九年级数学练习题一

合集下载

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)

九年级数学:反比例函数练习题(含解析)一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( )A.y =2x +1B.y =22xC.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.45﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 26﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =k x(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( ) A.y =10x B.y =5xC.y =20xD.y =20x9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7v -6.10 -2.90 -2.01 -1.51 -1.19 -1.05 -0.86A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3.13.若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____. 14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=k(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)x作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为()A.y =2x +1B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y =2x+1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23kx -是反比例函数,则k 的值是( )A.-1B.2C.±2D. 解答:∵y =k 23kx -是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k , 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a 为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B 两点关于原点对称时,a的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t ),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4x B.y=-4xC.y=2x D.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h. 11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x-是反比例函数,∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________.解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t=16001600(4)(4)t t t t ---=264004t t -,答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务. 18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32.20.反比例函数y =k x(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x,由31y x y x =⎧⎪⎨=⎪⎩得:33x y ⎧=⎪⎨⎪=⎩或33x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (3,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-3,3), 设直线C ′D 的解析式为y =kx +b ,∴331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x ; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。

九年级数学上册实际问题与一元二次方程(1)同步练习1

九年级数学上册实际问题与一元二次方程(1)同步练习1

九年级数学上册实际问题与一元二次方程〖1〗同步练习1用一元二次方程解决传播问题1.列一元二次方程可以解决许多实际问题,解题的一般步骤是:①审题,弄清已知量﹨__未知量___;②设未知数,并用含有__未知数___的代数式表示其他数量关系;③根据题目中的__等量关系___,列一元二次方程;④解方程,求出__未知数___的值;⑤检验解是否符合问题的__实际意义___;⑥写出答案.2.一个两位数,个位数字为a ,十位数字为b ,则这个两位数为__10b +a___,若交换两个数位上的数字,则得到的新两位数为__10a +b___.知识点1:倍数传播问题1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干﹨支干和小分支的总数是91,设每个支干长出小分支的个数为x ,则依题意可列方程为__1+x +x 2=91___.2.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?解:(1)设每轮分裂中平均每个有益菌可分裂出x 个有益菌,根据题意得60(1+x)2=24000,解得x 1=19,x 2=-21(不合题意,舍去),则每轮分裂中平均每个有益菌可分裂出19个有益菌(2)60×(1+19)3=60×203=480000(个),则经过三轮培植后共有480000个有益菌知识点2:握手问题3.(2014·天津)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( B )A .12x(x +1)=28B .12x(x -1)=28 C .x(x +1)=28 D .x(x -1)=284.在某次聚会上,每两人都握了一次手,所有人共握手210次,设有x 人参加这次聚会,则依题意可列出方程为__x (x -1)2=210___. 5.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?解:设有x 家公司出席了这次交易会,根据题意得12x(x -1)=78,解得x 1=13,x 2=-12(不合题意,舍去),故有13家公司出席了这次交易会知识点3:数字问题6.两个连续偶数的和为14,积为48,则这两个连续偶数是__6和8___.7.已知一个两位数比它的个位上的数的平方小6,个位上的数与十位上的数的和是13,求这个两位数.解:设这个两位数的个位数字为x ,则十位数字为(13-x),由题意得10(13-x)+x +6=x 2,整理得x 2+9x -136=0,解得x 1=8,x 2=-17(不合题意,舍去),∴13-x=5,则这个两位数是588.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件,如果全组有x名同学,则根据题意列出的方程是( B) A.x(x+1)=132 B.x(x-1)=132C.x(x+1)=132×2 D.x(x-1)=132×29.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( C)A.4个B.5个C.6个D.7个10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( D)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31A.32 B.11.一个直角三角形的三边长恰好是三个连续整数,若设较长的直角边长为x,则根据题意列出的方程为__x2+(x-1)2=(x+1)2___.12.某剧场共有1050个座位,已知每行的座位数都相同,且每行的座位数比总行数少17,求每行的座位数.解:设每行的座位数为x个,由题意得x(x+17)=1050,解得x1=25,x2=-42(不合题意,舍去),则每行的座位数是25个13.有人利用手机发微信,获得信息的人也按他的发送人数发送该条微信,经过两轮微信的发送,共有56人手机上获得同一条微信,则每轮一个人要向几个人发送微信?解:设每轮一个人要向x个人发微信,由题意得x(x+1)=56,解得x1=7,x2=-8(不合题意,舍去),则每轮一个人要向7个人发送微信14.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?解:(1)设每轮传染中平均一个人传染了x个人,则1+x+x(x+1)=64,解得x1=7,x2=-9(不合题意,舍去),即每轮传染中平均一个人传染7个人(2)64×7=448(人)15.读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解:设周瑜逝世时的年龄的个位数字为x ,则十位数字为x -3,由题意得10(x -3)+x =x 2,解得x 1=5,x 2=6.当x =5时,周瑜的年龄为25岁,非而立之年,不合题意,舍去;当x =6时,周瑜的年龄为36岁,符合题意,则周瑜去世时的年龄为36岁16.(1)n 边形(n >3)其中一个顶点的对角线有__(n -3)___条;(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.解:(2)设这个凸多边形是n 边形,由题意得n (n -3)2=14,解得n 1=7,n 2=-4(舍去),则这个多边形是七边形 (3)不存在.理由:假设存在n 边形有21条对角线,由题意得n (n -3)2=21,解得n =3±1772,因为多边形的边数为正整数,但3±1772不是正整数,故不合题意,所以不存在有21条对角线的凸多边形价为60元7.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?解:设购买了x 件这种服装,根据题意得[80-2(x -10)〗x =1200,解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不符合题意,舍去,∴x =20,则她购买了20件这种服装。

九年级数学垂径定理练习题

九年级数学垂径定理练习题

精品字里行间精品文档成功是必须的垂径定理练习题一一.选择题1、如图2,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( ) A 、10 B 、8 C 、6 D 、42.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( )A .2.5B .3.5C .4.5D .5.53.高速公路的隧道和桥梁最多.图3是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( )A .5B .7C .375D .3774.如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( )A .6.5米C .13米D .15米二.填空题1.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示,则这个小孔的直径AB是 mm .2.如图,⊙O 的半径OA =10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 cm . 3.如图,⊙O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 .4.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm ,水面到管道顶部距离为20cm ,则修理工应准备内直径是 cm 的管道.5.如图5,点A B ,是⊙O 上两点,10AB =,点P 是⊙O 上的动点(P 与A B ,不重合)连结AP PB ,,过点O分别作OE AP ⊥于点E ,OF PB ⊥于点F ,则EF = .三.解答题已知:如图1,30PAC ∠=︒,在射线AC 上顺次截取AD =3cm ,DB =10cm ,以DB 为直径作⊙O 交射线AP 于E 、F 两点,求圆心O 到AP 的距离及EF 的长.垂径定理练习题二1、已知:AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10cm ,AP:PB =1:5,则⊙O 的半径为_______。

九年级上册数学练习题-有答案

九年级上册数学练习题-有答案

人教版九年级上册数学测试二次根式一、填空题(每小题2分,共20分)1.中是二次根式的个数有______个. 2. 当x = 时,二次根式1+x 取最小值,其最小值为 。

3.的结果是_____________4.= 5. 实数a 在数轴上的位置如图所示:化简:1______a -=.6. 已知三角形底边的边长是6cm,面积是12cm 2,则此边的高线长 .7.若()2240a c --=,则=+-c b a .8. 计算:20102010)23()23(+-= 9. 已知2310x x -+=,则= 10.观察下列各式:===,……,请你将猜想到的规律用含自然数(1)n n ≥的代数式表示出来是. 二、选择题(每小题3分,共24分)11. 下列式子一定是二次根式的是( )A .2--xB .xC .22+x D .22-x12. 下列二次根式中,x 的取值范围是2≥x 的是( )A .2-xB .x+2C .x -2D .1x -213. 实数a b c ,,在数轴上的对应点的位置如图所示,式子线①0b c +>②a b a c +>+③bc ac >④ab ac >中正确的有( )A.1个 B.2个 C.3个 D.4个 14. 下列根式中,是最简二次根式的是( )A .B . C. D . 15. 下列各式中,一定能成立的是( )A .22)5.2()5.2(=- B .22)(a a = C .1122-=+-x x x D .3392-•+=-x x x16.设4a ,小数部分为b ,则1a b-的值为( )A.1-C.1+D.17. 把mm 1-根号外的因式移到根号内,得( ) A .m B .m -C .m --D .m -18. 2,则a 的取值范围是( ) A.4a ≥ B.2a ≤ C.24a ≤≤ D.2a =或4a =三、解答题(76分) 19. (12分)计算:(1) 21418122-+- (2) 2)352(-(3) (4)284)23()21(01--+-⨯-20. (8分)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .21. (8分)已知:3x 22x y --+-=,求:4y x )(+的值。

九年级上册数学习题带答案

九年级上册数学习题带答案

九年级上册数学习题带答案九年级上册数学习题带答案数学作为一门学科,对于学生来说可能是喜欢的,也可能是让人头疼的。

不管是哪种情况,掌握数学的基础知识和解题技巧都是至关重要的。

在九年级上册的数学课程中,有许多重要的知识点和习题需要我们掌握和练习。

下面我将为大家整理一些九年级上册数学习题,并附上答案,希望能够帮助大家更好地学习和理解数学。

第一章:代数基础1. 计算下列各式的值:(1) 3x + 4y,当x = 2,y = 5时;(2) 5a - 2b,当a = 3,b = 7时。

答案:(1) 3x + 4y = 3*2 + 4*5 = 6 + 20 = 26;(2) 5a - 2b = 5*3 - 2*7 = 15 - 14 = 1。

2. 求下列各式的值:(1) 2x^2 + 3x - 4,当x = 1时;(2) 3a^2 - 4ab + b^2,当a = 2,b = 3时。

答案:(1) 2x^2 + 3x - 4 = 2*1^2 + 3*1 - 4 = 2 + 3 - 4 = 1;(2) 3a^2 - 4ab + b^2 = 3*2^2 - 4*2*3 + 3^2 = 12 - 24 + 9 = -3。

第二章:平面直角坐标系1. 在平面直角坐标系中,已知点A(2, 3),B(-1, 4),求线段AB的长度。

答案:设AB的长度为d,根据两点间距离公式可得:d = √[(x2 - x1)^2 + (y2 - y1)^2]= √[(-1 - 2)^2 + (4 - 3)^2]= √[(-3)^2 + (1)^2]= √[9 + 1]= √10。

2. 在平面直角坐标系中,已知点A(-2, 5),B(3, -1),求线段AB的斜率。

答案:设AB的斜率为k,根据斜率公式可得:k = (y2 - y1) / (x2 - x1)= (-1 - 5) / (3 - (-2))= (-6) / (3 + 2)= -6 / 5。

九年级数学上册第一次月考【压轴大题】练习

九年级数学上册第一次月考【压轴大题】练习

九年级数学上册 | 第一次月考【压轴大题】练习【一】如图,用一段长30米的篱笆围成一个一边靠墙(墙的长度为20米)的矩形鸡场ABCD,设BC边长为x米,鸡场的面积为y平方米.(1)求y与x的函数关系式;解:∵在矩形ABCD中,BC=x,∴CD=30-x/2=15-1/2x,∴y=x(15-1/2x)=-1/2x2+15x(2)写出其二次项、一次项、常数项;【解析】二次项为-1/2x2,一次项为15x,常数项为0(3)写出自变量x的取值范围.【解析】自变量的取值范围为:0<x≤20.【二】如图,已知抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点.(1)求抛物线的表达式和顶点坐标;解:把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4)(2)当0<x<3时,求y的取值范围;【解析】由图可得当0<x<3时,﹣4≤y<0;(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.解:∵A(﹣1,0)、B(3,0),∴AB=4,设P(x,y),则S△PAB=1/2AB•|y|=2|y|=10,∴|y|=5,∴y=±5;①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5)【三】已知二次函数y=a(x−2)2+3的图象经过点(−1,0).(1)求这个二次函数的解析式;解:把(−1,0)代入二次函数解析式得:9a+3=0,即a=−1/3,则函数解析式为y=−1/3 (x−2)2+3(2)分别指出这个二次函数图象的开口方向、对称轴和顶点坐标.解:∵a=−1/3<0,∴抛物线开口向下,顶点坐标为(2,3),对称轴为直线x=2(3) 写出把此抛物线向右平移1个单位长度,再向上平移2个单位长度后的抛物线解析式.解:抛物线y=−1/3 (x−2)2+3向右平移1个单位长度所得解析式为:y=−1/3 (x−3)2+3,再向上平移2个单位长度后,所得函数的表达式为:y=−1/3 (x−3)2+3+2=−1/3 (x−3)2+5.故答案为y= −1/3 (x−3)2+5【四】在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是(0,2);解:如图1中,由题意A(0,0),B(2,0),C(0,1),∵点P是线段AB关于射线OC的等腰点,∴OP=AB=2,∴P(0,2)②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;解:如图2中,当OP=AB时,作PH⊥x轴于H.在Rt△POH中,∵PH=OC=1,OP=AB=2∴OH=√OP²-PH²=√2²-1²=√3,观察图象可知:若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1时,n<﹣√3.(2)若n=√3,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是﹣4<t≤﹣2或t=0或2<t ≤4.解:如图3﹣1中,作CH⊥y轴于H.分别以A,B为圆心,AB为半径作⊙A,⊙B.由题意C(√3,1),∴CH=√3,OH=1,∴tan∠COH=CH/EH=√3,∴∠COH=60°,当⊙B经过原点时,B(﹣2,0),此时t=﹣4,∵射线OC上只存在一个线段AB关于射线OC的等腰点,∴射线OC与⊙A,⊙B只有一个交点,观察图象可知当﹣4<t≤﹣2时,满足条件,如图3﹣2中,当点A在原点时,∵∠POB=30°,此时两圆的交点P在射线OC上,满足条件,此时t=0,如图3﹣3中,当⊙B与OC相切于P时,连接BP.∴OC是⊙B的切线,∴OP⊥BP,∴∠OPB=90°,∵BP=2,∠POB=30°,∴OB=BP/cos60°=2/(1/2)=4,此时t=4﹣2=2,如图3﹣4中,当⊙A与OC相切时,同法可得OA=4,此时t=4,此时符合题意.如图3﹣5中,当⊙A经过原点时,A(2,0),此时t=2,观察图形可知,满足条件的t的值为:2<t≤4,综上所述,满足条件t的值为﹣4<t≤﹣2或t=0或2<t≤4.【五】在ABC中,∠C=90°,AC>BC,D是AB的中点,E为直线AC上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当点E是线段AC的中点时,AE=2,BF=1,求EF的长;解:∵D是AB的中点,E是线段AC的中点,∴DE∥BC,DE=1/2BC,∵∠ACB=90°∴∠DEC=90°∵DF⊥DE,∴∠EDF=90°∴四边形CEDF是矩形,∴DE=CF=1/2BC,∴CF=BF=1,∵CE=AE=2,∴EF==√CF²+CE²=√1²+2²=√5(2)当点E在线段CA的延长线上时,依题意补全图形2,用等式表示AE,EF,BF之间的数量关系,并证明.解:AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED=∠BMD,∠CBM=∠ACB=90°,∵D点是AB的中点,∴AD=BD,在△ADE和△BDM中,∠AED=∠BMD,∠ADE=∠BDM,AD=BD,∴△ADE≌△BDM(AAS),∴AE=BM,DE=DM,∵DF⊥DE,∴EF=MF,∵BM2+BF2=MF2,∴AE2+BF2=EF2.。

九年级数学上册成比例线段练习题精选

九年级数学上册成比例线段练习题精选

第1课时 线段的比和比例的基本性质基础题知识点1 线段的比1.如图,线段AB∶BC=1∶2,则AC∶BC 等于( )A .1∶3B .2∶3C .3∶1D .3∶22.已知a =0.2,b =0.04,则a∶b=________.3.已知a =2 cm ,b =30 mm ,则a∶b=________.4.在△ABC 中,∠B =90°,AB =BC =10 cm ,在△DEF 中,ED =EF =12 cm ,DF =8 cm ,求AB 与EF 之比, AC 与DF 之比.知识点2 比例线段5.四条线段a ,b ,c ,d 成比例,其中a =3 cm ,d =4 cm ,c =6 cm ,则b 等于( )A .8 cm B.29cm C.92cm D .2 cm 6.2013版《中华人民共和国全图》在左下角特别配有一幅放大的钓鱼岛插图,比例尺为1∶1 500 000,已知钓鱼岛东西长约3.5公里,则在地图上的东西长约为( )A .0.002 3 cmB .0.23 cmC .4.29 cmD .0.042 9 cm7.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为________米.8.已知a 、b 、c 、d 四条线段依次成比例,其中a =3 cm ,b =(x -1)cm ,c =5 cm ,d =(x +1)cm.求x 的值.知识点3 比例的基本性质9.已知x 3=y 2,那么下列式子中一定成立的是( ) A .2x =3y B .3x =2yC .x =2yD .xy =610.若2y -5x =0,则x∶y 等于( )A .2∶5B .4∶25C .5∶2D .25∶411.已知线段m ,n ,且m n =34,求m +n m 的值. 中档题 12.不为0的四个实数a 、b 、c 、d 满足ab =cd ,改写成比例式错误的是( )A.a c =d bB.c a =b dC.d a =b cD.a b =c d13.有四组线段,每组线段长度如下:①2,1,2,2;②3,2,6,4;③12,1,5,2;④1,3,5,7,能组成比例的有( )A .1组B .2组C .3组D .4组14.将两块长a 米,宽b 米的长方形红布,加工成一个长c 米,宽d 米的长方形,有人就a ,b ,c ,d 的关系写出了如下四个等式,不过他写错了一个,写错的那个是( )A.2a c =d bB.a c =d 2bC.2a d =c bD.a 2c =d b15.已知线段a =2,b =2+3,c =2- 3.(1)若a∶b=c∶x,求线段x 的长;(2)若b∶y=y∶c,求线段y 的长.16.在比例尺为1∶8 000 000的地图上,测量出太原到北京的铁路全长为6.4 cm ,若某火车从太原到北京一共行驶了3小时12分钟,求该火车的速度是多少.17.已知三条线段的长分别为1 cm 、2 cm 、 2 cm ,如果另外一条线段与它们是成比例线段,试求出另外一条线段的长. 18.如图所示,若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,AP BP =AQ BQ =32,求线段PQ 的长.综合题19.在△ABC 中,AB =12,点E 在AC 上,点D 在AB 上,若AE =6,EC =4,且AD DB =AE EC. (1)求AD 的长;(2)试问DB AB =EC AC能成立吗?请说明理由.参考答案1.D 2.5∶1 3.2∶3 4.在Rt △ABC 中,根据勾股定理知,AC =AB 2+BC 2=10 2 cm ,则AB EF =1012=56,AC DF =1028=524. 5.D 6.B 7.9.6 8.依题意,得3x -1=5x +1.解得x =4.经检验,x =4是原方程的解,∴x =4. 9.A 10.A 11.∵m n =34,∴可设m =3k ,则n =4k.∴m +n m =3k +4k 3k =73. 12.D 13.B 14.D 15.(1)由题意得22+3=2-3x .解得x =12.(2)由题意得2+3y =y 2-3.解得y =±1.由于线段y 为正数,所以y =1. 16.6.4厘米×8 000 000=51 200 000厘米=512千米.3小时12分钟=315小时.该火车的速度是512÷315=160(千米/小时). 17.设另一条线段长为x cm ,有三种情况:①1×2=2x ,解得x =2;②2×2=1×x,解得x =22;③1×2=2x ,解得x =22.综上所述,另外一条线段的长是2 2 cm 或 2 cm 或22cm. 18.设AP =3x ,BP =2x.∵AB=10,∴AB =AP +BP =3x +2x =5x ,即5x =10.∴x=2.∴AP=6,BP =4.∵AQ BQ =32,∴可设BQ =y ,则AQ =AB +BQ =10+y.∴10+y y=32.解得y =20.∴PQ=PB +BQ =4+20=24. 19.(1)AD =365.(2)能,由AB =12,AD =365,故DB =245.于是DB AB =25.又EC AC =410=25,故DB AB =EC AC.比例线段姓名__________一.选择题(共12小题)1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.2.已知=,那么的值为()A.B.C.D.3.已知,则的值是()A.B.C.D.4.(2016•闵行区一模)在比例尺为1:10000的地图上,一块面积为2cm2的区域表示的实际面积是()A.2000000cm2 B.20000m2C.4000000m2 D.40000m25.(2016•黄浦区一模)已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.18cm B.5cm C.6cm D.±6cm6.(2015春•成都校级期末)下列长度的各组线段中,能构成比例线段的是()A.2,5,6,8 B.3,6,9,18C.1,2,3,4 D.3,6,7,97.(2015秋•龙海市校级期末)下列各组中的四条线段成比例的是()A.6cm、2cm、1cm、4cmB.4cm、5cm、6cm、7cmC.3cm、4cm、5cm、6cmD.6cm、3cm、8cm、4cm8.已知,则的值是()A.3B.4C.﹣4D.﹣39.(2015秋•莘县期末)若==,且3a﹣2b+c=3,则2a+4b﹣3c的值是()A.14 B.42 C.7 D.10.(2015春•苏州校级期末)已知线段a=l,c=5,线段b是线段a、c的比例中项,线段b的值为()A.2.5 B.C.±2.5 D.±11.(2004•遂宁)如图所示,一张矩形纸片ABCD的长AB=acm,宽BC=bcm,E、F分别为AB、CD的中点,这张纸片沿直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a:b等于()A.:1B.1:C.:1D.1:12.(2014•牡丹江)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.5二.填空题(共5小题)13.已知≠0,则的值为.14.(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.15.(2015•大庆)已知=,则的值为.16.(2000•天津)已知,则a:b=.17.(2002•福州)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.三.解答题(共1小题)18.(2015秋•浦东新区月考)已知a、b、c是△ABC的三边长,且==≠0,求:(1)的值.(2)若△ABC的周长为90,求各边的长.参考答案一.选择题(共12小题)1.B;2.B;3.D;4.B;5.C;6.B;7.D;8.A;9.D;10.B;11.A;12.A;二.填空题(共5小题)13.;14.3;15.-;16.19:13;17.6;三.解答题(共1小题)18.;成比例线段同步练习题精选命题:平顶山市状元郎数学辅导学校 杨书山【概念回顾】:1.四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比, 如:d c b a =(或a ∶b =c ∶d ),那么这四条线段叫做__________,简称_________.2.成比例线段的性质:如果dc b a =,那么__________ 3.合比性质:_____________________________________4.等比性质:______________________________________________________________________________【练习题】:一、选择题:1、判断下列线段是否是成比例线段:(1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4.2、下列线段能成比例线段的是( )(A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm(C)2cm,5cm,3cm,1cm(D)2cm,5cm,3cm,4cm3、已知32=b a ,则b b a +的值为( )(A)23 (B)34 (C)35 (D)53 4、若互不相等的四条线段的长a,b,c,d 满足a b =c d ,m 为任意实数,则下列各式中,相等关系一定成立的是( )(A ) a +m b +m =c +m d +m (B )a +b b =c +d c (C )a c =d b (D )a -b a +b =c -d c +d 5、如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )(A)8 (B)16 (C)24 (D)326、若ac =bd ,则下列比例式中不正确的是 ( ) (A)c b d a = (B)d a c b = (C)d b c a = (D)dc a b = 7、若3x =x 4 ,则x 等于( ) (A)12 (B)2 3 (C)- 2 3 (D)±2 38、若(m+n):n=5:2,则m:n 的值是( )(A)5:2 (B)2:3 (C)3:2 (D)2:59、若a b =c d ,下列各式中正确的个数有( )a d =c d , d:c=b:a, ab =a 2b 2 , a b =c+5d+5 , a b =a+c a+d , c d =ma mb (m ≠0)(A)1 (B)2 (C)3 (D)410、若ba c a cbc b a k 222-=-=-=,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)21 (C)1 (D)- 12 二、填空题1 、线段a=1cm ,b=4cm ,c=9cm , 那么a 、b 、c 的第四比例项d=____2、已知5x-8y=0,则x+y x = ,如果053=-y x ,且y ≠0,那么yx = . 3、如果x y =73 ,那么x -y y = ,x +y y = , x +y x +y= 4、如果5:4:3::=c b a ,那么=+--+cb ac b a 3532 ; 5、.若9810z y x ==, 则 ______=+++zy z y x ,已知x 5 =y 3 =z 4 ,则2x+y-z x+3y+z = 6、.若322=-y y x , 则_____=yx . 7、已知32==d c b a ,若0≠+d b ,则=++db c a 8、已知a b =c d =e f =35 ,b +d +f =50,那么a +c +e =9、若0622=--y xy x ,则=y x : ; 10、若43===f e d c b a , 则______=++++fd be c a . 11、若k ba c a cbc b a =+=+=+ 则k=______ 12、已知(-3):5=(-2):(x -1),则x =14、已知a b =c d =e f =35 ,则____432432=+-+-f d b e c a 15、如果y y x +=73 ,那么___=y x ,x -y y = , yx y x +-= 16、如图,已知ΔABC 中,CE AE DB AD =,AC=7cm,CE=3cm,AB=6cm,则AD= ; 17、已知S 正方形=S 矩形,矩形的长和宽分别为10cm 和6cm ,则正方形的边长为18、在Rt ΔABC 中,∠C=90°, ∠A=30°则a:b:c=19、已知x:y=2:3,则(3x+2y ):(2x-3y)=20、已知5x+y 3x-2y =12 ,则x y = , x+y x-y = ;三、解答题1、已知0753≠==z y x ,求下列各式的值:(1)y z y x +- (2)z y x z y x +-++354322、已知有三条线段长为1cm 、4cm 、9cm ,请你再添加一条线段,使这四条线段为成比例线段,求所添加线段的长A BCD E3. 已知0≠-=-=-z a c y c b x b a ,求x+y+z 的值.。

九年级数学上册练习题

九年级数学上册练习题

九年级数学上册练习题一、选择题1.已知函数 f(x) = 2x + 1,求 f(-3) 的值。

()A. 5B. -5C. 7D. -72.已知函数 g(x) = x^2 + 3x,求 g(2) 的值。

()A. 10B. 8C. 7D. 63.解方程 2x + 5 = 15,求 x 的值。

()A. 5B. 6C. 7D. 84.解方程 3x^2 + 2x - 1 = 0,求 x 的值。

()A. 1/3, -1B. 1, -1C. 1/3, 1D. 1, -1/35.解方程组:x + y = 102x - y = 4求 x 和 y 的值。

()A. x = 3, y = 7B. x = 4, y = 6C. x = 2, y = 8D. x = 5, y = 5二、填空题1.已知一边长为 6cm 的正方形,它的周长是 ________cm。

2.若 a + b = 7,而 a - b = 3,则 a 的值为 ________。

3.简化下列代数表达式:(3x^2 + 2x - 1) + (2x^2 - 3x + 4) = ________。

4.解下列方程:2x - 3 = 7 + x,求 x 的值:x = ________。

5.某数乘以 5 再减去 6 的结果为 19,求该数:_______。

三、计算题1.求下列各式的和:3 + 7 + 11 + 15 + 19 = ________。

2.求下列各式的差:15 - 7 - 3 - 1 - 5 = ________。

3.化简下列代数表达式:5x^2 - 3(2x - 4) - (x + 1) = ________。

4.某电商平台的商品原价为 480 元,现在打八折出售,求折后的价格:_______。

5.某公司的年利润为 360 万元,按照公司规定,经理可获得年利润的 5% 作为奖金,求经理的奖金数额:_______万元。

四、解答题1.某校室内篮球训练馆长 20 米,宽 15 米,请你计算该训练馆的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学练习题一 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN九年级数学练习题一1.如图,已知经过原点的抛物线x x y 422+-=与x 轴的另一交点为A ,现将它向右平移m (0>m )个单位,所得抛物线与x 轴交于C 、D 两点,与原抛物线交于点P .(1)求点A 的坐标,并判断∆PCA 存在时它的形状(不要求说理); (2)在xm 的式子表示);若不存在,请说明理由;(3)设∆PCD 的面积为S ,求S 关于m2.如图, 已知抛物线c bx x y ++=22与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.3. 如图,反比例函数y = kx的图象经过点A (4,b ),过点作AB ⊥x 轴于点B ,△AOB 的面积为2.(1)求k 和b 的值;(2)若一次函数y =ax -3的图象经过点A ,求这个一次函数的解析式.4. 如图,抛物线y =ax 2+bx +1与x 轴交于两点A (-1,0)、B (1,0),与y 轴交于点C .(1)求抛物线的解析式;(2)过点B 作BD ∥CA 与抛物线交于点D ,求四边形ACBD 的面积;(3)在x 轴下方的抛物线上是否存在点M ,过M 作MN ⊥x 轴于点N ,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,则求出点M 的坐标;若不存在,请说明理由.5. 小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1) 小刚上学步行的平均速度是多少米/分小刚家和少年宫之间、少年宫和学校之间的(第24题) (第26题) 题图26x y 路程分别是多少米(2) 下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以 110米/分的速度回家,中途没有再停留.问: ① 小刚到家的时间是下午几时?② 小刚回家过程中,离家的路程s (米)与时间t (分)之间的函数关系如图,请写出点B 的坐标, 并求出线段CD 所在直线的函数解析式.6. A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时) 之间的函数图象.(1)求甲车行驶过程中y 与x 之间 的函数解析式,并写出自变量x 的取值范围;(2)当它 们行驶7了小时时,两车相遇,求乙车速度.7. 如图,直线6y x =-+与x 轴交于点A ,与y 轴交于 点B ,以线段AB 为直径作⊙C ,抛物线c bx ax y ++=2过A 、C 、O 三点.(1)求点C 的坐标和抛物线的解析式; (2)过点B 作直线与x 轴交于点D ,且OB 2=OA ·OD ,求证:DB 是⊙C 的切线;(3)抛物线上是否存在一点P , 使以P 、O 、C 、A 为顶点的四边形为直角梯形, 如果存在,求出点P 的坐标;如果不存在,请说明理由.8. 在平面直角坐标系中,点O 是坐标原点.已知等腰梯形OABC ,OA ||BC (4,0)A ,2BC =,等腰梯形OABC 的高是1,且点B 、C 都在第一象限。

(1)请画出一个平面直角坐标系,并在此坐标系中画出等腰梯形OABC ;(2)直线1655y x =-+与线段AB 交于点(,)P p q ,点(,)M m n 在直线1655y x =-+上,当n q >时,求m 的取值范围.9. 某同学从家里出发,骑自行车上学时,速度v (米/秒)与时间t (秒)的关系如图a ,A (10,5),B (130,5),C (135,0).(1)求该同学骑自行车上学途中的速度v 与时间t 的函数关系式;(2)计算该同学从家到学校的路程(提示:在OA 和BC 段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);(3)如图b ,直线x =t (0≤t ≤135),与图a 的图象相交于P 、Q ,用字母S 表示图中阴影部分面积,试求S 与t 的函数关系式;(4)由(2)(3),直接猜出在t 时刻,该同学离开家所超过的路程与此时S 的数量关系.t (分)O s (米)A B C D (第23题) x/小y /千60014 6 O FEC D (第20题) 26题图图a 图b10. 如图,在水平地面点A 处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B .有人在直线AB 上点C (靠点B 一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB =4米,AC =3米,网球飞行最大高度OM =5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内? (2)当竖直摆放圆柱形桶多少个时,网球可以落入桶内?11. 如图,已知正比例函数y = ax (a ≠0)的图象与反比例函致xky =(k ≠0)的图象的一个交点为A (-1,2-k 2),另—个交点为B ,且A 、B 关于原点O 对称,D 为OB 的中点,过点D 的线段OB 的垂直平分线与x 轴、y 轴分别交于C 、E .(1)写出反比例函数和正比例函数的解析式; (2)试计算△COE 的面积是△ODE 面积的多少倍.12. 国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系. (1)直接写出....2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大最大利润是多少13. 如图,在平面直角坐标系xoy 中,抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D .AMBC Oxy D P QABMC ODE D B Ax y O C(1)求h k 、的值;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是否存在点M , 使AOM △与ABC △相似.若存在,求出 点M 的坐标;若不存在,说明理由.14. 某蒜薹生产基地喜获丰收收蒜薹200吨。

经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:销售方式 批发 零售 冷库储藏后销售 售价(元/吨) 3000 4500 5500 成本(元/吨) 700 1000 12001/3(1)求y 与x 之间的函数关系;(2)由于受条件限制经冷库储藏的蒜薹最多80吨,求该生产基地计划全部售完蒜薹获得最大利润。

15. 如图12,直线y=kx-1与x 轴、y 轴分别交与B 、C 两点,tan ∠OCB=21.(1) 求B 点的坐标和k 的值;(2) 若点A (x ,y )是第一象限内的直线y=kx-1上的一个动点.当点A 运动过程中,试写出△AOB 的面积S 与x 的函数关系式;(3) 探索:① 当点A 运动到什么位置时,△AOB 的面积是41;② 在①成立的情况下,x 轴上是否存在一点P , 使△POA 是等腰三角形.若存在,请写出满足条件的 所有P 点的坐标;若不存在,请说明理由.16. 今年春季,我国云南、贵州等西南地区遇到多少不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.(1)设甲种柴油发电机数量为x 台,乙种柴油发电机数量为y 台.①用含x 、y 的式子表示丙种柴油发电机的数量;②求出y 与x 的函数关系式;(2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W 最少?17. “震再无情人有请”,玉树地震牵动了全国人民的心,武警部队接到命令,运送一批救灾物资到灾区,货车在公路A 处加满油后,以60千米/小时的速度匀速行使,前往与A 处相距360千米的灾区B 处.下表记录的是货车一次加满油后油箱内余油量y (升)与行使时间x (小时)之间的关系:行使时间x (小时) 0 1 2 3 4 余油量y (升) 150 120 90 60 30(1)(不要求写出自变量的取值范围);(2)如果货车的行使速度和每小时的耗油量都不变,货车行使4小时后到达C 处,C 的前方12千米的D 处有一加油站,那么在D 处至少加多少升油,才能使货车到达灾区B 处卸去货物后能顺利返回D 处加油(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)AyxBFDC O1. 解:(1)令0422=+-x x ,得2,021==x x .∴点A 的坐标为(2,0). ············ 2分PCA ∆是等腰三角形. ·············· 3分(2)存在.2,====CD OA m AD OC . ··········· 5分(3)当0<m <2时,如图1,作x PH ⊥轴于H ,设),(p p y x P .图1∵A(2,0), C(m ,0), ∴m AC -=2. ∴222mAC CH -==. ∴2222+=-+==m m m OH x p 把22+=m x p 代入x x y 422+-=,得2212+-=m y p .∵2==OA CD ,∴221)221(2212122+-=+-••=•=m m HP CD S . ··· 9分当2=m 时,PCD ∆不存在当2>m 时,如图2,作x PH ⊥轴于H ,设),(p p y x P .图2 ∵A (2,0),C (m ,0),∴2-=m AC ,∴22-=m AH .∴22222+=-+==m m OH x p 把22+=m x p 代入x x y 422+-=, 得2212+-=m y p .∵2==OA CD ,∴221)(221212+=-••=•=m y HP CD S p ······· 12分说明:采用p y HP CD S ••=•=22121思路求解,未排除2=m 的,扣1分.6. (1)①当0≤x ≤6时, ……………………………………………………1分x y 100=; ……………………………………………………………………2分②当6<x ≤14时, ……………………………………………………………………1分 设b kx y +=,∵图象过(6,600),(14,0)两点,∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k∴105075+-=x y . ∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y ……………………………………………………2分(2)当7=x 时,5251050775=+⨯-=y , …………………………1分757525==乙v (千米/小时). ………………………………1分 7. 解:(1)A (6,0),B (0,6) ……………………1分 连结OC ,由于∠AOB =90o ,C 为AB 的中点,则AB OC 21=,所以点O 在⊙C 上(没有说明不扣分).过C 点作CE ⊥OA ,垂足为E ,则E 为OA 中点,故点C 的横坐标为3. 又点C 在直线y=-x+6上,故C (3,3) ……………………2分 抛物线过点O ,所以c=0, 又抛物线过点A 、C ,所以{3930366=+=+a ba b ,解得:1,23a b =-=所以抛物线解析式为x x y 2312+-= …………………3分(2)OA =OB =6代入OB 2=OA·OD ,得OD =6 ……………………4分 所以OD =OB =OA ,∠DBA =90o . ……………………5分 又点B 在圆上,故DB 为⊙C 的切线 ……………………6分 (通过证相似三角形得出亦可)(3)假设存在点P 满足题意.因C 为AB 中点,O 在圆上,故∠OCA=90o ,要使以P 、O 、C 、A 为顶点的四边形为直角梯形,则 ∠CAP =90o 或 ∠COP =90o , ……………………7分若∠CAP =90o ,则OC ∥AP ,因OC 的方程为y =x ,设AP 方程为y =x +b . 又AP 过点A (6,0),则b =-6, ……………………8分 方程y =x -6与x x y 2312+-=联立解得:{1160x y ==,{2239x y =-=-,故点P 1坐标为(-3,-9) ……………………9分 若∠COP =90o ,则OP ∥AC ,同理可求得点P 2(9,-9) (用抛物线的对称性求出亦可)故存在点P 1坐标为(-3,-9)和P 2(9,-9)满足题意.…………10分9. (1)1(010)25(10130)135(130135)v t t v t v t t ⎧=≤<⎪⎪=≤<⎨⎪=-≤≤⎪⎩ (2)2.5×10+5×120+2×5=635(米)(3)221(010)4525(10130)1(130135)2S t t S t t S t t ⎧=≤<⎪⎪=-≤<⎨⎪⎪=-≤≤⎩ +135t-8475 (4) 相等的关系11. 10.解:(1)以点O 为原点,AB 所在直线为x 轴建立直角坐标系(如图). ……(1分)12. M (0,5),B (2,0),C (1,0),D (32,0)设抛物线的解析式为2y ax k =+,抛物线过点M 和点B ,则 5k =,54a =-.即抛物线解析式为2554y x =-+. ……(4分)当x =时,y =154;当x =32时,y =3516.即P (1,154),Q (32,3516)在抛物线上. 当竖直摆放5个圆柱形桶时,桶高=310×5=32.∵ 32<154且32<3516,∴网球不能落入桶内. ……(5分)(2)设竖直摆放圆柱形桶m 个时网球可以落入桶内,由题意,得,3516≤310m ≤154. ……(6分)解得,7724≤m ≤1122.∵ m 为整数,∴ m 的值为8,9,10,11,12.∴ 当竖直摆放圆柱形桶8,9,10,11或12个时,网球可以落入桶内.……(8分)11. (1)由图知k >0,a >0.∵ 点A (-1,2-k 2)在xky =图象上, ∴ 2-k 2 =-k ,即 k 2-k -2 = 0,解得 k = 2(k =-1舍去),得反比例函数为xy 2=. 此时A (-1,-2),代人y = ax ,解得a = 2,∴ 正比例函数为y = 2x . (2)过点B 作BF ⊥x 轴于F .∵ A (-1,-2)与B 关于原点对称, ∴ B (1,2),即OF = 1,BF = 2,得 OB =5.由图,易知 Rt △OBF ∽Rt △OCD ,∴ OB : OC = OF : OD ,而OD = OB ∕2 =5∕2,∴ OC = OB · OD ∕OF = 2.5.由 Rt △COE ∽Rt △ODE 得 5)5225()(22=⨯==∆∆ODOC S S ODECOE ,所以△COE 的面积是△ODE 面积的5倍.12. 解:(1)x y 305002+= (2分)(2)依题意得:⎩⎨⎧≥-≤+9021705030500x xx (4分)解得:25≤x ≤40 (6分) (3)∵5001402)30500()2170(221-+-=+--=-⋅=x x x x x y y x W∴1950)35(22+--=x W (8分) 而25<35<40, ∴当x=35时,1950=最大W即,月产量为35件时,利润最大,最大利润是1950万元 (10分) 13. 解:(1)2y x =的顶点坐标为(0,0), 2()y x h k ∴=-+的顶点坐标(14)D -,, 1h k ∴=-,=-4.3分(2)由(1)得2(1)4y x =+-. 当0y =时, 2(1)40x +-=. 1231x x =-=,. (30)10A B ∴-,,(,). ························ 4分 当0x =时,22(1)4(01)43y x =+-=+-=-,C ∴点坐标为()03,-.又顶点坐标()14D --,,····················· 5分 作出抛物线的对称轴1x =-交x 轴于点E . 作DF y ⊥轴于点F . 在Rt AED △中,2222420AD =+=; 在Rt AOC △中,2223318AC =+=; 在Rt CFD △中,222112CD =+=; 222AC CD AD +=, ACD ∴△是直角三角形.分 (3)存在.由(2)知,AOC △为等腰直角三角形,45BAC ∠=︒,连接OM ,过M 点作MG AB ⊥于点G ,AC ==①若AOM ABC △∽△,则AO AM AB AC =,即33444AM ⨯===. MG AB ⊥,222AG MG AM ∴+=.94AG MG ∴====, 93344OG AO AG =-=-=.M 点在第三象限, 3944M ⎛⎫∴-- ⎪⎝⎭,. ························· 10分②若AOM ACB △∽△,则AO AMAC AB =4AM AM ===,2AG MG ∴====,321OG AO AG =-=-=. M 点在第三象限, ()12M ∴--,.综上①、②所述,存在点M 使AOM △与ABC △相似,且这样的点有两个,其坐标分别为()391244⎛⎫---- ⎪⎝⎭,,,. ······················· 12分 14. 解:(1)由题意,批发蒜薹3x 吨,储藏后销售(200-4x )吨则y=3x(3000-700)+x ·(4500-1000)+(200-4x )·(5500-1200)x=-6800x+860000,(2)由题意得 200-4x≤80 解之得 x≥30 ∵-6800x+860000 -6800<0∴y的值随x的值增大而减小当x=30时,y最大值=-6800+860000=656000元16. 解:(1)①丙种柴油发电机的数量为10-x-y②∵4x+3y+2(10-x-y)=32∴y=12-2x(2)丙种柴油发电机为10-x-y=(x-2)台W=130x+120(12-2x)+100(x-2)=-10x+1240依题意解不等式组1212 121≥-≥-≥x xx得:3≤x≤5.5∵x为正整数∴x=3,4,5∵W随x的增大而减少∴当x=5时,W最少为-10×5+1240=1190(元)11。

相关文档
最新文档