清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法
弹塑性力学 第05章弹性力学问题的建立和一般原理

应力分量
M O
τ xz = −αGy ,τ yz = αGx σ x = σ y = σ z = τ xy = 0
代入平衡微分方程
τ zy
ϕ
τ
x
τ zx
∂σ x ∂τ yx ∂τ zx + + + Fbx = 0 ∂x ∂y ∂z ∂τ xy ∂σ y ∂τ zy + + + Fby = 0 ∂x ∂y ∂z ∂τ xz ∂τ yz ∂σ z + + + Fbz = 0 ∂x ∂y ∂z
假设弹性体受已知体力作用,在物体的边界上,或者面 力已知,或者位移已知,或者一部分上面力已知,而另一部 分上位移已知,则弹性体平衡时,体内各点的应力分量与应 变分量是唯一的,对于后两种情形,位移也是唯一的。
这一定理以这样一个假设为依据:当物体不受外力作用 时,体内的应变能为零,应力分量和应变分量也全为零。当
∫∫τ
∫∫τ
zx
dxdy = 0
dxdy = 0
M O
τ zy
ϕ
τ
x
zy
M = ∫∫ (xτ zy − yτ zx )dxdy
将应力分量代入
τ zx
τ yz = αGx
y
τ xz = −αGy
σ x = σ y = σ z = τ xy = 0
∫∫τ zx dxdy = 0
∫∫τ
zy
τ xz = −αGy
1 ε ij = (1 +ν )σ ij −νσ kk δ ij E
或
[
]
σ ij = λε kk δ ij + 2Gε ij
清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学第七章塑性力学的基本方程与解法一、非弹性本构关系的实验基础拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。
图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。
C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。
由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。
由D到H是一接近水平的线段,称为塑性流动段。
对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。
如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。
即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。
在图中b点之后,试件产生颈缩现象,最后试件被拉断。
如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。
图7.1 低碳钢单向拉伸应力应变曲线有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。
这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。
记为0.2图7.2 高强度合金钢单向拉伸应力应变曲线第七章 塑性力学的基本方程与解法如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。
在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。
这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。
图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。
弹塑性力学讲义 第一章绪论

3
每个分量用一个标量(具有两个下标)与两个并在一起基矢量(并矢) ,称为二阶 张量。矢量可称为一阶张量,标量为零阶张量。 5.2 求和约定 在张量表示说明中,看到张量分量表示是一组符号之和,很长,特别是高阶张量, 为了书写简捷,采用求和约定。 求和约定:当在同一项中,有一个下标字母出现两次时,则表示该项在该指标的取 值范围内遍历求和,且称此种在同一项重复出现一次的下标为哑标。如:
e1 e2 a2 b2 e3
a b ai ei b j e j ai b j eijk ek ai b j ekij ek , 则
c c k eijk ai b j ekij ai b j , a b a1 b1
ij
自动消失。ij 也称为换标符号。
eijk ( i,j,k =1,2,3)
定义: eijk
共有 27 个元素。
1 若(i , j , k ) (1,2,3)或 ( 2,3,1)或 (3,1,2)时 正排列顺序 -1 若(i , j , k ) ( 2,1,3)或(1, 3, 2)或(3, 2, 1)时 逆排列顺序 0 若 i , j , k中任意两指标相同时
(i=1,2,3),用 ri 表示矢径;
同样位移矢量 u,用 ui 表示位移,ij 表示应力
张量。
xi aij y j
i
x1 a11 y1 a12 y2 a13 y3 x2 a21 y1 a22 y2 a23 y3 x a y a y a y 31 1 32 2 33 3 3
矢量场的拉普拉斯算子定义为矢量场的梯度的散度:是一个向量
弹塑性力学部分讲义

弹塑性力学引言一、固体力学在工程中的作用工程中的各种机械都是用固体材料制造而成的、各种结构物也都是用固体材料建造的。
为了使机械结构正常使用、实现其设计的功能,首先要保证它们在工作载荷与环境作用下不发生材料的破坏或影响使用的过大的变形,即保证它们具有足够的强度、刚度和稳定性。
在设计阶段,要根据要求实现的功能,对于设计的机械结构的形式按强度要求确定其各部分的形状和尺寸,以及所需选择的材料。
要完成这样的任务,首先要解决如下基本问题:在给定形状尺寸与材料的机械结构在设计规定载荷与环境(如温度)作用下所产生的变形与应力。
对于柔性结构,如细长梁、薄板、薄壳,以及它们的组合结构,还要分析其是否会丧失稳定性。
这些都是固体力学的基本问题。
如果机械结构所受载荷或环境的作用是随时间变化的,那么,它们的振动特性也对其性能有重要的影响。
在设计时往往要对其进行模态分析,求出影响最大的各个低阶固有频率与相应的振型,以确保不会与主要的激振载荷产生共振,导致过大的交变应力与变形,影响强度和舒适性。
有些情况下还要考虑它们在瞬态或冲击载荷作用下的瞬态响应。
这些也是固体力学的基本问题。
此外、许多机械零件和结构元件在制造工程中,采用各种成型工艺,材料要产生很大的塑性变形。
如何保证加工质量,提高形状准确性、减少残余应力、避免产生裂纹、皱曲等缺陷?如何设计加工用的各种模具,加工的压力,以及整个工艺流程,这里也都有固体力学问题。
正因为工程中提出了各种各样的固体力学问题,有时还有流体力学问题,在19世纪产生了弹性力学和流体力学,才导致力学逐渐从物理学中独立出来。
工程技术发展的要求是工程力学,包括固体力学、流体力学等发展的最重要的推动力。
而工程力学的发展则大大推动了许多工程技术的飞速发展。
因此,力学是许多工程部门设计研究人员的基本素质之一。
二、力学发展概况力学曾经是物理学的一个部分,最初也是物理学中最重要的组成部分。
力学知识最早起源于人们对自然现象的观察和在生产劳动中积累的经验。
第五章 弹性与塑性力学的基本解法

第五章 弹性与塑性 力学的基本解法
对于平面问题(以平面应力为例)
几何方程
u x x
物理方程
将几何方程代入物理方程
E u v x ( ) 2 1 x y E v u y ( ) 2 1 y x
E x ( x y ) 2 1 E y ( y x ) 2 1
d 3 d 2
p
五个方程 一个方程 一个方程
E d m 3k d m d m 1 2
Sij= eij
五个方程 一个方程 一个方程
李田军弹塑性力学课件
eij Sij
m=K
2 3
6
第五章 弹性与塑性 力学的基本解法
4、静力边界条件和位移边界条件: ijlj=Fi (在ST上) ui=ui (在Su上)
纯弹性区
加载区 卸载区
2011年4月13日星期三
在它们的分界面上,应 力和应变应满足一定的 连续条件和间断条件。
李田军弹塑性力学课件 12
第五章 弹性与塑性 力学的基本解法
§5-2
按位移求解弹性力学问题
由于塑性力学问题的复杂性和特殊性,需要专门进行 讨论。鉴于学时所限,这里仅讨论弹性力学问题的基 本求解方法。 弹性力学问题:就是分析各种结构物或其构件在弹性
弹塑性力学 弹性与塑性力学的解题方法

➢主应力法
➢ 主应力法是金属塑性成形中所经常使用的 一种简化方法。在分析问题时,认为剪应 力对材料的屈服影响很小,因而在屈服条 件中略去剪应力,这时平面应变问题中的 屈服条件可简化为
x - y = 2k
➢ 在分析中,还假设应力在一个方向的分布 是均匀的。因此在计算中,数学形式比较 简便。
➢ 平面应力问题,平面应变问题,结果转换 ➢ 平面问题的平衡方程(无体力)
x
xy
0
x y
yx x
y
y
0
➢ 艾里(Airy)应力函数
x
2
y 2
,
y
2
x 2
,
xy
2
xy
➢ 用应力函数表示的物理方程
➢ 变形协调条件
x
1 2G(1
)
2
y 2
2
x 2
y
2G
1 (1
)
2
x 2
几种应力函数所对应的边界条件
➢ = ax + by + c 矩形弹性体处于无应力状态,
即在边界上无面力。
➢ = ax2 + bxy + cy2 矩形弹性体受双向荷载。
a > 0, c > 0, b = 0
a = c = 0, b 0
➢ = ax3 + bx2y + cxy2 + dy3 复杂应力状态, 当a = c = b = 0, d 0时,xy = 6dy,为纯弯
2
y 2
xy
1 G
2
xy
4 x
y 4
4 y
x 4
弹塑性力学___第四章_弹性力学的求解方法

叠加原理:弹性体受几组外力同时作用时的解等于每一组外力单 独作用时对应解的和。
叠加原理成立的条件:小变形条件(平衡、几何方程才 为线性的),弹性本构方程(虎克定律)。
4-5塑性力学最简单的问题、求解塑性力学的问题
在塑性力学中,有些问题在平衡方程和屈服条件 中的未知函数和议程式的数目相等,因而结合边 界条件一般便可找出弹塑性体或结构中应力分布 的规律。而应变和位移再根据本构方程和几何方 程或连续性条件分别求出。这种仅通过平衡方程、 屈服条件就能完全确定应力场的问题属静定问题 (称为塑性力学最简单问题)
(2)应变协调方程(变形连续必条件)(变形相容条件)
可缩写为:
上述方程是六个应变分量 保证三个位移分量 连续函数(保持连续)的条件。 为单值
3、本构方程(物性方程)
(1)在弹性变形阶段,且屈服函数 则有
如用应变表示应力,则有
为了与塑性变形本构方程对比,也可将本构方程表示为
(2)在弹塑性变形阶段,屈服函数
1. 平衡(或运动方程)
若等式右式不等零,即表示物体内质点处于运动状态, 则根据理论力学中的达朗伯原理需将上式右端等于括号 内的惯性力项。 方程只表明物体内一点的应力状态与其邻点的应力 状态之间在平衡(或运动)时所满足的关系。
2. 几何方程与应变协调方程
(1)几何方程
此式表明在小变形条件下,物体内一点附近的变形情况和该点的 应变状态之间的关系。
第四章 弹塑性力学基础理论的建立及基本解法
§4-1 弹塑性力学基本理论的建立 弹塑性力学的任务:研究各种具体几何尺寸的
弹性、弹塑性体或刚塑性体在各种几何约束及 承受不同外力作用时、发生于其内部的应力分 布与变形(或位移)规律。
与材料力学一样,弹塑性力学所求解的大多 数问题是超静定问题,因此其基础理论的 建立来自三个方面的客观规律:平衡方 程 ;几何方程 ;本构方程
弹塑性力学第四章弹性力学的求解方法

微分方程并求解,最后根据边界条件确定待定常数。
逆解法求解空间问题
逆解法的基本思想
从已知的空间应力或位移函数出发,反推得到弹性体的形状和边界条件。
适用于具有特定应力或位移分布的空间问题
如无限大体、半无限大体等具有特殊应力或位移分布的空间问题。
求解步骤
假设空间应力或位移函数,根据弹性力学基本方程推导得到弹性体的形状和边界条件,并 验证假设的合理性。
04
半解析法在弹性力学中的应用
有限差分法基本原理及步骤
差分原理
有限差分法基于差分原理,将连续问 题离散化,通过求解差分方程得到近 似解。
网格划分
将求解区域划分为规则的网格,每个 网格节点对应一个未知数。
差分格式
根据问题的性质和精度要求,选择合 适的差分格式,如向前差分、向后差 分、中心差分等。
边界处理
电测实验方法介绍及优缺点分析
电阻应变片法
利用电阻应变片将试件表面的应变转换 为电阻变化,通过测量电路获取应变信 息。该方法具有测量精度高、稳定性好 、适用于各种环境和试件形状的优点, 但需要粘贴应变片并进行温度补偿,且 只能进行点测量。
VS
电容传感器法
利用电容传感器将试件表面的位移或应变 转换为电容变化,通过测量电路获取相关 信息。电容传感器法具有非接触、高灵敏 度、宽频响等优点,但易受环境干扰,且 需要进行复杂的电路设计和信号处理。
04 边界条件处理 根据边界条件对总体刚度矩阵和荷载向量进行修正。
05
求解线性方程组
求解总体刚度矩阵和荷载向量构成的线性方程组,得 到节点位移。
边界元法基本原理及步骤
边界积分方程
边界离散化
单元分析
总体合成
求解线性方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹塑性力学第四章 弹性力学的基本方程与解法一、线性弹性理论适定问题的基本方程和边界条件对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起的小变形问题,若以, ,u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程()1,,2ij i j j i u u ε=+ ()12∇+∇u u ε= (1a)广义胡克定律 ij ijkl kl E σε= :E σ=ε(1b)平衡方程 ,0ij j i f σ+= ∇⋅+=f 0σ V∀∈x (1c)以上方程均要求在域内各点均满足。
边界条件 u u i i = ∀∈x S ui (2a)n t j ji i σ= ∀∈x S ti(2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。
当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。
对于边界条件的提法就有严格的要求。
即要求:S S S S S ui ti ui ti U I ==∅(2c)对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a)()11ij ij kk ij E ενσνσδ⎡⎤=+−⎣⎦ ()()1tr Eνν=⎡⎤⎣⎦I ε1+σ−σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。
对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。
这三个正交第四章 弹性力学的基本方程与解法方向可以是整体笛卡儿坐标系的三个方向,也可以是边界自然坐标系的三个方向(即法向和两个切向)。
从更一般来说,除去给定位移或面力外,还有另一种线性的边界条件t K u c i ij j i +=(4)这是一种弹性约束条件。
用这个条件可以取代给定位移或给定面力的条件。
对于包含两种不同材料粘结面的弹性理论问题,则在边界条件之外还要在粘结面上提出连续条件,包括位移连续条件和面力连续条件u u n t t n i i i ij j j i ij 12111222===−=−, σσ (5)对于弹性体内人为划分的界面,其界面连续条件也是(5)式。
界面每点的边界条件数目等于一般边界每点边界条件数目的两倍。
对于线性弹性力学问题,若仅以σ ε,为求解变量,先不求弹性体的位移场,则可建立如下的偏微分方程边值问题:应变协调方程0=∇××∇ε广义胡克定律 ij ijkl kl E σε= :E σ=ε(6b)平衡方程 ,0ij j i f σ+= ∇⋅+=f 0σ V∀∈x (6c)边界条件 n t j ji i σ= S ∈∀x (7)由于位移不是基本求解变量,因此对于一般情况的位移边界条件难以处理,对于复连通域还要附加积分形式的位移单值条件。
这种形式的微分提法一般用于求解单连通域给定面力边界条件的情况。
二、线性弹性理论的几个一般原理z 叠加原理考虑同一弹性体的两组载荷情况f t u f tu i i i ij ij i i i ij ij()()()()()()()()()(),,,,,,1111122222 ⇒⇒εσεσ 若两组载荷同时作用研究生学位课弹塑性力学电子讲义 姚振汉f f f t t t i i i i i i =+=+()()()()1212则u u u i i i ij ij ij ij ij ij =+=+=+()()()()()()121212 εεεσσσ由于线弹性、小变形问题的变形和载荷满足线性偏微分方程与线性边界条件,因此从数学上叠加原理易证。
例如,对于静定问题,若σσσσij j i ij j i j ij i j ij i f f Vn t n t S ()()()()()()()(),,1122112200+=+=∀∈==∀∈ x x则 ()()σσσσij ij j i i j ij ij i i ff V n t t S ()()()()()()()(),121212120+++=∀∈+=+∀∈ x x实际上,任何线性问题都满足类似的叠加原理。
同时,对于线弹性小变形问题,当所有载荷按某一比例增加或减小时,变形状态各量也都以同样比例增大或减小。
叠加原理有一个重要的应用:非齐次方程解等于非齐次方程的任一特解和相应齐次方程解之和。
对于弹性力学问题,通常非齐次项是载荷项,它在空间的分布比较简单(例如重力、离心力等),因此非齐次方程的特解比较容易求得,整个求解问题就主要归结为求解齐次方程解的问题。
任何非线性问题,叠加原理就不再成立。
因此,叠加原理是线性问题所特有的性质。
z 解的唯一性定理因为物理上对弹性体施加载荷就会产生变形,数学上已经证明对于线弹性问题的适定提法解一定是存在的。
本课程的重点不在数学弹性理论,因此对于解的存在性就不加证明了。
对于解的唯一性,即Kirchhoff 唯一性定理的证明可用反证法。
假如在一组载荷f t i i , 作用下产生了两组变形状态u u i ij ij i ij ij ()()()()()(),,;,,111222 εσεσ则利用叠加原理可知第四章 弹性力学的基本方程与解法u u u i i i ij ij ij ij ij ij =−=−=−()()()()()(),,121212 εεεσσσ将满足齐次方程,其中包括σσij j j ij ti i uiVn S u S ,=∀∈=∀∈=∀∈000 x x x由此根据0,=⎟⎟⎠⎞⎜⎜⎝⎛j ijW ∂ε∂ 可得 u W V u W V u W V u n S u V W V i ij V j i ij V j i j ij V i ij j S i j ij V V ∂∂ε∂∂ε∂∂εσσ⎛⎝⎜⎜⎞⎠⎟⎟=⎛⎝⎜⎜⎞⎠⎟⎟−⎛⎝⎜⎜⎞⎠−=−=∫∫∫∫∫∫,,,,d d d=d d d 20由于线弹性问题中应变能处处正定,因此上式要求W V =∀∈0 x即两解之差只能是σεij ij ==00, 的无变形状态。
由上可见,在证明中用到了线性方程解的叠加原理和应变能的正定性。
对于非线性问题,一般说来解并不唯一。
对于无足够几何约束的问题位移解可以相差刚体位移。
解的唯一性是逆解和半逆解法的基础,对于非线性问题一般不能采用逆解和半逆解法。
z 圣维南原理由作用在物体局部表面上的自平衡力系所引起的变形,在远离其作用区的地方可忽略不计。
该原理又称局部作用原理。
若把作用在物体局部表面上的外力,用另一组与它静力等效的力系来代替,则这种等效处理对物体内部应力应变状态的影响将随远离该局部作用区的距离增加而迅速衰减。
称静力等效原理。
例如对于细长梁的端部条件,当研究远离端部区域的变形状态时,可以在端部用静力等效原理。
(注意:对于短粗梁、或在端部附近,不能滥用静力等效原理)研究生学位课弹塑性力学电子讲义姚振汉对于三维实心体,影响区的大小与自平衡力系作用区尺寸同量级。
例外:对于薄壁杆件、薄板、薄壳等薄壁结构,当载荷影响区内结构的最小几何尺寸小于载荷作用区的线性尺寸时圣维南原理不再适用。
图4.1所示为N. J. Hoff给出的受扭杆件的算例。
在右边固支端处杆端面的自由翘曲被约束,因而引起了自平衡的正应力,原来的自由扭转应力状态(在截面上仅有剪应力,而无正应力)受到干扰。
此图表明,干扰的影响范围与杆截面的形状有关。
图中横轴是沿杆长的无量纲坐标,表示各截面的位置。
纵轴是各截面上最大正应力与端面处的最大正应力之比。
曲线表明,对于实心的矩形截面杆,正如圣维南原理指出的那样,干扰很快衰减,影响深度与杆截面尺寸同量级;但对于槽形薄壁杆则干扰谝及整个杆长,圣维南原理不再适用。
图4.1 Hoff扭杆算例结果三、线性弹性理论的基本解法前面列出了线性弹性理论的基本方程,在域内要满足对于15个未知量的15个方程。
这些方程类型并不相同,平衡方程和几何方程是一阶偏微分方程,广义胡克定律是线性代数方程。
在数学上直接求解对于多组变量的类型不同的方程组是不方便的,第四章 弹性力学的基本方程与解法在求解之前需要对方程加以处理,以便建立对于单一变量的偏微分方程边值问题。
根据处理方法的不同,弹性理论的基本解法可分为:位移解法,应力解法和应力函数解法。
z 位移解法对于弹性理论问题以位移作为基本未知量,在基本方程中如下消去应变和应力,可以得到位移基本方程。
通过求解位移基本方程首先求得位移,然后再按要求确定变形状态其它变量的解法,称为弹性理论的位移解法。
由平衡方程出发0,=+i j ij f σ代入应力应变关系,再代入几何方程,()(),2,0,2,0,,(,,),0kk ij j ij j i kk i ij j i k k i i j j i j i G f G f u G u u f λεδελεελ++=⇒++=⇒+++= 最终可得() ,,0 j ji i jj i G u Gu f V λ+++=∀∈x (8)或用整体符号写成()λ+∇∇⋅+∇⋅∇+=∀∈G G V u u f 0x此方程称为Lamé-Navier 方程,即用位移表示的平衡方程。
作为位移基本方程,除在域内给出上列Navier 方程外,边界条件也都用位移表示()() ,, uii i i j ji iti j kk ji i j j i i u u S t n t n G u u t S σλεδ=∀∈==⎡⎤⇒++=∀∈⎣⎦x u x (9)其中,对于适定问题还应满足: S S S S S ui ti ui ti U I ==∅对于无体力情况,Navier 方程可写成(),,0i i jj G Gu λθ++=将各项再对坐标求导一次,可得研究生学位课弹塑性力学电子讲义 姚振汉()(),,,0,,0,0i i jj i ii i jji ii G Gu G Gu λθλθθ⎡⎤++=⎣⎦⇒++=⇒=由此可见,在无体力情况下,体积应变θ为调和函数。
由于平均应力和体积变形之间满足线性的物理关系,可以写出:Σ===σσθii K 330因此,在无体力情况下平均应力也是调和函数。
不难证明,在无体力情况下位移分量u i 、应变分量εij 、应力分量σij 均为双调和函数。
上述结论还可推广到常体力情况也同样适用。
z 应力解法当用应力作为基本未知量求解时,域内必须满足的方程有平衡方程、应力应变关系、以及应变协调方程。
经过处理可以得到单一的一组偏微分方程。
首先可以将应力应变关系()11ij ij kk ij Eενσνσδ⎡⎤=+−⎣⎦代入应变协调方程 ,0mki njl ij kl e e ε=可以导出Beltrami-Michell 方程,即用应力表示的协调方程1,,,,,11ij kk kk ij k k ij i j j i f f f V νσσδνν+=−−−∀∈+−x (10)在推导过程中用到平衡方程的导数形式等,但没有用过平衡方程本身。