认知无线电应用思考
自适应认知无线电技术的研究与应用

自适应认知无线电技术的研究与应用近年来,无线电领域的自适应认知技术逐渐被推广应用,它被视为改善现有通信技术的一个重要突破口。
自适应认知无线电技术主要针对频谱资源的浪费和不均衡问题,自主、智能地实现对无线电频谱资源的有效管理,让频谱得到合理利用。
本文将对自适应认知无线电技术进行深入探讨。
一、自适应认知无线电技术概述自适应认知无线电技术是指通过程序化的方式对无线电频谱资源的使用情况进行识别和管理,达到在频谱资源受限的情况下提高频谱利用率的目的。
该技术主要实现了以下三个方面:1. 频谱感知技术:通过感知和认知无线电频谱环境,获取频谱的实时信息和监测数据,并进行分析和处理。
2. 频谱管理技术:通过优化分配和利用频谱资源、重新规划无线电频道排布等措施,达到最优的频谱分配和利用方案。
3. 频谱决策技术:主要解决频谱管理中遇到的问题,包括频谱资源争用、频道选择、频率切换等方面的决策问题。
二、自适应认知无线电技术的应用自适应认知无线电技术的应用领域涵盖了通信、雷达、遥感、导航等多个领域。
这里列举其中几个应用举例。
1. 无线通信:在通信领域,自适应认知无线电技术的应用主要集中在无线通信系统中。
传统的无线通信系统在频谱资源分配上存在安排不均等的问题,可能会造成频谱资源的浪费。
自适应认知无线电技术通过精细化的频谱感知技术和智能化的频谱管理技术,解决了这一问题。
2. 雷达:在雷达领域,自适应认知无线电技术的应用主要体现在雷达系统排涝中。
传统的雷达系统在排涝时会对无线电频谱资源进行大量的浪费,而自适应认知无线电技术则可以在保证雷达系统性能不变的情况下,减少资源浪费。
3. 遥感:在遥感领域,自适应认知无线电技术的应用主要涉及传感器和监测设备方面。
通过自适应认知无线电技术,可以更加准确对感知设备进行管理和优化。
4. 导航:在导航领域,自适应认知无线电技术的应用主要体现在自动驾驶领域中。
通过自适应认知无线电技术,可以使自动驾驶的车辆更加准确地判断和操作,从而更加安全和稳定地行驶。
认知无线电技术研究与应用研究

认知无线电技术研究与应用研究一、概述认知无线电技术是指利用先进的无线电通信技术、智能化技术、人工智能技术,实现对无线电频谱的高效率利用和周围环境的自适应感知的一种技术水平,它及其应用在无线电通信中的优越性已得到了广泛认可,因此成为当今无线电通信领域的研究热点,本文主要围绕认知无线电技术研究与应用研究展开。
二、认知无线电技术的研究发展1. 认知无线电的概念和特点认知无线电系统通过动态频谱接口(Dynamic Spectrum Access, DSA)技术,自适应地感知空余频谱,进行频谱分配和频谱管理,提高频谱使用效率和带宽利用率,从而满足不断增长的无线电通信需求;同时,认知无线电系统还具备灵活的频谱共享、环境自适应等特点,可以适应多种复杂环境。
2. 认知无线电的关键技术认知无线电技术的实现需要发展若干关键技术,包括频谱感知与测量、频谱管理与调度、无线电网络安全等技术,其中频谱感知和测量技术是认知无线电技术的核心,利用先进的信号处理技术进行快速的频谱感知和测量是其关键之一。
3. 认知无线电的应用领域认知无线电技术的应用领域涵盖多个方面,如无线电通信、无线电数据传输、军事和民用应用等方面,其中,无线电通信应用领域最为广泛,使用认知无线电系统可以提高系统带宽利用率、频谱利用率,同时可以适应不同的环境。
三、认知无线电技术的典型应用举例1. 无线电通信应用领域随着通信市场的不断扩大,无线电通信已经成为人们生活中最为常见的通讯方式之一,但是频带资源十分有限,如何更好地利用频带资源已经成为一个紧迫的问题。
认知无线电技术恰好可以解决这一问题,它可以适应不同的环境,可以灵活共享频带资源,实现更加高效地频谱分配和调度,同时可以保证无线电通信系统的安全性。
2. 军事应用领域在军事领域中,频谱使用更为复杂,认知无线电技术也得到了广泛应用,如士兵战地通信系统、立体作战指挥系统等。
因为在军事环境中,无线电通信的建设费用昂贵,需要灵活适应性的频谱管理系统,而认知无线电技术正好满足了这一需求,使用它可以高效地利用有限的频谱资源,同时保证了通信系统的稳定性和安全性,因此得到了广泛应用。
认知无线电技术的研究与优化

认知无线电技术的研究与优化认知无线电技术是近年来发展最为迅速的无线电技术之一。
其核心思想是通过对无线电频谱的实时监测和分析,实现对无线电频道的自适应管理和智能分配。
因此,它被广泛应用于无线电资源共享和频谱利用效率提高的领域。
本文将从认知无线电技术的原理、应用领域以及研究与优化方向三个方面,为读者详细介绍认知无线电技术。
一、认知无线电技术的原理认知无线电技术的核心是通过实时监测和分析无线电频谱,获取频道的使用状况、空余容量等信息,从而实现对频谱的自适应管理和智能分配。
其优点是可以最大程度地提高频谱的利用效率,避免频谱的浪费和瓶颈发生。
认知无线电技术通常由以下五个主要模块组成:1.感知模块:监测和获取频谱信息。
2.推理模块:处理并分析感知模块采集的频谱信息,识别出当前频率和频道的使用情况,以及可用频道的数量和容量等相关信息。
3.规划模块:根据推理模块的结果,制定出合理的频道分配方案。
4.执行模块:根据规划模块的方案,执行相应的频道分配和调度操作。
5.反馈模块:监测和评估执行模块的操作效果,从而不断优化系统的性能和效率。
二、认知无线电技术的应用领域认知无线电技术可以应用于多个领域,如无线电资源共享、物联网通信、移动通信等。
下面将分别阐述其在这些领域中的应用场景和具体实现方式。
1.无线电资源共享。
传统的无线电频谱管理方式是采用独占或分段的方式,导致频谱利用效率低下和频谱浪费。
而认知无线电技术可以通过对频谱进行智能识别和分配,实现多用户共享同一频谱,从而最大化地提高了频谱利用效率。
例如,无线电电视的频谱资源一般处于一种相对稳定的状态,而认知无线电技术可以将这些空闲的频率分配给无线局域网或蜂窝通信等其他应用,以增强频谱利用效率。
2.物联网通信。
随着物联网智能家居、智能医疗等应用的快速发展,对于频谱的需求也在不断增长。
而传统的物联网无线通信方式存在频谱资源有限、信道干扰严重等问题。
而认知无线电技术则可以通过对频率的实时检测和分析,选择最优的频谱资源和信道,从而实现物联网通信的高效性和可靠性。
浅谈对认知无线电的认知和思考

HEBEINONGJI摘要:本文从认知认知无线电入手,重构了认知无线电系统组成框图,提出了机器人无线电的新名词。
对认知无线电和软件无线电研究现状以及Sora平台系统做了简略介绍,对认知无线电研究和应用前景进行了展望,并在思考基础上提出T自己的一些看法。
关键词:通信;频谱;认知无线电;软件无线电;机器人无线电浅谈对认知无线电的认知和思考苏州健雄职业技术学院陈清1认知认知无线电从20世纪90年代第一代模拟移动通信(1G)开始,民用移动通信在近二十多年里已经完成了4代更替,现在人们都用上T3G/4G移动通信终端机一字智能手机,而5G移动通信也正在向我们走来。
其技术发展的背后,就是无线电通信技术正在发生一场的深刻的革命性变革。
早在1992年5月Joseph Mitola博士在美国全国电信系统会议上首次提出了软件无线电(SDR)概念,将传统模拟体制无线电通信数字化、软件化,用现代化软件来操纵、控制传统的“纯硬件电路”的无线通信。
软件超电技术的重要价值在于传统的硬件无线电通信设备只是作为无线通信的基本平台,而许多的通信功能则是由软件来实现,打破了有史以来设备的通信功能的实现仅仅依赖于硬件发展的格局。
软件无线电技术的出现是通信领域继固定通信到移动通信,摸信到如通信之后的一次命。
1998年在瑞典皇家工学院的一个研讨会上Joseph Mitola博士对软件无线电概念进行扩展,提出了认知无线电(CR)概念,即软件无线电智能化。
我们可以设想一下,在软件无线电基础上加上机器“大脑”可使认知无线电具有学习能力、感知能力、存储大数据能力、云计算能力,实现与周围环境交互信息,感知和利用空闲频谱等一些新的设想。
也有人说认知无线电就是智慧无线电,并被预言为未来最热门的无线技术。
2认如无线电的组成要深刻认知认知无线电就要首先要从认知传统无线电、软件无线电开始。
软件无线电发展至今已经有二十多年了,技术已经比较成熟。
传统无线电是由双工器(发射器/接收器)、ADC/DAC(包含调制/解调、编码/解码)等各单元硬件电路组成的。
认知无线电网络技术研究及应用

认知无线电网络技术研究及应用第一章:前言在现代通信技术的不断发展和创新的驱动下,无线电网络技术已成为当今社会中不可或缺的一部分。
认知无线电网络技术是无线电网络技术发展的一种新型技术,它通过对无线信道进行深入分析,使无线电网络技术更高效地利用频谱资源,提高数据传输的速率和稳定性。
本文将从技术原理、应用情况和未来发展趋势三个方面对认知无线电网络技术进行探讨。
第二章:技术原理认知无线电网络技术是一种基于认知无线电通信的新型网络技术,它的核心在于“认知”。
该技术的研究主要集中在三个方面:频谱感知、自适应调制和分布式接入控制。
频谱感知是指通过对无线信道进行深入分析,获取信道的物理参数信息,进而得出可用频谱范围和信道状况。
自适应调制技术则是根据频谱感知信息的反馈,动态地调整网络传输的数据速率、调制方式和编码方式等参数,以适应当前网络环境的变化。
分布式接入控制技术则是通过对网络节点间的协作和互动,实现网络资源的高效利用和网络拓扑结构的优化。
第三章:应用情况在实际应用中,认知无线电网络技术已经得到了广泛的应用。
它可以应用于军事通信、智能交通、物联网等领域。
在军事通信领域,认知无线电网络技术可以有效避免军事通信系统遭遇敌方干扰的情况,提高通信系统的安全性和可靠性。
在智能交通领域,该技术可以通过对道路交通信息的实时感知和处理,提高路面交通的安全性和流畅性。
在物联网领域,认知无线电网络技术可以为物联网设备提供更高效、更灵活的数据传输通道,从而实现物联网应用的全面升级。
第四章:未来发展趋势认知无线电网络技术是一项颇受关注的技术,未来发展趋势非常广阔。
未来几年,该技术主要的发展趋势将体现在以下几个方面:物理层技术、MAC层技术、网络安全等方面。
在物理层技术方面,将会有更多的无线频谱和技术标准被引入,以提高频谱的利用率和通信的稳定性。
同时,各种新型的天线和信号处理技术的引入也将大大增强通信技术的性能。
在MAC层技术方面,将进一步研究算法和模型,以提供更好的数据传输速率和性能。
通信电子中的认知无线电技术及其应用

通信电子中的认知无线电技术及其应用随着科技的进步和社会的发展,通信电子技术也在不断发展和创新。
在通信电子技术中,认知无线电技术是一种新兴的技术,在无线通信领域中具有广阔的应用前景。
一、认知无线电技术的概念和基础认知无线电技术是指利用软件定义无线电、人工智能、信号处理、数字信号处理等技术,实现对无线电频道进行智能管理和优化的技术。
这种技术可以根据不同的频谱需求,灵活地分配和管理无线电频道资源,提高无线电频谱的利用效率。
认知无线电技术的基础有两个方面:一是利用传感器和信号处理技术对无线电频谱进行感知和分析,得到频段利用率等信息;二是利用软件定义无线电技术实现软硬件分离,通过软件对电路基带处理的特性进行定义,实现对无线电频谱的智能管理。
二、认知无线电技术的应用1. 无线电频谱智能调配作为认知无线电技术的一项基本应用,无线电频谱智能调配可以根据不同的频道需求,动态地分配和管理频道资源,最大程度地提高无线电频谱的利用率。
例如,可以利用认知无线电技术在不影响现有无线电通信的前提下,为新兴无线电通信提供频谱资源,推动新兴无线电通信的发展。
此外,还可以通过认知无线电技术,实现对无线电信号的自适应调配,提高信噪比,优化无线电传输质量。
2. 无线电频谱安全保障认知无线电技术可以通过对无线电频谱的感知和分析,实现对频段的实时监控和管理,及时识别并干扰恶意无线信号,保障无线电频谱的安全性。
此外,认知无线电技术还可以通过对频段和信号环境的特征分析,实现对无线电收发机的远程识别,防止非法设备对无线电频谱的侵占。
3. 智能无线电网认知无线电技术可以实现对无线电频谱使用的智能管理和优化,进而在无线电通信领域中推动智能无线电网的发展。
智能无线电网建立在认知无线电技术的基础上,可以实现无线电通信网络的监控、管理、调控和优化,保证无线电通信的稳定性和可靠性。
三、认知无线电技术面临的挑战和发展方向认知无线电技术的发展还面临一些挑战,如频谱感知技术、测试和验证技术、信号处理技术、智能算法等。
认知无线电原理及应用

认知无线电原理及应用无线电通信是现代社会中不可或缺的一部分,它在我们的日常生活中扮演着重要的角色。
然而,随着无线电频谱资源的日益紧张,如何更有效地利用这些资源成为了一个亟待解决的问题。
认知无线电技术应运而生,它通过对无线电频谱的认知和智能化管理,实现了频谱资源的高效利用。
认知无线电的原理是基于对无线电频谱的感知和分析。
它通过感知周围的无线电环境,包括频谱利用情况、信号强度等信息,来判断当前的频谱资源是否被占用。
如果频谱资源没有被占用,认知无线电可以利用这些空闲的频谱资源进行通信。
如果频谱资源已经被占用,认知无线电可以通过与其他设备的协调和谐共享频谱资源,以避免干扰和冲突。
认知无线电技术的应用非常广泛。
首先,它可以提高无线电频谱的利用效率。
传统的无线电通信系统中,频谱资源被静态地分配给各个用户,导致频谱资源的浪费。
而认知无线电可以根据实际需求动态地分配频谱资源,使得频谱资源得到最大程度的利用。
其次,认知无线电可以提高无线电通信的可靠性。
通过对无线电环境的感知和分析,认知无线电可以自动调整通信参数,以适应不同的环境条件,从而提高通信的质量和可靠性。
此外,认知无线电还可以提供更安全的通信服务。
通过对无线电环境的监测,认知无线电可以及时发现和干扰非法设备,保护通信的安全性。
认知无线电技术的发展还面临一些挑战。
首先,认知无线电需要准确地感知和分析无线电环境,这对硬件和算法的要求非常高。
其次,认知无线电需要与传统的无线电通信系统进行兼容和协调,以确保无缝的切换和共存。
此外,认知无线电还需要解决频谱资源分配的公平性和效率性问题,以保证各个用户的利益和通信质量。
尽管面临一些挑战,认知无线电技术的前景依然广阔。
随着无线电频谱资源的日益紧张,认知无线电技术将成为未来无线通信的重要发展方向。
它将为无线通信提供更高效、可靠和安全的服务,推动无线通信技术的进一步发展。
总之,认知无线电技术通过对无线电频谱的认知和智能化管理,实现了频谱资源的高效利用。
认知无线电技术在5G通信中的应用研究

认知无线电技术在5G通信中的应用研究随着人们对于信息传输速度、多维数据传输的需求不断增加,电信通信工业技术也在快速发展。
在这个快速进步的时代,特别是在未来,我们会面临着一个更加广泛、更加高效的5G通信时代。
在这种前提下,认知无线电技术(Cognitive Radio,CR)则成为了和5G紧密联系的核心技术之一,对于未来科技的发展会有重大的影响。
1. 何为认知无线电技术认知无线电技术是一种基于现有频谱资源,利用现有的频率资源工作的新型无线电通信技术。
所谓频率资源,就是一定的频段范围内的信号传输资源。
也就是说,当认知无线电技术执行任务时,先进行频段探测,以判断该频段是否属于可用资源,然后通过调节其发射电台参数实现无线信号的发送和接收。
这种技术的核心思想是在决策过程中需要对无线电环境进行分析,得出最优操作策略,让它能够更好地利用已有空余的频率资源。
由于它具有自学和自适应的特点,可以对频谱资源进行实时监测、自我调整和优化利用,因此能够大大提高无线频谱的可利用性及其效率。
2. 认知无线电技术在5G通信中的应用在5G通信中,认知无线电技术主要发挥了三个作用:频谱资源管理、智能分配、时变信道估计。
它将智能电网、智能交通、智慧城市、物联网等场景耦合在一起,将现有的有限频谱资源转化为更加高效、智能的频谱利用。
将会大大提升无线网络的容量,可靠程度和服务质量,同时减少了资源浪费,便于用户随时随地的进行各种网络应用。
2.1 频谱资源管理对于5G通信来说,频谱资源的利用是非常关键的一点。
正如前文所说,认知无线电技术具有对频谱资源实时监控,智能调整等特点,可提高无线频谱的可利用性及效率。
因此认知无线电技术在5G通信中的应用可以对无线电频谱的利用进行最优化管理。
其利用智能化的方法,通过运用多种数据管理算法对频率资源的状态进行持续的监测,然后依据无线环境质量来确定最佳的频段,将信道的资源进行智能合理分配,达到最优的网络通信效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于认知无线电的应用思考认知无线电核心思想是CR具有学习能力,能与周围环境交互信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生。
CR有可能赋予无线电设备根据频带可用性、位置和过去的经验来自主确定采用哪个频带的功能。
工程化得话,就是基于与操作环境的交互能动态改变其发射机参数的无线电,其具有环境感知和传输参数自我修改的功能。
CR是一种新型无线电,它能够在宽频带上可靠地感知频谱环境,探测合法的授权用户(主用户)的出现,能自适应地占用即时可用的本地频谱,同时在整个通信过程中不给主用户带来有害干扰。
过程:通过感知外界环境,并使用人工智能技术从环境中学习,有目的地实时改变某些操作参数(比如传输功率、载波频率和调制技术等),使其内部状态适应接收到的无线信号的统计变化,从而实现任何时间、任何地点的高可靠通信以及对异构网络环境有限的无线频谱资源进行高效地利用。
认知无线电的核心思想就是通过频谱感知(Spectrum Sensing)和系统的智能学习能力,实现动态频谱分配(DSA:dynamic spectrum allocation)和频谱共享(Spectrum Sharing)。
认知无线电中,次级用户动态的搜索频谱空穴进行通信,这种技术称为动态频谱接入。
在主用户占用某个授权频段时,次级用户必须从该频段退出,去搜索其它空闲频段完成自己的通信。
1.平台结构认知无线电的物理平台的实现是以软件无线电平台为基础的,其物理平台结构与软件无线电平台结构基本相同,两者之间的比较如图3[9]所示,它主要在软件无线电平台的基础上增加了感知,学习等功能,以实现其独特的认知能力。
其中,无论对于软件无线电平台还是认知无线电平台,软件部分的硬件支撑都是通用硬件平台。
也就是说,从图1可以看出,和软件无线电类似,认知无线电物理平台也主要由射频前端、数模模数转换器以及通用硬件平台3个部分组成。
图1认知无线电与软件无线电物理平台结构的比较其中,为软件提供硬件支撑的认知无线电通用硬件平台的组成和结构与软件无线电系统的硬件平台基本类似,但除了常见通信系统所需的数字信号处理外,认知无线电还需要完成频谱感知、频谱分析、频谱判决等认知无线电特有的功能。
而认知无线电平台中使用的A/D和D/A模块的作用和性能指标也与软件无线电系统基本相同。
A/D和D/A模块一般集成在通用硬件平台之中。
另外,认知无线电平台射频前端除了完成软件无线电系统所需的不同频段的宽带射频信号和中频信号之间的转换外,还需要协助甚至单独完成宽带频谱感知等认知无线电特有的功能。
但就结构而言,认知无线电平台的射频模块与软件无线电平台的射频前端基本类似。
关于认知无线电的射频前端技术将在下面重点介绍。
相对软件无线电系统而言,认知无线电系统射频模块的特点就是,它需要协助系统甚至单独完成宽带频谱感知功能。
这个功能要求射频模块的射频硬件具有很宽的工作频带范围,从而实现对频谱信息实时的、大范围的测量。
和软件无线电射频模块类似,认知无线电射频模块的基本体系结构如图4所示。
图2认知无线电的宽带射频前端结构从图2中可以看出,和软件无线电的射频模块类似,认知无线电的射频前端具有混频、放大和自动增益控制等功能,实现大频谱范围内的射频信号与中频信号之间的转换,从而解决A/D的性能不满足对射频信号直接采样的问题。
其中,可编程带通滤波器、低噪声放大器、可编程本地振荡器以及混频器和自动增益控制等需要具有与软件无线电平台类似的性能参数。
为了协助完成认知无线电系统的认知功能,对周围无线电环境中的授权用户进行检测,认知无线电系统的射频模块对某些部件的要求要高于软件无线电系统,它要求射频前端具有在大动态范围内检测一个或多个弱信号的能力,即接收机需要具有足够的工作带宽和灵敏度,使其能准确地检测不同频带不同功率电平的主信号。
同时,考虑到频谱感知一般由能量检测、特征检测等方法完成,如果射频模块需要单独完成频谱感知,它还需要具有信号处理功能。
2.研究现状目前,国内外认知无线电技术的研究大都集中在物理层、MAC 层、网络层的功能方面,如频谱感知、功率控制、频谱共享、频谱移动性管理、认知无线电的安全技术以及认知无线电的跨层设计等技术。
针对认知无线电的发展,世界各国通信专家都密切关注,国内外的大学和科研机构也相续开展了认知无线电技术的研究。
其中主要的研究机构有美国国防高级研究计划署(DARPA,DefenseAdvancedResearchProjectsAgency)、维吉尼亚无线通信技术中心、英国移动电信技术虚拟中心多模终端研究小组、布里斯托尔大学通信系统研究中心和欧洲通信协会等。
此外,美国加州大学伯克利分校的无线研究中心、荷兰的代尔夫特大学、德国柏林技术学院等也有关于认知无线电方面的研究。
近几年,国内研究机构也开始关注和跟踪该技术,并开展了相关的研究,这些研究机构主要是清华大学、电子科技大学、西安交通大学及香港科技大学等高校。
鉴于目前的认知无线电的研究状况,国家“863”计划基金也在2005年首次支持了认知无线电关键技术的研究。
3.认知无线电的标准认知无线电技术被视为解决当前频谱资源利用率低的有效方案。
各标准化组织和行业联盟纷纷展开对认知无线电技术的研究,并着手制定认知无线电的标准和协议,以其推动认知无线电技术的发展和应用。
涉及认知无线电标准化的机构主要有美国电气电子工程师协会(IEEE)、国际电信联盟(ITU)、软件无线电论坛(SDRForum)和美国国防部高级研究计划署(DARPA)等。
IEEE涉及认知无线电的标准最受关注的有两个:IEEE802.22和IEEESCC41(或者称为P1900)。
其中,IEEE802.22是采用认知无线电技术为基础的空中接口标准,IEEESCC41的标准化工作主要涉及动态频谱接入的相关技术。
另外,我们认为,共存问题、动态频谱选择和功率控制、动态频谱接入等技术都属于认知无线电的范畴。
因此,除上述两个标准之外,IEEE还有其他几个标准也涉及认知无线电,如IEEE802.11h、IEEE802.15和IEEE802.16h等。
已经完成的标准化有:(1)IEEE802.16.2-2001,(2)IEEE802.16a-2003,(3)IEEE802.16.2-2004,(4)IEEE802.15.2-2003,(5)IEEE802.15.4-2003,(6)IEEE802.11h-2003。
应用10.1在WRAN中的应用2003年12月,FCC在其规则的第15章公布了修正案。
法律规定[7]“只要具备认知无线电功能,即使是其用途未获许可的无线终端,也能使用需要无线许可的现有无线频带”,这为新的无线资源管理技术奠定了法律基础。
WRAN的目的就是使用认知无线电技术将分配给电视广播的VHF/UHF频带(北美为54~862MHz)的频率用作宽带访问线路,将空闲频道有效地利用起来。
IEEE802.22标准工作组于2005年9月完成了对WRAN的功能需求和信道模型文档,2006年开始对各个公司提交的提案进行审议和合并,并于2006年3月形成了最终的合并提案作为编写标准的基础。
认知无线电10.2在UWB中的应用UWB技术产生于20世纪60年代,当时主要应用于脉冲雷达(ImpulseRadar),美国军方利用其进行安全通信中的精确定位和成像。
至20世纪90年代之前,UWB主要应用于军事领域,之后UWB技术开始应用于民用领域。
UWB由于具有传输速率高、系统容量大、抵抗多径能力强、功耗低、成本低等优点,被认为是下一代无线通信的革命性技术,而且是未来多媒体宽带无线通信中最具潜力的技术。
认知无线电采用频谱感知技术,能够感知周围频谱环境的特性,通过动态频谱感知来探测“频谱空洞”,合理地、机会性地利用临时可用的频段,潜在地提高频谱的利用率。
与此同时,认知无线电技术还支持根据感知结果动态地、自适应地改变系统的传输参数,以保证高优先级的授权主用户对频段的优先使用,改善频谱共享,与其他系统更好地共存。
认知无线电10.3在WLAN中的应用以IEEE802.11标准为基础的无线技术已经成为目前WLAN技术的主流,通过接入无线网络实现移动办公已经成为很多人生活方式的一部分。
随着无线局域网的普及,频谱资源越来越紧张,某些工作频段的通信业务近乎达到饱和状态,无法满足新的业务请求;同时,某些其他频段比较空闲,能够提供更多的可用信道。
在这样的背景下,认知无线电技术的出现和发展为解决以上问题带来了新的思路。
认知无线电技术能通过不断扫描频谱段,获得这些可用信道的信道环境和质量的认知信息,自适应地接入较好的通信信道,这正是解决WLAN 频段拥挤问题的方法。
因此认知无线电技术对于WLAN而言更具有吸引力。
而且无线局域网具有工作区域小、工作地点灵活、无线环境相对简单等特点,更有利于认知无线电技术的实现。
认知无线电10.4在Mesh网络中的应用无线Mesh网络是近几年出现的具有一种无线多跳(Multi-hop)的网络结构。
在Mesh网络中,每个节点可以和一个或者多个对等节点直接通信;同时也能模拟路由器的功能,从邻近节点接收消息并进行中继转发。
这样,Mesh网络通过邻近节点之间的低功率传输取代了远距离节点间的大功率传输,实现了低成本的随时随地接入。
网络中所有节点之间是相互协作的,如果Mesh网络中的一条链路失效了,网络可以通过替代链路将信息路由到目的地,优化了频谱的使用。
认知无线电和无线Mesh网络结合,正是在增大网络密度和提高服务吞吐量的发展趋势下提出来的,适用于可能有严重的线路争用情况的人口稠密城市的无线宽带接入。
认知Mesh网络通过中继方式可以有效地扩展网络覆盖范围,当一个无线Mesh网的骨干网络是由认知接入点和固定中继点组成时,无线Mesh网的覆盖范围能够大大增加。
尤其是在受限于视距传输的微波频段,认知Mesh网络将有利于在微波频段实现频谱的开放接入。
认知无线电10.5在Ad-hoc中的应用一般的多跳Ad-hoc网络在发送数据包时会预先确定通信路由。
认知无线电技术能够实时地收集信息并且自动选择波形,并向各方通知尚未使用的频率信息,适用于具有不可提前预测的频谱使用模式的应用场景。
因此,当认知无线电技术应用于低功耗多跳Ad-hoc网络,能够满足分布式认知用户之间的通信需求。
由于认知无线电系统可根据周围环境的变化动态地进行频率的选择,而频率的改变通常需要路由协议等进行相应调整,因此,基于认知无线电技术的Ad-hoc网络需要新的支持分布式频率共享的MAC协议和路由协议。
4.存在问题:1.当前,装备上通信频段使用比较窄,是否适用;在频谱政策管理部门的带动下,一些标准化组织采用了CR技术,并先后制定了一系列标准以推动该技术在多种应用场景下的发展。