电路第五版(邱关源)电路定理
《电路》邱关源第五版课后习题解答

电路习题解答第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。
【题2】:D 。
【题3】:300;-100。
【题4】:D 。
【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
【题6】:3;-5;-8。
【题7】:D 。
【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。
【题9】:C 。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
【题14】:3123I +⨯=;I =13A 。
【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。
【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得 U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。
【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴ KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。
⑵ KCL :43211-=-I I ;I 18=-A ;U S =-24V 。
第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5A;U Ia b.=+=9485V;IU162125=-=a b.A;P=⨯6125.W=7.5W;吸收功率7.5W。
电路第五版邱关源高等教育出版社

i2Y
u23Y R1u12Y R3 R1R2 R2 R3 R3R1
(3)
i3Y
u31Y R2 u23Y R1 R1R2 R2 R3 R3R1
i1 =u12 /R12 – u31 /R31 i2 =u23 /R23 – u12 /R12 (1) i3 =u31 /R31 – u23 /R23
u US RiI
工作点
Ri
_
U
u=uS – Ri i
Ii
当它向外电路提供电流时,它的端电压U总是小于US , 电流越大端电压U 越小。
24
二 、 实际电流源
BUCT
一个实际电流源,可用一个电流为 iS 的理想电流源和一个 内电导 Gi 并联的模型来表征其特性。Gi: 电源内电导,一般很小。
iI
iS=IS时,其外特性曲线如下:
º
º
T 型电路 (Y 型)
这两种电路都可以用下面的 – Y 变换方法来互相等效。
14
—Y 变换的等效条件:
BUCT
+ i1 u12 R12
– 1
u31 R31
– i2
i3 +
2 +
R23 u23
3 –
+ i1Y 1 –
u12Y
– i2Y R2 2
+
R1
u31Y
u23Y
R3 i3Y +
3–
等效的条件: i1 =i1Y , i2 =i2Y , i3 =i3Y , 且 u12 =u12Y , u23 =u23Y , u31 =u31Y
(3) 理想电压源与理想电流源不能相互转换。
27
对于含有电流源、电压源及电阻的电路,化简电 路的步骤和原则是:
电路第五版(邱关源)电路定理

contents
目录
• 基尔霍夫定律 • 叠加定理 • 戴维南定理 • 诺顿定理 • 对偶定理
01
基尔霍夫定律
定义
基尔霍夫定律是电路分析中重要 的基本定律之一,它包括基尔霍 夫电流定律(KCL)和基尔霍夫
电压定律(KVL)。
基尔霍夫电流定律指出,对于电 路中的任一节点,流入该节点的 电流之和等于流出该节点的电流
内容
总结词
诺顿定理的内容是“任何线性电阻电路 可以等效为一个电流源和电阻的并联组 合”。
VS
详细描述
根据诺顿定理,我们可以通过测量电路中 某些关键点的电压和电流,来计算出等效 的电流源和电阻的值。这个等效电路具有 与原电路相同的电压和电流,从而使得电 路的分析变得简单和直观。
应用
总结词
诺顿定理在电路分析和设计中具有广泛的应用。
之和。
基尔霍夫电压定律指出,对于电 路中的任一闭合回路,沿着回路 绕行方向,各段电压的代数和等
于零。
内容
基尔霍夫电流定律
在电路中,对于任意一个节点,所有 流入的电流总和等于所有流出的电流 总和。
基尔霍夫电压定律
在电路中,对于任意一个闭合回路, 所有电压降落的代数和等于零。
应用
在实际电路分析中,基尔霍夫定律的 应用非常广泛,它可以帮助我们解决 各种复杂的电路问题,如节点分析、 网孔分析等。
独立电源
叠加定理要求各个电源独立作用,即一个电源产 生的电压或电流与其他电源无关。
响应电压或电流
叠加定理计算的是电路中某一支路的响应电压或 电流,而不是总电压或总电流。
应用
简化计算
在多个电源同时作用的复杂电路中, 通过应用叠加定理,可以将问题分解 为多个简单的问题进行计算,从而简 化计算过程。
(完整版)电路(第五版). 邱关源原著 电路教案,第4章.

第4章 电路定理● 本章重点1、叠加定理的应用及注意事项;2、替代定理的含义;3、应用戴维南、诺顿定理分析电路;4、最大功率传输定理Maximum power transfer theorem 的内容。
● 本章难点1、含有受控源电路应用叠加定理;2、求解含有受控源电路的戴维南、诺顿等效电路。
● 教学方法本章讲述了电路理论的一些重要定理,共用6课时。
采用讲授为主,自学为辅的教学方法。
为使学生能理解定理内容,并应用定理来分析问题和解决问题。
在课堂上讲述了大量例题,课下布置一定的作业,使学生能学会学懂,由于课时量偏紧,对于定理的证明要求自学。
● 授课内容4.1 叠加定理 线性函数)(x f :)()()(2121x f x f x x f +=+ —可加性Additivity)()(x af ax f = —齐次性Homogeneity )()()(2121x bf x af bx ax f +=+—叠加性Superposition(a 、b 为任意常数Arbitrary Constant )一、定理对于任一线性网络,若同时受到多个独立电源的作用,则这些共同作用的电源在某条支路上所产生的电压或电流等于每个独立电源各自单独作用时,在该支路上所产生的电压或电流分量的代数和。
例1:试用叠加定理计算图4-1(a )电路中3Ω电阻支路的电流I 。
图4-1(a )二、注意事项(1)只适用于线性电路中求电压、电流,不适用于求功率;也不适用非线性电路;(2)某个独立电源单独作用时,其余独立电源全为零值,电压源用“短路”替代,电流源用“断路”替代;(3)受控源不可以单独作用,当每个独立源作用时均予以保留; (4)“代数和”指分量参考方向与原方向一致取正,不一致取负。
例2:电路如图4-2(a ),试用叠加法求U 和x I 。
图4-2(a )解:第一步10V 电压源单独作用时如图4-2(b )。
_2Ω 6V2I x +_26Ω'A 3I =-6V+ "A 3I =-2Ω _'x I+_'图4-2(b )''x x 3210I I += ⇒ 'x 2I A = (受控源须跟控制量作相应改变)'x '36V U I ==第二步3A 电流源单独作用时如图4-2(c )。
第五版邱关源《电路》习题答案汇编

【题 7】:[解答]
答案及解析
118
(2 + 5 + 8)I + 4 × 5 + 2 × 8 = −18 ;解得 I = −3.6 A;U = −6.8 V。
【题 8】:[解答] 去掉10 Ω 支路,设网孔电流如图所示
− 3I a
+
I a = −4
(3 + 6)I b − 6I c
− 6I b + (6 + 6)I c =
【题 4】:[解答]
(2
−2
+ I1
2 + 2)I1 + (3 + 2
− +
2I2
1)I 2
+ +
4 2
= =
12 −6
;
I2
=
−1
A; P = 1
W
【题 5】:[解答]答案不唯一,有多解。
【题 6】:[解答] 设 4A 电流源两端电压为U ,各网孔电流为 I1 、 I 2 、 I 3 ,参考方向如图所示
【题 14】: 3I + 1 × 2 = 3 ; I = 1 A 。 3
【题 15】: I4 = 3 A; I2 = −3 A; I3 = −1A; I5 = −4 A。
【题 16】: I = −7 A;U = −35V;X 元件吸收的功率为 P = −UI = −245 W。
【题 17】:由图可得U EB = 4 V;流过 2 Ω 电阻的电流 I EB = 2 A;由回路 ADEBCA 列 KVL 得
答案及解析
115
答案
第一章 电路模型和电路定律
【题 1】:由U AB = 5 V 可得: IAC = −2.5 A:U DB = 0 :US = 12.5V。
电路(邱关源第五版)第一章

1876年,美国科学家贝尔(1847 -1879)发明了电话,实现了通 信技术的飞越。 1879年,美国科学家爱迪生(1847 -1931)发明了碳丝灯泡。改变了 人们的生活。 1880年,英国人霍普金森提出了形 式上与欧姆定律相似的计算磁路的 定律。19世纪末交流电技术发展。
1894年,意大利人 马可尼和俄国的波 波夫分别发明了无 线电。从此进入了 无线电通信时代。
2. 电路理论及相关科学技术的发展简史
吉尔伯特发现带电体与非电体之区别 盖里克发明磨擦起电机 1729年,英国人格雷发现有些物质可以传导电,有 些则不能。主张带电体不能导电,而非电体却可以。 法国物理学家迪费(1698-1739)经过实验表明, 带电体与非电体之间并无本质的区别,所有物体都 可以带电。 1734年,迪费发现两类不同的电荷,一种称为玻璃 电,一类称为树脂电。他实际上发现了正负电荷, 但命名不确。
B
C2 1 uF R8 1 . 2K ADIN BAT 6V DC C2 5 1 uF C3 8 2 22 (M) T4 9 01 4 VDD R3 4 1 0K R3 2 2K DAO C8 R4 6 5 1K R2 6 1 0K 5 D9 5 . 1V
R4 3
VCC
3
1K R4 5 1 0K R3 9 1 0K
1
2
3
第一章绪论
1. 课程定位 2. 电路理论及相关科学技术的发展简史
3. 电路理论的应用
4. 电路理论和电路课程
所应具备基础知识:电磁学、数学
课程主要内容:
分析电路中的电磁现象 研究电路的基本规律及电路的分析方法
课程意义:
在整个电子与电气信息类专业的人才培养方案 和课程体系中起着承前启后的重要作用。
电路原理第五版邱关源罗先觉第五版最全包括所有章节及习题解答-资料

进一步计算支路电压和进行其它分析。
支路电流法的特点:
支路法列写的是 KCL和KVL方程,所以方程列 写方便、直观,但方程数较多,宜于在支路数不多 的情况下使用。
例1. 求各支路电流及电压源各自发出的功率。
I1 7
+ 70V
–
a
I2
1 11
+
6V
2
–
b
解:(1) n–1=1个KCL方程:
I3
节点a:–I1–I2+I3=0
7
(2) b–( n–1)=2个KVL方程:
7I1–11I2=70-6=64
11I2+7I3= 6
I112182036A I24062032A
P 70670420W
I3I1I2624A
P62612W
例2.
I1 7
+ 70V
–
解2.
结论:
n个结点、b条支路的电路, 独 立的KCL和KVL方程数为:
(n1 )b(n1 )b
三、支路电流法 (branch current
method )
以各支路电流为未知量列写电路方程分析电路的方法
对于有n个节点、b条支路的电路,要求解 支路电流,未知量共有b个。只要列出b个独立 的电路方程,便可以求解这b个变量。
(1) 先将受控源看作独立源列方程;
(2) 将控制量用未知量表示,并代入(1)中所列的方程,消去 中间变量。
四、网孔电流法(mesh current method)
以网孔电流为未知量列写电路方程分析电路的方法
基本思想
为减少未知量(方程)的个数,假想每个网孔中
邱关源《电路》第五版参考答案

邱关源《电路》第五版参考答案答案第一章电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。
【题2】:D 。
【题3】:300;-100。
【题4】:D 。
【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
【题6】:3;-5;-8。
【题7】:D 。
【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。
【题9】:C 。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
【题14】:3123I +?=;I =13A 。
【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。
【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上式,得U A C =-7V 。
【题18】:P P I I 12122222==;故I I 1222=;I I 12=;⑴KCL :43211-=I I ;I 185=A ;U I I S =-?=218511V 或16.V ;或I I 12=-。
⑵KCL :43211-=-I I ;I 18=-A ;U S =-24V 。
第二章电阻电路的等效变换【题1】:[解答]I =-+9473A =0.5 A ;U I a b .=+=9485V ; I U 162125=-=a b .A ;P =?6125. W =7.5 W;吸收功率7.5W 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返 回
上 页
下 页
1. 戴维宁定理
任何一个线性含源一端口网络,对外电路来说, 总可以用一个电压源和电阻的串联组合来等效置 换;此电压源的电压等于外电路断开时端口处的 开路电压uoc,而电阻等于一端口的输入电阻(或 等效电阻Req)。 i a i + Req a + + u A u Uoc b b
第4章 电路定理
本章重点
4.1 4.2 4.3 4.4 4.5* 4.6* 4.7* 叠加定理 替代定理 戴维宁定理和诺顿定理 最大功率传输定理 特勒根定理 互易定理 对偶原理 首页
重点:
熟练掌握各定理的内容、适用范 围及如何应用。
返 回
4.1 叠加定理
在线性电路中,任一支路的 电流(或电压)可以看成是电路中每一个独立电源 单独作用于电路时,在该支路产生的电流(或电压) 1 的代数和。 i G i3 G G
4. 叠加定理的应用 例1 求电压源的电流及功率
2A 解 画出分电路图 2 4 10 70V + - I
返 回 上 页
5
下 页
2A 4 2
I
(1)
10 5
+
4 2
10 70V + - I (2) 5
2A电流源作用,电桥平衡:
两个简单电路
I 0
(1)
70V电压源作用: I ( 2) 70 /14 70 / 7 15A
1 2 2 3
1. 叠加定理
2 .定理的证明
应用结点法:
is1
+ us2 –
+ us3 –
(G2+G3)un1=G2us2+G3us3+iS1
返 回 上 页 下 页
G2uS 2 G3uS 3 iS 1 1 un1 G2 G3 G2 G3 G2 G3 G i G i3 2 2 1 或表示为: is1 + us2 un1 a1iS 1 a2us 2 a3uS 3 (1) ( 2) ( 3) –
U oc 0.5 10 10 15V
(2) 求输入电阻Req
20 10 I 0.5A 20
Req 5 + 15V Uoc -
Req 10 // 10 5Ω
b
注意 两种解法结果一致,戴
维宁定理更具普遍性。
返 回 上 页 下 页
2.定理的证明
a i a
A
叠加
+ u – b
返 回 上 页 下 页
注意
① 外电路可以是任意的线性或非线性电路,外电路 发生改变时,含源一端口网络的等效电路不变 (伏-安特性等效)。 ② 当一端口内部含有受控源时,控制电路与受控 源必须包含在被化简的同一部分电路中。 a 例1 计算Rx分别为1.2、 4 I 6 Rx 5.2时的电流I 解
下 页
注意
①替代定理既适用于线性电路,也 适用于非线性电路。 ②替代后电路必须有唯一解。 ③替代后其余支路及参数不能改变。
返 回
上 页
下 页
4.3 戴维宁定理和诺顿定理
工程实际中,常常碰到只需研究某一支路的电 压、电流或功率的问题。对所研究的支路来说,电
路的其余部分就成为一个有源二端网络,可等效变
②求等效电阻Req
Req=4//6+6//4=4.8
③ Rx =1.2时,
I= Uoc /(Req + Rx) =0.333A
Rx =5.2时,
b
I= Uoc /(Req + Rx) =0.2A
返 回 上 页 下 页
例2 求电压Uo
解 ①求开路电压Uoc
Uoc=6I+3I I=9/9=1A Uoc=9V
( 2)
3A + 3 + 12V -
u
- 1 2A
i (6 12) /(6 3) 2A
i (2) - 6V + +u(2) - 3 + 1 12V 2A -
返 回 上 页 下 页
u ( 2) 6i ( 2) 6 2 1 8V u u (1) u ( 2) 9 8 17V
Isc=-9.6A
②求等效电阻Req
Req =10//2=1.67
③诺顿等效电路: 9.6A 1.67
返 回 上 页 下 页
例
10 + 20V –
10 Uoc + 10V – –来自baa +
应用电源等效变换
a
2A
1A
+ 5 Uoc – b
Req 5 + 15V Uoc 返 回
b
上 页 下 页
例
10 + 20V –
I
10 Uoc + 10V – – b
a
a +
应用电戴维宁定理 (1) 求开路电压Uoc
6
6
+
注意 叠加方式是任意的,可以一次一个独立
源单独作用,也可以一次几个独立源同时作用, 取决于使分析计算简便。 1 + 5A 计算电压u、电流i。 i +2 例3 + u 10V 2i - 解 画出分电路图 - -
i(1) 2 + 10V - 1 + u(1) + 2i(1) - -
N
a + u' – b
替代
A
a + u'' – b
+ u – b
i
A中 独 立 源 置 零
A
u uoc
'
+
N Req
''
i
u Reqi
返 回 上 页 下 页
u u u uoc Reqi
' ''
i Req + Uoc -
a + u – b
N
返 回
上 页
下 页
3.定理的应用
6I 6I 6 –– ++ Io 6 ++ + ++ II 3U U0 9V 3 9V 3 U 0C –– – –– 独立源置零
②求等效电阻Req 方法1:加压求流
U=6I+3I=9I I=Io6/(6+3)=(2/3)Io
U =9 (2/3)I0=6Io Req = U /Io=6
+21V– + + us R2 – – u '=34V s 解 则
采用倒推法:设 i'=1A
i us ' i' us
us 51 即 i ' i' 1 1.5A us 34
返 回 上 页 下 页
4.2 替代定理
替代定理
对于给定的任意一个电路,若某一支路电 压为uk、电流为ik,那么这条支路就可以用一个 电压等于uk的独立电压源,或者用一个电流等于 ik的独立电流源,或用R=uk/ik的电阻来替代,替 代后电路中全部电压和电流均保持原有值(解答 唯一)。
(1)
i (1) 2A
u 1 i 2i 3i 6V
(1) (1)
5A电源作用:
( 2)
i 1A u 6 2 8V
2i 1 (5 i ) 2i 0 u ( 2) 2i ( 2) 2 (1) 2V
( 2) ( 2) ( 2)
断开Rx支路,将剩余 一端口网络化为戴维 宁等效电路:
6
b 4 10V + –
返 回 上 页 下 页
+ U1-
①求开路电压
+ 6 Uoc + U 2 b 6 4 10V + – 4 I + – Req Uoc Rx a
Uoc = U1 - U2 = 106/(4+6)+10 4/(4+6) = 6-4=2V
(1)开路电压Uoc 的计算 戴维宁等效电路中电压源电压等于将外电路 断开时的开路电压Uoc ,电压源方向与所求开路 电压方向有关。计算Uoc 的方法视电路形式选择 前面学过的任意方法,使易于计算。 (2)等效电阻的计算 等效电阻为将一端口网络内部独立电源全部 置零(电压源短路,电流源开路)后,所得无源一 端口网络的输入电阻。常用下列方法计算:
=
G1 i is1
(1) 2
G2
i3(1)
G3
三个电源共同作用 G1 i
( 2) 2
is1单独作用 G1 i
( 3) 2
i3( 2 ) G3
+ us2 –
i3( 3) G3
+
+
+
us3 –
us3单独作用
返 回 上 页 下 页
us2单独作用
③功率不能叠加(功率为电压和电流的乘积,为 电源的二次函数)。 ④ u, i叠加时要注意各分量的参考方向。 ⑤含受控源(线性)电路亦可用叠加,但受控源应 始终保留。
返 回
上 页
下 页
原因 替代前后KCL,KVL关系相同,其余支路的 u、i关系不变。用uk 替代后,其余支路电压不变 (KVL),其余支路电流也不变,故第k条支路ik也不 变(KCL)。用ik替代后,其余支路电流不变(KCL), 其余支路电压不变,故第 k 条支路uk 也不变(KVL)。
返 回
上 页
3
上 页
下 页
注意 计算含受控源电路的等效电阻是用外加
电源法还是开路、短路法,要具体问题具体分析, 以计算简便为好。
返 回
上 页
下 页