空间直线及方程
空间直线及其方程

M( x, y, z) L,
z s
L
有 M0M (x x0, y y0, z z0)
且 M0M// s
M0 o
M
y
即 x x0 y y0 z z0 x
m
n
p
直线的对称式方程 或点向式方程
说明:
在直线方程中某些分母为零时, 其分子也
理解为零.
例如
x2 y z5 002
再求已知直线与该平面的交点N, L
过M,N的直线L即为所求直线.
M
求交点:
L1
N
把已知直线化为参数方程
n1
x 3t 1
直线与平面的位置关系:
(1) L A B C . mn p
(2) L // Am Bn Cp 0.
例4 求过点(1,-2 , 4) 且与平面 垂直的直线方程.
解 取已知平面的法向量
n (2, 3, 1)
(1,-2 , 4)
n
为所求直线的方向向量.
则直线的对称式方程为
s1 s2 s1 s2
| m1m2 n1n2 p1 p2 |
m12 n12 p12 m22 n22 p22
两直线的位置关系:
(1) L1 L2 m1m2 n1n2 p1 p2 0,
(2)
L1 //
L2
m1 n1 m2 n2
p1 , p2
一、空间直线的一般方程
定义 空间直线可看成两平面的交线.
1 : A1 x B1 y C1z D1 0
2 :
A2 x B2 y C2z D2
0
z
空间直线及其方程

再求已知直线与该平面的交点N,
令 x1 y1 z t 3 2 1
x 3t 1
y
2t
1.
z t
高等数学七⑥
12/28
代入平面方程得 t 3 , 交点 N (2 ,13 , 3)
7
77 7
取所求直线的方向向量为 MN
MN {2 2,13 1, 3 3} { 12 , 6 , 24},
B1 B2
y y
C1z C2z
D1 D2
0 0
空间直线的一般方程 x
z 1
2
L
o
2/28
y
高等数学七⑥
3/28
1、方向向量
如果一非零向量平行于
一条已知直线,这个向量称 为这条直线的方向向量.
2、直线的方程
z s
L
M
M0
M0( x0 , y0 , z0 ), M( x, y, z),
o
y
M L,
M0M// s
x
s {m, n, p}, M0M {x x0 , y y0 , z z0 }
高等数学七⑥
4/28
x x0 y y0 z z0mn Nhomakorabeap
直线的对称式方程
令 x x0 y y0 z z0 t
m
n
p
x x0 mt
x 1 4t
参数方程
y
t
.
z 2 3t
高等数学七⑥
7/28
例 2 一直线过点 A(2,3,4),且和y 轴垂直相
第二节空间直线及其方程

设直线 L的方向向量 s={m,n,p} 设平面π的法线向量 n ={A,B,C} 则定义s 与n 的夹角为直线 L与平 面π的夹角.记作φ.
直线与平面的夹角(图示)
这是平面π与 直线L的交角
s={m,n,p}
n={A,B,C}
φθ
这是直线L与其在平 面π上投影的交角
L
L:xx0 yy0 zz0
1i017jk
四.两直线的夹角 两直线夹角的定义:两直线方向向量之间的
夹角(锐角)叫作两直线的夹角.
s2={m2,n2,p2} φ
s1={m1,n1,p1}
L2 L1
两直线的夹角的余弦公式 设直线 L1的方向向量s1={m1,n1,p1}, 设直线 L2的方向向量s2={m2,n2,p2}, 则直线 L1与直线L2的夹角的余弦公式为:
即为所要求的一般方程.
3.将直线的一般方程L化 为标准方程
(即对称式方程).
x y z y ,
解 先求点Mo,不妨令y=0, 则有 x=1,z=-2,即
Mo(1,0,-2); 再求 s, 由 n {,,}
n {,,},
s nn
i jk
i j k
x1 y z2 4 1 3
• 方向向量:
– 如果一个非零向量s平行于一 条已知直线,这个向量s就叫 做该直线的方向向量。
对称式方程的建立
直线上任一向 量都与s平行.
s
L
M(x,y,z)
依据:
M(x,y,z)
过空间一点可以做且只可做一条直线与已知直 线平行,故当已知直线上一点M0与一个方向向 量s,则直线位置完全可以确定下来。
续上
1. 求点P(0,-1,1)到直线 y+2=0 x+2z-7=0 的距离.
空间直线及其方程

x1,y2,z2.
例6 求过点(2,1,3)且与直线 x 1 y 1 z 3 2 1
垂直相交的直线的方程.
P
L
M
例6 求过点(2,1,3)且与直线 x 1 y 1 z 3 2 1
垂直相交的直线的方程.
解 先作一个过已知点且与已知直线垂直的平面,这个平面 的方程为
直线L 的平面束方程.
通过直线L:
A1x A2 x
B1 y C1z D1 0, B2 y C2 z D2 0
的平面束方程
A 1xB 1yC 1zD 1l( A 2xB 2yC 2zD 2)0.
L
例7
求直线
x y z 1 0, x y z 1 0
的方程.
在平面xyz0上的投影直线
与L的方向向量 s 平行.所以两向量的对应坐标成比例,由于
M 0M {xx 0,yy 0,zz 0}, s{m,n,p}, 从而有
z
s
M
x x0 y y0 z z0 ,
M0
m
n
p
此方程组就是直线 L 的方程,叫做 直线的对称式方程或点向式方程.
O
y
x
方向数: 直线的任一方向向量的坐标m、n、p叫做这直线的一组方向
条直线的方向向量. z
确定直线的条件:
当直线L上一点M0(x0,y0,x0)
s
和它的一方向向量 s{m,n,p}
M0
为已知时,直线L的位置就完全确定了.
O
y
x
直线的对称式方程:
设直线L上一点M0(x0 , y0 , x0)和它的一方向向量 s {m, n, p}
空间直线及其方程

1 1 1
在直线
L
上取一点
M1
1 2
,
1 2
,0
,则
M0M1
1 2
,
3 2
,1
.
*1.5 平面束
例9
求通过直线
L
:
x x
y y
z z
0 , 和点 1 0
M0 (1,1,1)
的平面方程.
设所求平面的法向量为 n ,因为 n s ,n M0M1 ,所以
例5
用对称式方程及参数方程表示直线
x y 2x
z 1 0, y 3z 4 0
.
解
当
x
1
时,有
y
z y
0 , 此方程组的解为 3z 2,
y
1 2
,z
1 2
,因此,可得直
线上一个点的坐标
1,
1 2
,1 2
.
直线的方向向量为
i jk s (i j k) (2i j 3k) 1 1 1 4i j 3k ,
s
MN
2 7
2
,13 7
1,
3 7
3
12 7
,6 7
,
24 7
6 7
(2 ,1,4)
.
故所求直线的方程为
x 2 y 1 z 3 . 2 1 4
1.3 两直线的夹角
两直线方向向量的夹角(通常指锐角或直角)称为两直线的夹角.设 s1 (m1 ,n1 ,p1) 和
s2 (m2 ,n2 ,p2 ) 分 别 为 直 线 L1 和 L2 的 方 向 向 量 , 则 L1 和 L2 的 夹 角 应 是 (s1 ,s2 ) 和
空间直线及其方程

s1
L2
s2
s1 s2 cos = s1 s2
=
m m2 + n1n2 + p1 p2 1
2 2 2 m + n1 + p1 1 2 2 m2 + n2 + 2 p2
i j k 直线 的方向向量为 s2 = 1 1 0 = (2, 2, 1) 1 0 2 二直线夹角 的余弦为
cos =
从而
1× 2 + (4) × (2) +1× (1)
12 + (4)2 +12
=
π
2 + (2) + (1)
2 2
2
4
(参考P45 例2 )
2. 直线与平面的夹角 当直线与平面不垂直时, 直线和它在平面上的投影直 线所夹锐角 称为直线与平面间的夹角; 当直线与平面垂直时,规定其夹角 设直线 L 的方向向量为 s = (m, n, p) 平面 Π 的法向量为 n = ( A, B, C ) 则直线与平面夹角 满足
L ⊥ L2 1
s1 s2 = 0
L // L2 1
s1 ×s2 = 0
m n1 p1 1 = = m2 n2 p2
s1 s2 夹角公式: cos = s1 s2
3. 面与线间的关系 平面 Π : Ax + By + Cz + D = 0, n = ( A, B, C ) xx y y z z 直线 L : = = , s = (m, n, p) m n p m n p = = L⊥Π s ×n = 0 A B C L // Π 夹角公式:
第六节--空间直线及其方程

第六节 空间直线及其方程教学目的:介绍空间曲线中最常用的直线,与平面同为本章的重点 教学重点:1.直线方程2.直线与平面的综合题教学难点:1.直线的几种表达式2.直线与平面的综合题教学内容:一、空间直线的一般方程空间直线可以看成是两个平面的交线。
故其一般方程为:⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 二、空间直线的对称式方程与参数方程平行于一条已知直线的非零向量叫做这条直线的方向向量。
已知直线上的一点),,(0000z y x M 和它的一方向向量},,{p n m =s ,设直线上任一点为),,(z y x M ,那么M M 0与s 平行,由平行的坐标表示式有:pz z n y y m x x 000-=-=- 此即空间直线的对称式方程(或称为点向式方程)。
(写时参照书上注释)如设t pz z n y y m x x =-=-=-000 就可将对称式方程变成参数方程(t 为参数)⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mtx x 000 三种形式可以互换,按具体要求写相应的方程。
例1:用对称式方程及参数方程表示直线⎩⎨⎧=++-=+++043201z y x z y x .解:在直线上任取一点),,(000z y x ,取10=x ⎩⎨⎧=--=++⇒063020000z y z y ,解得2,000-==z y ,即直线上点坐标)2,0,1(-.因所求直线与两平面的法向量都垂直,取}3,1,4{--=⨯=21n n s ,对称式方程为:321041-+=--=-z y x 参数方程: ⎪⎩⎪⎨⎧--=-=+=tz t y tx 3241.例2: 一直线过点)4,3,2(-A ,且和y 轴垂直相交,求其方程.解:因为直线和y 轴垂直相交,所以交点为)0,3,0(-B ,于是→==}4,0,2{BA s ,所求直线方程:440322-=+=-z y x 三、两直线的夹角: 两直线的方向向量的夹角(通常指锐角)叫做两直线的夹角。
4空间直线及其方程

l ' l'
: 2x + y + 2z = 0
':
即
x y 1 ( y z 1) 0 ,
x z 2 0.
故: 投影直线l':
xz 2 = 0 2x+y +2z = 0
作业
P33.2. 3. 5. 10. 11
3 2 3 2
(x – y + z – 1) = 0
即:5x – y + z – 3 = 0
例7 .求直线 l :
x + y 1=0,
y + z + 1=0.
在平面 : 2x + y + 2z = 0
l ' l'
上的投影直线方程. 解:设投影直线为l',则由l与 l'决定的平面'与平面垂直。
高校理科通识教育平台数学课程
微积分学(二)
多元微积分学
空间解析几何
●
授课教师
孙学峰
向量代数与 空间解析几何
空间直线及其方程
§4
空间直线及其方程
一. 空间直线的方程
(一).空间直线的一般方程 空间直线可看成是两个不平行平面1与 2 的交线 已知平面1: A1x + B1y + C1z + D1 = 0 2: A2x + B2y + C2z + D2 = 0
( 为任意实数 .)
过直线 l 与点 p0 的平面为:
(A x B y C z D )
1 1 1 1
Ax B y C z D
1 0 1 0 1 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i jk
s n1 n2 1 1 1 (4, 1, 3) 2 1 3
故所给直线的对称式方程为 x 1 y
t
4 1
参数式方程为
解题思路: 先找直线上一点; 再找直线的方向向量.
机动 目录 上页 下页 返回 结束
二、线面间的位置关系
1. 两直线的夹角
两直线的夹角指其方向向量间的夹角(锐角)
机动 目录 上页 下页 返回 结束
特别有:
(1) L
s // n
(2) L //
sn
ABC mn p Am BnC p 0
例3. 求过点(1,-2 , 4) 且与平面
垂
直的直线方程.
解: 取已知平面的法向量 n (2, 3, 1)
n
为所求直线的方向向量.
则直线的对称式方程为
例如, 当 m n 0, p 0 时, 直线方程为
x y
x0 y0
机动 目录 上页 下页 返回 结束
3. 参数式方程
设 x x0 y y0 z z0 t
m
n
p
得参数式方程 :
x x0 mt y y0 nt z z0 pt
机动 目录 上页 下页 返回 结束
因原点 O 在 L2 上, 所以
A
i jk
n s2 OA 2 1 1 3 i 3 j 3k O 121
L2 s2
机动 目录 上页 下页 返回 结束
待求直线的方向向量
i jk
s s1 n 3 2 1 3(3 i 2 j 5 k) 3 3 3
故所求直线方程为 x 1 y 2 z 1 3 2 5
平面束
设有两不平行平面:
Π1:A1x B1y C1z D1 0
Π2: 则交线方程为
L A1x B1y C1z D1 0 z
L 1
o x
y 2
机动 目录 上页 下页 返回 结束
L
:
Ax 1
By 1
Cz 1
D 1
0,
(1)
A 2
x
By 2
C z 2
将 x0 2 y0 , z0 y0 代入上式 , 得
AB ( 9 , 6 , 15) 3 (3, 2, 5)
77 7 7
由点法式得所求直线方程
A(1,2,1)
x 1 y 2 z 1 3 2 5
L2 B(x0 , y0 , z0 )
机动 目录 上页 下页 返回 结束
第六节
第七章
空间直线及其方程
一、空间直线方程 二、线面间的位置关系
机动 目录 上页 下页 返回 结束
一、空间直线方程
1. 一般式方程 直线可视为两平面交线,因此其一般式方程
A1x B1y C1z D1 0
z
(不唯一)
o x
L 1 y 2
机动 目录 上页 下页 返回 结束
2. 对称式方程
设直线 L1 , L2 的方向向量分别为
则两直线夹角 满足
cos s1 s2
s1 s2
L1
s1
L2
s2
m1m2 n1n2 p1 p2
m12 n12 p12 m22 n22 p22
机动 目录 上页 下页 返回 结束
特别有:
(1) L1 L2
(2) L1 // L2
x 1 y 2 z 4 2 3 1
机动 目录 上页 下页 返回 结束
例4. 一直线过点
又和直线
且垂直于直线 L1
:
x 1 3
y 2
z
1, 1
相交,求此直线方程 .
解:方法1 利用叉积.
设直线 Li 的方向向量为 si (i 1, 2),过 A 点及 L2 的平
面的法向量为 n, 则所求直线的方向向量 s s1 n , n
方法2 利用所求直线与L2 的交点 .
设所求直线与L2的交点为 B(x0 , y0 , z0 ),
则有
x0 2
y0
z0 1
即
x0 2 y0 , z0 y0
A(1,2,1) L2
B(x0 , y0 , z0 )
机动 目录 上页 下页 返回 结束
而 AB (x0 1, y0 2, z0 1) L1 3(x0 1) 2( y0 2) (z0 1) 0
二直线夹角 的余弦为
10 2
1 2 (4) (2) 1 (1)
cos
12 (4)2 12 22 (2)2 (1)2
从而
4
(请看P332 例2 )
机动 目录 上页 下页 返回 结束
2. 直线与平面的夹角
当直线与平面不垂直时, 直线和它在平面上的投影直
线所夹锐角 称为直线与平面间的夹角;
当直线与平面垂直时,规定其夹角
设直线 L 的方向向量为 s (m, n, p) 平面 的法向量为 n (A, B,C )
则直线与平面夹角 满足
︿ sin cos( s , n )
ns L
sn
Am Bn C p
sn
m2 n2 p2 A2 B2 C2
D 2
0,
(2)
A x B y C z D ( A x B y C z D ) 0, (3)
s1 s2 m1m2 n1n2 p1 p2 0
s1 // s2 m1 n1 p1 m2 n2 p2
机动 目录 上页 下页 返回 结束
例2. 求以下两直线的夹角 解: 直线 的方向向量为
L2
:
x y20 x 2z 0
i jk
直线 的方向向量为 s2 1 1 0 (2, 2, 1)
已知直线上一点 M 0 (x0 , y0 , z0 )和它的方向向量
设直线上的动点为 M (x, y, z)
s
则
M (x, y, z)
故有
x x0 y y0 z z0
m
n
p
M 0 (x0 , y0 , z0 )
此式称为直线的对称式方程(也称为点向式方程)
说明: 某些分母为零时, 其分子也理解为零.
例1.用对称式及参数式表示直线
解:先在直线上找一点.
令 x = 1, 解方程组
y z 2 y 3z 6
,得
y
0,
z
2
是直线上一点 .
再求直线的方向向量 s .
交已知直线的两平面的法向量为
s n1 , s n2
s n1 n2
机动 目录 上页 下页 返回 结束