弹塑性力学2应变分量与协调方程讲义

合集下载

1.2 应变分量和协调方程

1.2 应变分量和协调方程
•为使变形后的物体保持连续体,应变分量必 须满足一定的关系。
•证 明 —— 应 变 协 调 方 程 是 变 形 连 续 的 必 要 和 充分条件。
•变形连续的物理意义,反映在数学上则要求位 移分量为单值连续函数。
•目标——如果应变分量满足应变协调方程,则 对于单连通域,就可以通过几何方程积分求得 单值连续的位移分量。
位移u,v,w是单值连续函数
进一步分析位移函数具有连续的三阶导数
一点的变形通过微分六面体单元描述
微分单元体的变形,分为两部分讨论
正应变——棱边的伸长和缩短 切应变——棱边之间夹角(直角)改变
u x dx, y u x, y u dx
x
u x, y dy u x, y u dy
y
v x dx, y v x, y u dx
• 变形通过应变描述
• 应变状态—— 坐标变换时,应变分量是
随之坐标改变而变化。
• 应变分量的转轴公式
n n i'j'
ii' jj' ij
• 应变张量
x
ij
1
2
yx
12zx
1
2
xy
y
12zy
1212xyzz
z
11 21 31
12 22 32
13 23 33
•应变张量一旦确定,则任意坐标系下的应变 分量均可确定。因此应变状态就完全确定。 •坐标变换后各应变分量均发生改变,但作为 一个整体,所描述的应变状态并未改变。
§1.2 应变分量
• 由于外部因素 —— 载荷或温度
• 位移—— 物体内部各点空间位置发生变化
• 位移形式
• 刚体位移:物体内部各点位置变化,但仍保

弹塑性力学弹性与塑性应力应变关系详解课件

弹塑性力学弹性与塑性应力应变关系详解课件

有限差分法
有限差分法(Finite Difference Method,简称FDM)是一种基于差分原 理的数值模拟方法。
它通过将连续的时间和空间离散化为有限个差分节点,并利用差分近似代 替微分方程中的导数项,从而将微分方程转化为差分方程进行求解。
有限差分法适用于求解偏微分方程,尤其在求解波动问题和热传导问题方 面具
幂函数型弹塑性本构模型
该模型将应力应变关系表示为幂函数形式,适用于描述岩石等材料 的弹塑性行为。
双曲线型弹塑性本构模型
该模型将应力应变关系表示为双曲线形式,适用于描述某些复合材 料的弹塑性行为。
弹塑性本构模型的选用原则
根据材料的性质选择合适的弹塑性本 构模型,以确保能够准确描述材料的 力学行为。
在选择本构模型时,需要考虑模型的 复杂性和计算效率,以便在实际工程 中得到广泛应用。
弹塑性力学弹性与塑性应 力应变关系详解课件
目录
• 弹塑性力学基础 • 弹性应力应变关系 • 塑性应力应变关系 • 弹塑性本构模型 • 弹塑性力学的数值模拟方法
01
弹塑性力学基础
弹塑性力学定义
01
02
03
弹塑性力学
是一门研究材料在弹性与 塑性范围内应力应变关系 的学科。
弹性
材料在受到外力作用后能 够恢复到原始状态的性质 。
当外力卸载后,物体发生弹性恢复,但需要一定的时间才能完成。这种 现象称为弹性后效。弹性后效的大小与材料的性质、温度和加载速率等 因素有关。
03
塑性应力应变关系
塑性应力应变关系定义
塑性应力应变关系
01
描述材料在塑性变形阶段应力与应变之间的关系。
特点
02
当材料受到超过屈服点的外力时,会发生塑性变形,此时应力

弹塑性力学(应变状态理论)讲稿

弹塑性力学(应变状态理论)讲稿

当体积不变时:
ij e ij
应变偏张量
三、应变参量及计算公式
1. 主切应变

2
x y
2 x y 2

x y
2
cos 2
xy
2
sin 2
sin 2
xy
2
cos 2
1 ( 2 3 ) 2 ( 3 1 ) 3 ( 1 2 )
1 2 3
2. 八面体切应变 与三个应变主轴方向具有相同倾角平面上的应变
m ax 1 3
1 8 (1 2 3 ) m 3 2 2 2 2 8 1 2 2 3 3 1
du u d x dt x x dv v d y dt y y dw w d z dt z z
d xy d yz d zx
u v dt dt y x v w dt dt z z w u dt dt x z
zx
u w z x
4. 应变张量与应变参量
一、应变张量
引入符号:
xy
yz
zx
1 1 v u xy x y 2 2 1 1 w v yz y z 2 2 1 1 u w zx 2 2 z x
v
dy B y
P


A B
u x x v y y
xy
v u x y
v v dy y
u u dy y
三维状态下的几何方程
x
y
几 何 方 程

弹塑性力学 第二章 应变与几何方程

弹塑性力学   第二章  应变与几何方程
具有相同性质的一组物理量,可以用一个带 下标的字母表示:
如:位移分量u、v 、w表示为u1 、u2、u 3,缩写为ui(i=1,2,3) 坐标x、y、z表示为x1、 x2、 x3 ,缩写为xi(i=1,2,3)。 单位矢量i、j、k表示ei(i=1,2,3)。
应力分量:
可表示为:
缩写为: 同理,应变分量可表示为:
z C
A
P
B
O
y
(2) 一点应变状态
z
其中
C
注:
应变无量纲; 应变分量均为位置坐标的函数,即
x
A
P
B
O
z
y
4. 位移
一点的位移 —— 矢量S 量纲:m 或 mm u —— x方向的位移 分量;
O
x
w
S u
P v
位移分量: v —— y方向的位移 分量; w—— z方向的位移 分量。
y
§3-2.几何方程
连续性方程
• 连续性方程是单连体小变形连续的必要和 充分条件。 • 如应变分量满足连续性方程,可保证位移 分量存在。
§3-6.应变率和应变增量
§3-7 位移边界条件
在位移边界问题中,位移分量在边界上还应当满足位移边 界条件 在给定位移的表面Su上
注:在给定某方向的面力后,就不能再给定该方向的位移; 反之亦然。但可某些方向给定位移,其它方向给定面力,即 混合边界条件。
PA=dx C C’ P P’ A A’ B B’ PB=dy PC=dz
研究在oxy平面 内投影的变形,
一点的变形 线段的伸长或缩短; 线段间的相对转动; O 考察P点邻域内线段的变形:
v
变形前 P 变形后

弹塑性理论--应变 ppt课件

弹塑性理论--应变  ppt课件

一、P点的正应变
x

(u

u dx) x dx
u

u x
在这里由于小变形,由y
方向位移v所引起的PA的伸缩
是高一阶的微量,略去不计。
o
u P
v
y
P
B v v dy
y
u u dx x
A
A
x
v v dx x
B
u u dy y
ppt课件
图3-1
3
同理可求得:
Sy

o(Sx2 , S y 2 )

(x

x)

( x0

x0 )

u x
Sx

u y
Sy
(y

y)

( y0

y0
)

v x
Sx

v y
Sy
Sx Sx Sx (x x) (x0 x0 )
S y

S y
Sx
(y ppt课件
16
这样,对于纯变形来说 Si ui, j S j Si i, j S j
现在说明应变张量 i, j 的物理意义。
如S平行X轴,则 S x S, S y 0
S x S y

u x
Sx

u y
Sy


v x
Sx

v y
Sy

11
wwyx ))
w

z

0

1 (u v) 2 y x
1 2
(
u z

弹塑性力学之应变状态理论

弹塑性力学之应变状态理论

x'
b
m m
b
a a
y'
2017/9/26
14
2.3 应变张量的性第质二章 应变状态理论
2 主应变与主应变方向
应变矩阵的特征问题 ij li li
应变张量的特征方程 3 I1 ' 2 I2 ' -I3 ' 0 l12 l22 l32 1
应变张量的不变量
2017/9/26
I1 ' x y ቤተ መጻሕፍቲ ባይዱz
弹塑性力学
第2章 应变状态理第论二章 应变状态理论
本章学习要点:
理解变形体内部任意一点处应变状态的基本概念 掌握计算物体内任一点、任意微分面上的主应变
及应变主方向的计算公式 理解Cauchy方程(几何方程)和Saint Venant方
程(变形协调方程)的物理意义,熟练掌握这两 个基本方程
2017/9/26
u
v
w
uC (u z dz, v z dz, w z dz)
2017/9/26
19
2.4 体积应变 第二章 应变状态理论
变形后
M、A 、B 、C各点的坐标
(x u, y v, z w)
(x dx u u dx, y v v dx, z w w dx)
x
x
x
(x u u dy, y dy v v dy, z w w dy)
ij eij mij eij
应变球张量:
m 0 0
0
m
0
0 0 m
m
1 3
(1
2
3 )
1 3
( x
y
z)
1 3
I1
'

弹塑性力学2应变分析

弹塑性力学2应变分析

第二章 应变分析
z
C

C
B
w
A
A

B
B
w
w x
dx
o
u
u u x dx
x
下面研究六面体的剪应变,即各直角的改变。
取变形前的直角BAC或 BAC ,变形时,棱边 AB 转动
一个角度 ,棱边 AC 转动一个角度 ,在xoz平面内,角 应变用 zx 表示,其值为 和 之和,即:
PB的正应变为:

P B PB PB

(r u )d rd rd

u r
径向线段PA的转角为: 0 环向线段PB的转角为:
BB PP PB (u u d ) u
Bpp来自=tg 所以有:
1 u r
B
rd
r

1 u r v z

v r
1 w r w r
(2-9)
u z
14
第二章 应变分析
其中,u,v,w 分别表示一点位移在径向(r方向),环向
( 方向)以及轴向(z方向)的分量。
对于平面问题,柱坐标变为极坐标,则平面极坐标表示
的几何方程为:
u r r 1 v u r r 1 u v v r r r r
dx
v y
dy
v z
dz ) (dz
w x
dx
上式两边同除以 (dr ) ,并利用(2-13)式得:
(1 N ) [l (1
2
2
u x
)m v z
u y
2
n

工程弹塑性力学-第二章 应变理论

工程弹塑性力学-第二章  应变理论

JUST
江苏科技大学 2.3
Jiangsu University of Science and Technology
转动张量与转动位移
1 1 u2 u1 z z z x x 3 2 2 1 2 1 u3 u 2 2 x 2 x2 x3 1 u1 u3 y 2 x3 x1
2
u u u dx2 2 dx1 2 dx2 2 dx3 x1 x2 x3 u3 u3 u3 dx3 dx1 dx2 dx3 x1 x2 x3
dx1 ldr, dx2 mdr, dx3 ndr
T S A 1 1 S T TC , A T TC 2 2




表示为 T 的共轭张量
对称张量
反对称张量

位移梯度张量可分解为对称张量和反对称张量之和
D R
1 1 ui , j ui , j u j ,i ui , j u j ,i D R 2 2
JUST
江苏科技大学
Jiangsu University of Science and Technology
2.4 任意方向的线应变
dr dr du
du dr dr r dr dr
dr 1 r dr
划分为个坐标轴:
2
dr 1 r dr 2 2 2 2 dx1 du1 dx2 du2 dx3 du3
转动张量与转动位移
任意方向的线应变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

位移u,v,w是单值连续函数
进一步分析位移函数具有连续的三阶导数
一点的变形通过微分六面体单元描述
微分单元体的变形,分为两部分讨论
正应变——棱边的伸长和缩短 切应变——棱边之间夹角(直角)改变
u x dx, y u x, y u dx
x
u x, y dy u x, y u dy
y
v x dx, y v x, y u dx
x
v x, y dy v x, y v dy
y
几何意义
Ax, y A'x u, y v
Bx dx, y B' x dx u u dx, y v v dx
x
x
A' B' AB
dx uxdx2 vxdx2 dx
xy
y
1 2
zy
1 2
xz
1 2
yz
z
11 21 31
12 22 32
13
23
33
•应变张量一旦确定,则任意坐标系下的应变 分量均可确定。因此应变状态就完全确定。
•坐标变换后各应变分量均发生改变,但作为 一个整体,所描述的应变状态并未改变。
• 体积应变
u v w .
yz xz xy 2 2u
x y z
yz
对x求一阶偏导数,则
( yz xz xy ) 2 2 x
x x y z yz
分别轮换x,y,z,则可得如下六个关系式
2 y
x 2
2 x
y 2
2 xy
xy
•应变协调方程
2 z
2 y
2 y
z 2
2 yz
yz
2 x
z 2
2 z
x 2
2 xz
求其位移。
• 解:
x
u x
3x
u 3 x2 f (y) 2
y
v y
2y
v y2 g(x)
xy
v x
u y
f '(y) g'(x)
xy
•显然该应变分量没有对应的位移。
•要使这一方程组不矛盾,则六个应变分量必 须满足一定的条件。以下我们将着手建立这 一条件。
要使几何方程求解位移时方程组不矛盾, 则六个应变分量必须满足一定的条件。
•变形协调方程的物理意义
•物体变形后每一单元体都发生形状改变,如 变形不满足一定的关系,变形后的单元体将 不能重新组合成连续体,其间将产生缝隙或 嵌入现象。
•为使变形后的物体保持连续体,应变分量必 须满足一定的关系。
•证明——应变协调方程是变形连续的必要和 充分条件。
•变形连续的物理意义,反映在数学上则要求位 移分量为单值连续函数。
如通过积分,计算出
u
u0
P0 P
xdx
(1
2
xy
z
)dy
(1
2
xz
y
)dz
v
v0
P0 P
(1
2
xy
z )dx
ydy
(1
2
yz
x )dz
保证单值连 w
w0
P0 P
(1
2
xz
y )dx
(1
2
yz
x )dy
xdz
x
0 x
P0 P
x dx x dy x dz
x
y
从几何方程中消去位移分量,第一式和第 二式分别对y和 x求二阶偏导数,然后相加 可得
2 y
x2
2 x
y 2
2 (v xy x
u ) y
2 xy
xy
将几何方程的四,五,六式分别对z,x,
y求一阶偏导数
前后两式相加并减去中间一式,则
将几何方程的四,五,六式分别对z,x,
y求一阶偏导数
前后两式相加并减去中间一式,则
•目标——如果应变分量满足应变协调方程,则 对于单连通域,就可以通过几何方程积分求得 单值连续的位移分量。
•利用位移和转动分量的全微分,则
du
u x
dx
u y
dy
u z
dz
xdx
(1 2
xy
z
)dy
(1 2
xz
y
)dz
d x
x
x
dx
x
y
dy
x
z
dz
轮换x , y, z,可得
du,dv和dy,dz
AB
dx
x
u x
C
x,
y
dy
C
'
x
u
u y
dy,
y
dy
v
v y
dy
y 1 ux 2 vx 2 1
y
v y
正应变
tan 1
vxdx
1 ux dx
v x
tan2
u y dy 1 vy dy
u y
xy
1
2
tan 1
tan 2
v x
u y
几何方程
位移分量和应变分量之间的关系
x
u x
z
y
0 y
P0 P
y dx y dy y dz
x
y
z
续的条件是 积分与积分 路径无关
z
0 z
P0 P
z dx z dy z dz
x
y
z
是单值连续的,则问题可证。
根据格林公式
应变
• 由于外部因素 —— 载荷或温度
• 位移—— 物体内部各点空间位置发生变化
• 位移形式
• 刚体位移:物体内部各点位置变化,但仍保
持初始状态相对位置不变。
• 变形位移:位移不仅使得位置改变,而且改
变了物体内部各个点的相对位置。
M(x,y,z) M’(x’,y’,z’)
x' x u u x, y, z y' y v v x, y, z z' z w w x, y, z
x y z
V
* V V
x
y
z
• ——弹性体一点体积的改变量
• 引入体积应变有助于
• 简化公式
• 解释
协调方程
• 数学意义:
• 几何方程——6个应变分量通过3个位移分量 描述
• 力学意义——变形连续
• 弹性体任意一点的变形必须受到其相邻单元 体变形的约束
• 例1 设 x 3x, y 2y, xy xy, z xz yz 0,
• 刚性位移可以分解为平动与转动 • 刚性转动——变形位移的一部分,但是不产
生变形。
主应变与主应变方向
• 变形通过应变描述
• 应变状态—— 坐标变换时,应变分量是
随之坐标改变而变化。
• 应变分量的转轴公式
i' j' n n ii ' jj ' ij
• 应变张量
x
ij
1
2
yx
1 2
zx
1 2
xy
v x
u y
y
v y
zw zBiblioteka yzw yv z
zx
u z
w x
几何方程又称柯西方程
微分线段伸长——正应变大于零
微分线段夹角缩小——切应变分量大于零
微小应变的几何解释
• 几何方程——位移导数表示的应变 • 应变描述一点的变形,但还不足以完全描述
弹性体的变形 • 原因是没有考虑单元体位置的改变
• ——单元体的刚体转动
xz
•——圣维南 (Saint Venant)方 程
( yz xz xy ) 2 2 x
x x y z
yz
( yz xz xy ) 2 2 y
y x y z
xz
( yz xz xy ) 2 2 z
z x y z
xy
•变形协调方程的数学意义
•使3个位移为未知函数的六个几何方程不相 矛盾。
相关文档
最新文档