空间直线及其方程
空间直线及其方程

M( x, y, z) L,
z s
L
有 M0M (x x0, y y0, z z0)
且 M0M// s
M0 o
M
y
即 x x0 y y0 z z0 x
m
n
p
直线的对称式方程 或点向式方程
说明:
在直线方程中某些分母为零时, 其分子也
理解为零.
例如
x2 y z5 002
再求已知直线与该平面的交点N, L
过M,N的直线L即为所求直线.
M
求交点:
L1
N
把已知直线化为参数方程
n1
x 3t 1
直线与平面的位置关系:
(1) L A B C . mn p
(2) L // Am Bn Cp 0.
例4 求过点(1,-2 , 4) 且与平面 垂直的直线方程.
解 取已知平面的法向量
n (2, 3, 1)
(1,-2 , 4)
n
为所求直线的方向向量.
则直线的对称式方程为
s1 s2 s1 s2
| m1m2 n1n2 p1 p2 |
m12 n12 p12 m22 n22 p22
两直线的位置关系:
(1) L1 L2 m1m2 n1n2 p1 p2 0,
(2)
L1 //
L2
m1 n1 m2 n2
p1 , p2
一、空间直线的一般方程
定义 空间直线可看成两平面的交线.
1 : A1 x B1 y C1z D1 0
2 :
A2 x B2 y C2z D2
0
z
空间直线及其方程

一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两直线的夹角 四、直线与平面的夹角 五、杂例
首页
上页
返回
下页
结束
铃
一、空间直线的一般方程
空间直线可以看作是两个平面的交线.
设直线L是平面1和2的交线, 平面的方程分别为
A1x+B1y+C1z+D1=0和A2x+B2y+C2z+D2=0, 那么直线L可以用方程组
L1:
x-1= y = z +3 1 -4 1
和
L2:
x 2
=
y +2 = z 的夹角. -2 -1
解 两直线的方向向量分别为(1, -4, 1)和(2, -2, -1).
设两直线的夹角为j , 则
cosj = |12+(-4)(-2)+1(-1)| = 1 = 2 ,
12 +(-4)2 +12 22 +(-2)2 +(-1)2 2 2
两直线垂直与平行的条件
设有两直线
L1:
x- x1 = m1
y - y1 n1
=
z - z1 p1
,
L2:
x- x2 m2
=
y - y2 n2
= z - z2 p2
,
则
L1 L2m1m2+n1n2+p1p2=0;
L1
L2
m1 m2
= n1 n2
=
p1 p2
.
首页
上页
返回
下页
结束
铃
四、直线与平面的夹角
首页
上页
空间直线及其方程

z
Π1
Π2
o
L
y
注:表示同一直线的一般方程不唯一。
确定空间直线的条件 • 由两个平面确定一条直线; • 由空间的两点确定一条直线; • 由空间的一点和一个方向来确定一条直线。
二、空间直线的参数方程与对称式方程
r 如果一非零向量 s 平行于 r 一条已知直线L,向量 s 称为直
线L的方向向量. 设定点 M 0 ( x0 , y0 , z0 ) ∈ L,
直线与平面的夹角公式
直线与平面的位置关系:
(1) L⊥ Π ⇐⇒ ( 2) L // Π ⇐⇒
A B C = = . m n p Am + Bn + Cp = 0.
x −1 y z +1 例 5 设直线 L : = = ,平面 2 −1 2 Π : x − y + 2 z = 3,求直线与平面的夹角. r r 解 n = {1,−1, 2}, s = {2,−1, 2},
例1 用对称式方程及参数方程表示直线
x + y + z + 1 = 0 . 2 x − y + 3z + 4 = 0
解 在直线上任取一点 ( x0 , y0 , z0 )
y0 + z 0 + 2 = 0 取 x0 = 1 ⇒ , y0 − 3 z 0 − 6 = 0
解得 y0 = 0,
r s = {m , n, p}, r n = { A, B , C },
r^r π ( s , n) = + ϕ 2
π sin ϕ = cos( − ϕ ) = cos( π + ϕ ) . 2 2
sin ϕ =
| Am + Bn + Cp | A2 + B 2 + C 2 ⋅ m 2 + n 2 + p 2
空间直线的方程和性质

空间直线的方程和性质直线是空间几何中最基本的图形之一,它具有许多重要的性质和特征。
本文将介绍空间直线的方程和一些主要性质,以便更好地理解和应用直线的概念。
一、空间直线的方程在三维空间中,直线可以用参数方程、对称方程和一般方程来表示。
1. 参数方程:设直线上一点为P(x0, y0, z0),直线的方向向量为a(m, n, p)。
则直线的参数方程为:x = x0 + mty = y0 + ntz = z0 + pt其中t为参数,表示直线上的任意一点。
2. 对称方程:设直线过一点P(x0, y0, z0)且平行于向量a(m, n, p)。
则直线的对称方程为:(x - x0) / m = (y - y0) / n = (z - z0) / p这个方程表示直线上的所有点满足这个比值关系。
3. 一般方程:直线的一般方程形式为Ax + By + Cz + D = 0,其中A、B、C为不全为零的实数。
通过对这个方程的系数进行标准化处理,可以得到一个方便使用的一般方程。
二、空间直线的性质空间直线具有以下几个重要的性质:1. 直线的方向:直线的方向由其方向向量确定。
对于参数方程和对称方程,直线的方向向量就是其参数的系数。
对于一般方程,直线的方向向量可以通过系数A、B、C来确定。
2. 直线的倾斜类型:直线可以是水平的、竖直的或斜的。
根据直线的方向向量,我们可以判断直线的倾斜类型。
若方向向量的两个分量为0,第三个分量不为0,则直线是竖直的;若第三个分量为0,前两个分量不全为0,则直线是水平的;若前两个分量都不为0,直线是斜的。
3. 直线的截距:对于一般方程Ax + By + Cz + D = 0,直线在三个坐标轴上的截距分别为:x轴截距:x = -D / Ay轴截距:y = -D / Bz轴截距:z = -D / C4. 直线的倾斜角和垂直角:直线的倾斜角是指直线与坐标轴正向之间的夹角。
可以通过方向向量求得各个坐标轴的倾斜角。
空间直线及其方程

s1
L2
s2
s1 s2 cos = s1 s2
=
m m2 + n1n2 + p1 p2 1
2 2 2 m + n1 + p1 1 2 2 m2 + n2 + 2 p2
i j k 直线 的方向向量为 s2 = 1 1 0 = (2, 2, 1) 1 0 2 二直线夹角 的余弦为
cos =
从而
1× 2 + (4) × (2) +1× (1)
12 + (4)2 +12
=
π
2 + (2) + (1)
2 2
2
4
(参考P45 例2 )
2. 直线与平面的夹角 当直线与平面不垂直时, 直线和它在平面上的投影直 线所夹锐角 称为直线与平面间的夹角; 当直线与平面垂直时,规定其夹角 设直线 L 的方向向量为 s = (m, n, p) 平面 Π 的法向量为 n = ( A, B, C ) 则直线与平面夹角 满足
L ⊥ L2 1
s1 s2 = 0
L // L2 1
s1 ×s2 = 0
m n1 p1 1 = = m2 n2 p2
s1 s2 夹角公式: cos = s1 s2
3. 面与线间的关系 平面 Π : Ax + By + Cz + D = 0, n = ( A, B, C ) xx y y z z 直线 L : = = , s = (m, n, p) m n p m n p = = L⊥Π s ×n = 0 A B C L // Π 夹角公式:
第六节--空间直线及其方程

第六节 空间直线及其方程教学目的:介绍空间曲线中最常用的直线,与平面同为本章的重点 教学重点:1.直线方程2.直线与平面的综合题教学难点:1.直线的几种表达式2.直线与平面的综合题教学内容:一、空间直线的一般方程空间直线可以看成是两个平面的交线。
故其一般方程为:⎩⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 二、空间直线的对称式方程与参数方程平行于一条已知直线的非零向量叫做这条直线的方向向量。
已知直线上的一点),,(0000z y x M 和它的一方向向量},,{p n m =s ,设直线上任一点为),,(z y x M ,那么M M 0与s 平行,由平行的坐标表示式有:pz z n y y m x x 000-=-=- 此即空间直线的对称式方程(或称为点向式方程)。
(写时参照书上注释)如设t pz z n y y m x x =-=-=-000 就可将对称式方程变成参数方程(t 为参数)⎪⎩⎪⎨⎧+=+=+=ptz z nt y y mtx x 000 三种形式可以互换,按具体要求写相应的方程。
例1:用对称式方程及参数方程表示直线⎩⎨⎧=++-=+++043201z y x z y x .解:在直线上任取一点),,(000z y x ,取10=x ⎩⎨⎧=--=++⇒063020000z y z y ,解得2,000-==z y ,即直线上点坐标)2,0,1(-.因所求直线与两平面的法向量都垂直,取}3,1,4{--=⨯=21n n s ,对称式方程为:321041-+=--=-z y x 参数方程: ⎪⎩⎪⎨⎧--=-=+=tz t y tx 3241.例2: 一直线过点)4,3,2(-A ,且和y 轴垂直相交,求其方程.解:因为直线和y 轴垂直相交,所以交点为)0,3,0(-B ,于是→==}4,0,2{BA s ,所求直线方程:440322-=+=-z y x 三、两直线的夹角: 两直线的方向向量的夹角(通常指锐角)叫做两直线的夹角。
4空间直线及其方程

l ' l'
: 2x + y + 2z = 0
':
即
x y 1 ( y z 1) 0 ,
x z 2 0.
故: 投影直线l':
xz 2 = 0 2x+y +2z = 0
作业
P33.2. 3. 5. 10. 11
3 2 3 2
(x – y + z – 1) = 0
即:5x – y + z – 3 = 0
例7 .求直线 l :
x + y 1=0,
y + z + 1=0.
在平面 : 2x + y + 2z = 0
l ' l'
上的投影直线方程. 解:设投影直线为l',则由l与 l'决定的平面'与平面垂直。
高校理科通识教育平台数学课程
微积分学(二)
多元微积分学
空间解析几何
●
授课教师
孙学峰
向量代数与 空间解析几何
空间直线及其方程
§4
空间直线及其方程
一. 空间直线的方程
(一).空间直线的一般方程 空间直线可看成是两个不平行平面1与 2 的交线 已知平面1: A1x + B1y + C1z + D1 = 0 2: A2x + B2y + C2z + D2 = 0
( 为任意实数 .)
过直线 l 与点 p0 的平面为:
(A x B y C z D )
1 1 1 1
Ax B y C z D
1 0 1 0 1 0
5.5 空间直线及其方程

y ≡ −2 表示直线上的动点在变动时, 这里, 这里, 表示直线上的动点在变动时,y 坐标始终 等于-2, 即直线与 y 轴是垂直的, 方向向量在 y 轴上投影为0.
(2) s = AB = (1 , 2 , −3), 所求直线方程为:
x +1 y − 3 z − 2 = = . 1 2 −3
x −1 y − 3 z + 2 = = . 3 −2 4
d s
平面束方程: 平面束方程: 设直线 L 的一般方程为
则直线外一点 P 1 到直线 L 的距离 可看作为以 s 和 P0 P 为邻边的平行四边形 s×P 0P 1 d= 在边 s 上的高. 于是由前面的结果知:
cos ϕ =
即
ϕ=
ቤተ መጻሕፍቲ ባይዱ
π
3
1 1 = , 2 2 2
.
直线与平面的夹角: 直线与平面的夹角: 直线与平面的夹角定义为直线与平面法线夹角的余角 (不取钝角). 若直线的方向向量为 s = ( m, n, p ) , 平面的法向为 n = ( A, B, C ) , 直线与平面的夹角为 ϕ θ = ( s , n ), 0 ≤ θ ≤ π ,则 2
L1
s1
s1 ⋅ s2 m1m2 + n1n2 + p1 p2 = . 2 2 2 2 s1 ⋅ s2 m1 + n12 + p12 m2 + n2 + p2
π 0 ≤ ϕ ≤ 2
例8 求直线 特别, 特别,两直线垂直 ⇔ s1 ⊥ s2
x + 2y + z =1 x − y − z = 1 与 的夹角. x − 2y + z = 3 x − y + 2z =1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14/14
L
:
A1 A2
x x
B1 B2
y y
C1z C2z
D1 D2
0 0
——空间直线的一般方程。
2/14
二、对称式方程与参数方程 z
s
L
如果一个非零向量平行于直
M
线L,就称这个向量为直线L的一
M0
个方向向量.
o
y
s
设 M0( (m, n,
x0 , y0 , z0 ) L,
x
p) 为 L的一个方向向量,则
在直线方程 x 4 y z 2 中,m 、 2m n 6 p
n、 p 各怎样取值时,直线与坐标面 xoy 、 yoz 都平行.
13/14
思考题解答
s (2m,n,6 p),
s
k
0,
s
i
0,
s
6 2m 0,
p0 0 n
0,
p
6,
m 0,
故当 m 0, n 0, p 6时结论成立.
*例 4 设直线L : x 1 y z 1,平面 2 1 2
: x y 2z 3,求直线与平面的夹角. 解 n (1,1,2), s (2,1,2),
sin
| Am Bn Cp |
A2 B2 C 2 m2 n2 p2
| 1 2 (1) (1) 2 2 | 7 .
M( x, y, z) L M0M// s
x x0 y y0 z z0 ——直线L的点向式方程
m
n
p 或对称式方程。
直线L的一组方向数。
3/14
又
M0 M // n
M0M
tn,
即 ( x x0 , y y0 , z z0 ) t(m, n, p),
得
x x0 mt
L:
3( x 2) 2( y 1) (z 3) 0
再求已知直线与该平面的交点N,
M
N
x 由 y
3t 2t
1 代入平面方程,得t 1,
3 7,交点 NhomakorabeaN(2 7
,13 , 7
3) 7
z t
取方向向量 MN ( 2 2, 13 1, 3 3) 77 7
6 (2,1,4), 所求直线方程为 x 2 y 1 z 3 .
(s , n)
或
(s , n)
2
2
sin | cos(s , n) |
sin
| Am Bn Cp |
A2 B2 C 2 m2 n2 p2
——直线与平面的夹角公式。
10/14
直线与平面的位置关系:(1) L A B C .
(2) L // Am Bn Cp 0. m n p
y
y0
nt
z z0 pt
——直线的参数方程。
4/14
例1 用对称式方程及参数方程表示直线
x y z 1 0 2x y 3z 4
. 0
解又 x 令s//53z(,1,y10,1, )32得,(2得2,xx直1,y3线y)1上4(4的 0,0一1,,3点解(),
之,得 5 , 2 ,0). 33
6 9
36
arcsin 7 为所求夹角.
36
11/14
五、小结
1、空间直线的一般方程. 2、空间直线的对称式方程、两点式方程与参数 方程. 3、两直线的夹角.
(注意两直线的位置关系)
4、直线与平面的夹角.
(注意直线与平面的位置关系)
12/14
作业
• 习题7-6
4
7
16-(1)(4)
思考题
得
x 5 y 2
对称式方程
3
3
z
4
1 3
参数方程 x 5 4t , y 2 t , z 3t .
3
3
5/14
例 2 一直线过点 A(2,3,4),且和 y 轴垂直相交,求
其方程.
解 因为直线和 y轴垂直相交,
所以交点为 B(0,3, 0), 取 s BA (2, 0, 4),
所求直线方程 x 2 y 3 z 4 .
2
0
4
注:若
M1( x1, y1, z1)、M2( x2 , y2 , z2 ) L,M1
M
,则
2
L : x x1 y y1 z z1 ——两点式方程。 x2 x1 y2 y1 z2 z1
6/14
例
3
求过M (2,1,3)且与
x1
L:
y 1
z
垂直相交的直
3 2 1
线方程.
L
解 先作过点M且与已知直线 L 垂直的平面
(2)
L1 //
L2
m1 m2
n1 n2
p1 , p2
9/14
四、直线与平面的夹角
直线和它在平面上的投影直线的夹
角 称为直线与平面的夹角.
0 .
L : x x0 y2 y0 z z0 ,
s (m, n, p),
m
n
p
: Ax By Cz D 0, n ( A, B,C),
7
2 1 4
7/14
另解 先做过点M (2,1,3)且与已知直线
L : x 1 y 1 z 垂直的平面 :
3
2 1
L
3( x 2) 2( y 1) (z 3) 0.
再求过M与L的: M0(1,1,0) L
' L M
s
n // M0M s (3,0,3) (3,2,1)
y y1 n1
z z1 , p1
L2 :
x x2 y y2 z z2 ,
m2
n2
p2
^ cos(L1, L2 )
| m1m2 n1n2 p1 p2 | m12 n12 p12 m22 n22 p22
——两直线的夹角公式。
两直线的位置关系:
(1) L1 L2 m1m2 n1n2 p1 p2 0,
(6 1,2,1)
: (x 2) 2( y 1) (z 3) 0
所求直线: 3(x 2) 2( y 1) (z 3) 0 (x 2) 2( y 1) (z 3) 0
8/14
三、两直线的夹角
两直线的方向向量的夹角(锐角)称为两直线的夹角.
L1
:
x x1 m1
第六节 空间直线极其方程
1. 一般方程 2. 对称式方程与参数方程 3. 两直线的夹角 4. 直线与平面的夹角 5. 小结、作业
1/14
一、一般方程
若空间直线L为两平面
z 1
1 : A1 x B1 y C1z D1 0
2
与
L
o
y
2 : A2 x B2 y C2z D2 0 x
的交线, 则