 的通解:;原方程特解 2131x2x ??x2eCe ?y ?C e ?
原方程通解 2135,3)(1,?n ?(2,1,1)?(1,2,3)? 20.平面的法向量为
01??5y ?3z ?x
平面的方程为
???
???????xfd(?xf(x)sinxdx ?)sin([fx)?fx(x)]sinxdx 21.
000
??
???))(d(f ?f(x)d(cosx)xsinx ??
00
????
????x(x(x)sinx])cos ?[f(x)cosx]x ?ffd(x)cosxdx ?[f ??
0000
?(0))?f ?f(
2f(0)? 所以:
1xarctan1arctanx ????????
???xd ??|?)?dx ?arctanxd( 22.
122)xxx(1?xx 111
??112??2?x ?ln)]|??[ln ?x ?ln(1
12442
2
xlnf(x)?][a,b 上应用在Lagrange 中值定理得: 23. ?2ln 22?)??b(b ?a)(lnab ?lna ? ?x ?lnlnx12?)e(e,?g)0?g(x)?(x 在 内导数
2xx
2?2elnln xln 2??]ee,[?)(xg 在上单调性得由 22?ee x422)?ba ?bln ?lna( 所以 2e 精品文档.
精品文档
f(x ?h)?f(x)f(x)f(h)?f(x)f(0)??(x)?limlimf ).(124
hh 0h ?h0?
(0)?)ff(h ??f(x)xx)f)lim(0)?f(?f( h h ?0
)](fxd[?xd ?(x)?f(x)fl ?xlnf(?)xnC 得:2 , 所以 )由 (
f(x)xx e ?(fxf()?Cex)1C ? , 所以: ,由题得:
精品文档.。

相关文档
最新文档