重庆一中七年级上册练习精华试题及答案分析

合集下载

2022-2023学年重庆市沙坪坝区第一中学校七年级上学期期末考试数学试卷带讲解

2022-2023学年重庆市沙坪坝区第一中学校七年级上学期期末考试数学试卷带讲解

重庆市第一中学2022−2023学年上学期七年级期末试题一、选择题:(本大题12个小题,每小题4分,共48分,在每个小题的下面,都给出了A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案写在答题卷相应位置.)1.如果将175cm 作为标准身高,高于标准身高3cm 记作+3cm ,那么身高170cm 应记作()A.-3cmB.-5cmC.+5cmD.-170cmB【分析】此题主要用正负数来表示具有意义相反的两种量:选175厘米为标准记为0,超过部分为正,不足的部分为负,直接得出结论即可.【详解】∵175-170=5,标准身高是175cm ,∴身高170cm 应记作-5cm .故选:B .【点睛】此题首先要知道以谁为标准,规定超出标准的为正,低于标准的为负,由此用正负数解答问题.2.在8-, 3.14-,π,0.3070809,227中,有理数有()A.2个B.3个C.4个D.5个C【分析】根据有理数的分类,逐个判断即可.【详解】解:根据有理数的分类可得,有理数有8-, 3.14-,0.3070809,227,个数为:4故选:C【点睛】此题考查了有理数的分类,解题的关键是掌握有理数的概念,整数和分数统称为有理数.3.下列各式中,运算正确的是()A.325a b ab +=B.3332a a a -= C.2a b ab a-= D.2242a a a +=B【分析】直接根据合并同类项的法则计算即可.【详解】解:A 、3a 与2b 不是同类项,不能合并,不合题意;B 、3332a a a -=,正确,符合题意;C 、2a b 与ab 不是同类项,不能合并,不合题意;D 、2222a a a +=,不合题意;故选:B .【点睛】此题考查的是合并同类项,掌握其运算法则是解决此题的关键.4.钟表上的时间指示为两点半,这时时针和分针之间所形的成的(小于平角)角的度数是()A.120°B.105°C.100°D.90°B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上2点30分,时针与分针的夹角可以看成3×30°+0.5°×30=105°.故选B .【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.5.已知210a ab --=,则代数式632a ab --的值是()A.5-B.1- C.3- D.1D【分析】已知210a ab --=,则21a ab -=,将代数式632a ab --变形为()322a ab --,进而把已知代入求出答案.【详解】解:210a ab --= ,21a ab ∴-=,632a ab ∴--()322a ab =--312=⨯-1=.故选:D .【点睛】此题主要考查了代数式求值,正确将原式变形是解题关键.代数式求值题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.6.若2x 9=,y 2=,且x y <,则x y -的值为()A.5± B.1± C.5-或1- D. 5或1C【分析】首先根据绝对值和乘方的定义确定出x 、y 的值,再找出x <y 的情况,然后代入计算即可.【详解】解:∵x 2=9,|y|=2,∴x=±3,y=±2,∵x <y ,∴x=-3,y=±2,∴x-y=-5或-1,故选C .【点睛】此题主要考查了乘方、绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x 、y 的值.7.下列平面图形经过折叠后,不能围成正方体的是()A. B.C.D.D【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可【详解】解:常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有D 选项不能围成正方体.故选D .【点睛】本题考查了正方体展开图,解题关键是熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”.8.按如图所示的程序运算:当输入的数据为1-时,则输出的数据是()A.2B.4C.6D.8B【分析】把x =﹣1代入程序中计算,判断结果与0的大小,即可确定出输出结果.【详解】解:把x =﹣1代入程序中得:(﹣1)2×2﹣4=2﹣4=﹣2<0,把x =﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0,则输出的数据为4,故选:B .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗,今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x 斗,那么可列方程为()A.()103530x x +-=B.()310530x x +-=C.305103x x-+= D.305310x x-+=A【分析】根据题意直接列方程即可.【详解】解:根据题意,得:()103530x x +-=,故选:A .【点睛】本题考查一元一次方程的应用,理解题意,正确列出方程是解答的关键.10.已知关于x 的方程38132ax xx --=-有负整数解,则所有满足条件的整数a 的值之和为()A.11- B.26- C.28- D.30-D【分析】先解方程可得x 7032a =+(a 32≠-),根据方程的解是负整数可得7032a+是负整数,进而可求解满足条件的所有非负整数a 的值,即可求解.【详解】解:解关于x 的方程38132ax xx --=-得x 7032a =+(a 32≠-),∵关于x 的方程38132ax xx --=-的解是负整数,∴7032a+是负整数,∴231a +=-或235a +=-或237a +=-或2335a +=-即满足条件的所有整数a 为-2、-4、-5、-19,∴满足条件的所有整数a 的值的和为-2+(-4)+(-5)+(-19)=-30,故答案为:D .【点睛】本题主要考查一元一次方程的解,正确求解一元一次方程是解题的关键.11.如图所示,以O 为端点画六条射线OA ,OB ,OC ,OD ,OE ,OF ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8 ,那么所描的第2022个点在()A.射线OA 上B.射线OC 上C.射线OF 上D.射线OE 上C【分析】根据图形和数字变化规律,每6个数一次循环,用2022除以6取余数即可求解【详解】∵在射线OA ,OB ,OC ,OD ,OE ,OF 上的点依次记为1,2,3,4,5,6,7,8 ,∴每6个数一次循环,∵20226337÷=,∴所描的第2022个点所在的射线和6所在射线一样,∴所描的第2022个点在射线OF 上.故选:C【点睛】本题考查了数字类规律探索和图形类规律探索,根据图形特点,判断出每6个数字为一个循环组是解题的关键12.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是()A .1个B.2个C.3个D.4个D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=,1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=,2422-=-=,220-=,为最小值,故③正确;按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,k 的最大值为10,设b 为较大数字,当1a =时,2110a b b --=-=,解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=,则210a b --=-,即8b a -=故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确;故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力.二、填空题:(本大题共8个小题,每小题3分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“绿水青山就是金山银山!”江西浮梁凭借得天独厚的绿色资源和生态保护机制,被授予2021年度“中国天然氧吧”称号,浮聚县林业用地约3240000亩,森林覆盖率达81.4%,将3240000用科学记数法表示为_______.63.2410⨯【分析】用科学计数法将3240000表示为63.2410⨯即可【详解】∵63240000 3.2410=⨯,∴3240000用科学记数法表示为:63.2410⨯,故答案为:63.2410⨯【点睛】本题考查用科学记数法表示绝对值大于1的数,科学计数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 和n 的值是解决问题的关键14.单项式2125R π-的系数是_________.125π-【分析】根据单项式的系数的概念求解.单项式中数字因数叫做单项式的系数.【详解】根据单项式系数的定义,可知单项式2125R π-的系数是125π-,故答案为:125π-.【点睛】本题考查了单项式的系数的概念.熟记单项式的系数是指单项式中的数字因数是解题的关键.注意π不是字母,而是数字.15.若3018A ∠=︒',则A ∠的补角是______.14942'︒【分析】由补角的定义即可得出答案.【详解】∵3018A '∠=︒,∴A ∠的补角为:180301814942''︒-︒=︒;故答案为:14942'︒.【点睛】本题考查了补角的定义以及度分秒的换算,熟练掌握补角的定义是解题的关键.16.请写出一个能与35x y -合并成一项的单项式______.3x y (答案不唯一)【分析】直接利用合并同类项法则判断得出答案.【详解】一个能与35x y -合并的单项式为:3x y (答案不唯一).故答案为:3x y (答案不唯一).【点睛】此题主要考查了同类项,正确掌握同类项才可以合并是解题关键.17.若3x =-是方程()321x a -=-的解,则=a ________.4【分析】把3x =-代入()321x a -=-,即可求解.【详解】解:∵3x =-是方程()321x a -=-的解,∴()3321a --=-,解得:4a =.故答案为:4【点睛】本题主要考查了一元一次方程的解,熟练掌握能使方程左右两边同时成立的未知数的值是方程的解是解题的关键.18.如图,已知∠AOB =150°,∠COD =40°,∠COD 在∠AOB 的内部绕点O 任意旋转,若OE 平分∠AOC ,则2∠BOE ﹣∠BOD 的值为___°.110.【分析】根据角平分线的意义,设DOE x ∠=,根据150AOB ∠=︒,40COD ∠=︒,分别表示出图中的各个角,然后再计算2BOE BOD ∠-∠的值即可.【详解】如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°.故答案为:110.【点睛】考查角平分线的意义,利用代数的方法解决几何的问题也是常用的方法,有时则会更简捷.19.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是________.4【分析】根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.【详解】解:根据左视图和主视图,这个几何体的底层最少有1113++=个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有314+=个.故答案为∶4.【点睛】本题考查了由三视图判断几何体,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.20.有5个正整数1a ,2a ,3a ,4a ,5a .某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①1a ,2a ,3a 是三个连续偶数(123a a a <<),②4a ,5a 是两个连续奇数(45a a <),③12345a a a a a ++=+.该小组成员分别得到一个结论:甲:取26a =,5个正整数不能同时满足上述3个条件;乙:取212a =,5个正整数能同时满足上述3个条件;丙:当2a 满足“2a 是4的倍数”时,5个正整数能同时满足上述3个条件;丁:若5个正整数1a ,2a ,3a ,4a ,5a 同时满足上述3个条件,则534a k =+(k 为正整数);戊:5个正整数满足上述3个条件,则1a ,2a ,3a 的平均数与4a ,5a 的平均数之和是10p (p 为正整数);以上结论正确的是______同学.甲乙丙丁戊【分析】根据每个结论,分别利用题中的3个条件,表示出1a ,2a ,3a ,4a ,5a ,5个数,通过各自的特点与要求进行求解.【详解】∵1a ,2a ,3a 是三个连续偶数,且123a a a <<,∴12323a a a a ++=.∵4a ,5a 是两个连续奇数,且45a a <,∴452a a =-,∴45522a a a +=-.∵12345a a a a a ++=+,∴25322a a =-.当26a =时,53622a ⨯=-,∴510a =,不满足条件,故甲正确.当212a =时,531222a ⨯=-,∴519a =,满足条件,故乙正确.∵偶数2a 是4的倍数,∴设24a k =(k 为正整数).∵25322a a =-,即53422k a ⨯=-,∴561a k =+,满足条件,故丙正确.设12a k =(k 是正整数),则222a k =+,324a k =+,由条件②得542a a =+,由条件③得4566a a k +=+,解得534a k =+,故丁正确.由5个正整数满足上述3个条件,∴25322a a =-,∴52312a a =+,若22a k =(k 是正整数),则5231312a a k =+=+,当k 为奇数时,5a 为偶数,与题设矛盾,当k 为偶数时,5a 为奇数,符合题意,∴不妨设2k p =(p 是正整数),即24a p =,∴偶数2a 是4的倍数,∴24a p =(p 为正整数),则561a p =+,∴1232312a a a a p ++==,4552212a a a p +=-=,∴1a ,2a ,3a 的平均数与4a ,5a 的平均数之和是12121032p pp +=(p 是正整数),故戊正确.故答案为:甲乙丙丁戊【点睛】本题考查了数字类规律题,求平均数,整式的加减,根据题意得出个数之间的关系是解题的关键.三、解答题:(本大题9个小题,其中20−25小题8分,26−28每小题10分,29小题8分共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.计算:(1)()137.742 5.75410⎛⎫----+ ⎪⎝⎭(2)()21350215⎛⎫-+÷-⨯-- ⎪⎝⎭(1)0;(2)12-.【分析】(1)根据有理数的加减混合运算,求解即可;(2)根据有理数的绝对值、乘方以及四则运算,求解即可.【小问1详解】解:()137.742 5.75410⎛⎫----+ ⎪⎝⎭77172323104104=-+-+1010=-+0=【小问2详解】解:()21350215⎛⎫-+÷-⨯-- ⎪⎝⎭11350145⎛⎫=+⨯⨯-- ⎪⎝⎭5312=--12=-【点睛】此题考查了有理数的乘方以及四则运算,解题的关键是熟练掌握有理数的有关运算法则.22.化简:(1)()()22325a a a a --+;(2)()()22332222x xy x xy ---+-.(1)227a a-(2)2552x xy --【分析】(1)先去括号,再合并同类项即可(2)先去括号,再合并同类项即可【小问1详解】解:()()22325a a a a --+22325a a a a --=-227a a =-【小问2详解】解:()()22332222x xy x xy ---+-22936424x xy x xy =----+2552x xy =--【点睛】本题考查整式的加减,熟练掌握运算法则是化简的关键23.解方程:(1)()4356x x --=(2)2151136x x +--=(1)3x =;(2)3x =-.【分析】(1)依次去括号、移项、合并同类项、系数化为1即可求解;(2)依次去分母、去括号、移项、合并同类项、系数化为1即可求解.【详解】解:(1)去括号得:41536x x -+=,移项得:43615x x +=+,合并同类项得:721x =,系数化为1得:3x =;(2)去分母得:2(21)(51)6x x +--=,去括号得:42516x x +-+=,移项得:45621x x -=--,合并同类项得:3x -=,系数化为1得:3x =-.【点睛】本题考查解一元一次方程.熟练掌握解一元一次方程的基本步骤并能灵活运用是解题关键.24.先化简,再求值:222213222x y xy xy x y xy ⎡⎤⎛⎫+-+- ⎪⎢⎥⎝⎭⎣⎦,其中2x =,13y =-.22232x y xy xy +-;23-【详解】解:222213222x y xy xy x y xy ⎡⎤⎛⎫+-+- ⎪⎢⎥⎝⎭⎣⎦222213222x y xy xy x y xy ⎛⎫=+--- ⎪⎝⎭2222342x y xy xy x y xy =+---22232x y xy xy =+-当2x =,13y =-时原式22111223222333⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯⨯--⨯⨯- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭864393=-++2433=-23=-.【点睛】本题考查了整式的加减以及化简求值,正确的计算是解题的关键.25.已知点D 为线段AB 的中点,点C 在线段AB 上.(1)如图1,若8cm,6cm AC BC ==,求线段CD 的长;(2)如图2,若2BC CD =,点E 为BD 中点,18cm AE =,求线段AC 的长.(1)1cm ;(2)16cm .【分析】(1)利用线段的和差关系可以先求出AB 的长,再利用中点的定义求出AD ,即可求出CD 的长;(2)根据线段中点的定义结合已知求出AB ,进而可得AD 和BD 的长,然后根据2BC CD =求出CD 即可解决问题.【小问1详解】解:∵8cm,6cm AC BC ==,∴8614cm AB AC BC =+=+=,∵点D 为线段AB 的中点,∴17cm 2AD AB ==,∴871cm CD AC AD =-=-=;【小问2详解】解:∵点E 为BD 中点,∴12DE BD =,∵点D 为线段AB 的中点,∴12AD BD AB ==,∴14DE AB =,∴11318cm 244AE AD DE AB AB AB =+=+==,∴24cm AB =,∴112cm 2AD BD AB ===,∵2BC CD =,∴14cm 3CD BD ==,∴12416cm AC AD CD =+=+=.【点睛】本题主要考查线段的和差计算,熟练掌握中点的定义和线段的和差关系是解题的关键.26.将一副直角三角板ABC ,AED ,按如图1放置,其中B 与E 重合,45BAC ∠=︒,30BAD ∠=︒.(1)如图1,点F 在线段CA 的延长线上,求FAD ∠的度数;(2)将三角板AED 从图1位置开始绕A 点逆时针旋转,AM ,AN 分别为BAE ∠,CAD ∠的角平分线.如图2,当AE 旋转至BAC ∠的内部时,求MAN ∠的度数.(1)165FAD ∠=︒(2)37.5MAN ∠=︒【分析】(1)根据邻补角的定义求解即可(2)根据角平分线的性质、30DAE ∠=︒、45BAC ∠=︒,即可求得MAN ∠的度数【小问1详解】∵45BAC ∠=︒,30BAD ∠=︒,∴15CAD BAC BAD ∠=∠-∠=︒,∵180FAD CAD ∠+∠=︒,∴180165FAD CAD ∠=︒-∠=︒【小问2详解】∵AM ,AN 分别为BAE ∠,CAD ∠的角平分线,∴12CAN CAD ∠=∠,12MAE BAE ∠=∠,∵30DAE ∠=︒、45BAC ∠=︒,∴30CAD CAE ∠+∠=︒,45CAE BAE ∠+=︒,∴30CAD CAE ∠=︒-∠,45CAE BAE ∠=︒-,∴MAN CAN CAE MAE∠=∠+∠+∠1122CAD BAE CAE =∠+∠+()130452=︒+︒37.5=︒【点睛】本题考查了根据旋转的性质说明线段或角相等、邻补角的定义、角平分线的性质,熟悉直角三角板的角度是解决问题的关键27.一个四位数100010010m a b c d =+++(其中1a ≤,b ,c ,9d ≤且均为整数),若()a b k c d +=-,且k 为整数,称m 为“k 型数”.例如,4675:()46575+=⨯-,则4675为“5型数”;3526:()35226+=-⨯-,则3526为“2-型数”.(1)判断1731与3213是否为“k 型数”,若是,求出k ;(2)若四位数m 是“3型数”,3m -是“3-型数”,将m 的百位数字与十位数字交换位置,得到一个新的四位数m ',m '也是“3型数”,求满足条件的所有四位数m .(1)1731是“k 型数”,4k =;3213不是“k 型数”(2)8440、7551和6662【分析】(1)根据“k 型数”直接求解即可;(2)根据题目中的要求进行整式的加减运算,分情况讨论即可.【小问1详解】解:∵一个四位数100010010m a b c d =+++(其中1a ≤,b ,c ,9d ≤且均为整数),若()a b k c d +=-,且k 为整数,称m 为“k 型数”,∴1731:()17431+=⨯-,则1731为“4型数”,即4k =;3213:()532132+=-⨯-,由于52-不是整数,则3213不是“k 型数”;【小问2详解】解:设四位数100010010m a b c d =+++,∵四位数m 是“3型数”,∴()3a b c d +=-,则c d>3m -是“3-型数”,则十位数与个位数的差是个负数,∴3c d <-,或1103c d -<+-,当3c d <-时,3c d -<-,与c d >矛盾,舍去,当1103c d -<+-时,8c d <+,∴d 可取0、1、2三个数,则()()()3110338a b c d c d +=---+-=---⎡⎤⎣⎦,将m 的百位数字与十位数字交换位置,得到新四位数100010010m a c b d '=+++,m '也是“3型数”,则()3a c b d +=-,联立上述式子得:()()()3383a b c d a b c d a c b d ⎧+=-⎪+=---⎨⎪+=-⎩,则①当0d =时,()3383a b c a b c a c b +=⎧⎪+=--⎨⎪+=⎩,解得844a b c =⎧⎪=⎨⎪=⎩,则四位数8440m =;②当1d =时,()()()313931a b c a b c a c b ⎧+=-⎪+=--⎨⎪+=-⎩,解得755a b c =⎧⎪=⎨⎪=⎩,则四位数7551m =;③当2d =时,()()()3231032a b c a b c a c b ⎧+=-⎪+=--⎨⎪+=-⎩,解得666a b c =⎧⎪=⎨⎪=⎩,则四位数6662m =;∴满足条件的所有四位数m 有8440、7551和6662.【点睛】本题是一个新定义阅读题,主要考查整式的加减,考查了学生阅读、归纳材料的能力;重点是理解题目意思,熟练掌握整式的加减28.黑马铃薯又名“黑金刚”,它富含碘、硒等多种微量元素,特别是含有花青素、花青原素,素有“地下苹果”之称.老李今年种植了5亩A 品种黑马铃薯,10亩B 品种黑马铃薯,其中A 品种的平均亩产量比B 品种的平均亩产量低20%,共收获两个品种黑马铃薯28000千克(1)求老李收获A,B两个品种黑马铃薯各多少千克?(列一元一次方程解答)(2)某蔬菜商人分两次向老李收购完这些黑马铃薯.收购方式如下:A、B两个品种各自独立装箱,A品种每箱50千克,B品种每箱100千克,每箱A的收购价200元,每箱B的收购价300元,老李给出如下优惠:收购A或B的数量(单位:箱)不超过30箱超过30箱优惠方式收购总价打九五折收购总价打八折第一次收购了两个品种共60箱,且收购的B品种箱数比A品种箱数多;受某些因素影响,蔬菜商人第二次收购时做出了价格调整:每箱A的收购价不变,每箱B的收购价比第一次的收购价降低16,优惠方式不变.两次收购完所有的黑马铃薯后,蔬菜商人发现第二次支付给老李的费用比第一次支付给老李费用多41000元,求蔬菜商人第一次收购A品种黑马铃薯多少箱?(1)A品种黑马铃为8000千克,B品种黑马铃薯为20000千克(2)20【分析】(1)设B品种的平均亩产量为x千克,那么A品种的平均亩产量为x(1-20%)千克,列出关于x的一元一次方程,即可求解;(2)先求出A、B两个品种各自箱数,然后设蔬菜商人第一次收购A品种黑马铃薯x箱,那么第一次收购B品种黑马铃薯(60-x)箱,第二次收购A品种黑马铃薯(160-x)箱,第二次收购B品种黑马铃薯(200-60+x)箱,根据题意得到x的一元一次方程,即可求解.【小问1详解】解:设B品种的平均亩产量为x千克,那么A品种的平均亩产量为x(1-20%)千克,根据题意得:10x+5x(1-20%)=28000,解这个方程得:x=2000那么A品种的平均亩产量为:2000×(1-20%)=1600,A品种黑马铃为:1600×5=8000(千克),B品种黑马铃薯为:2000×10=20000(千克);【小问2详解】∵A品种黑马铃8000千克,A品种每箱50千克,∴A品种共:8000÷50=160(箱)∵B品种黑马铃20000千克,B品种每箱100千克,∴B品种共:20000÷100=200(箱)设蔬菜商人第一次收购A品种黑马铃薯x箱,那么第一次收购B品种黑马铃薯(60-x)箱,第二次收购A品种黑马铃薯(160-x)箱,第二次收购B品种黑马铃薯(200-60+x)箱,根据题意得:200×0.8×(160-x )+300×(1-16)×0.8×(200-60+x )-41000=200×0.95x +300×0.8×(60-x )解这个方程得:x =20∴蔬菜商人第一次收购A 品种黑马铃薯20箱.【点睛】本题考查了一元一次方程的应用,做题的关键是找等量关系,列出方程.29.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a ﹣b |,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).【综合运用】(1)填空:①A 、B 两点间的距离AB =_______,线段AB 的中点C 表示的数为_______;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为_______;(2)求当t 为何值时,12PQ AB =;(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.(1)①10,3;②23t -+,82t -;(2)1或3;(3)不变,5.【分析】(1)①根据题目所给的两点距离公式以及两点中点公式进行求解即可;②根据数轴上点A 表示的数为﹣2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,进行求解即可得到结果;(2)由(1)②得t 秒后,点P 表示的数23t -+,点Q 表示的数为82t -,则510PQ t =-,再由152PQ AB ==,可得5105t -=,由此求解即可;(3)根据两点中点公式,分别求出点M 表示的数,点N 表示的数,即可得出线段MN 的长度.【小问1详解】解:①由题意得:2810AB =--=,线段AB 的中点C 为2832-+=,故答案为:10,3;②由题意得:t 秒后,点P 表示的数为:23t -+,点Q 表示的数为:82t -;故答案为:23t -+,82t -;【小问2详解】解:∵t 秒后,点P 表示的数23t -+,点Q 表示的数为82t -,∴(23)(82)510PQ t t t =-+--=-,又∵1110522PQ AB ==⨯=,∴5105t -=,解得:t =1或3,∴当t =1或3时,12PQ AB =;【小问3详解】解:不发生变化,理由如下:∵点M 为PA 的中点,点N 为PB 的中点,∴点M 表示的数为2(23)3222t t -+-+=-,点N 表示的数为8(23)3322t t +-+=+,∴3323522t t MN ⎛⎫⎛⎫=--+= ⎪ ⎪⎝⎭⎝⎭.【点睛】本题主要考查了用数轴表示有理数,数轴上两点的距离,数轴上的动点问题,数轴上两点之间的中点表示方法,解题的关键在于理解题意,能够熟练掌握数轴上两点的距离计算公式.。

七年级上册重庆市一中数学期末试卷专题练习(解析版)

七年级上册重庆市一中数学期末试卷专题练习(解析版)

七年级上册重庆市一中数学期末试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.(1)点E,,共线时,如图,求的度数;(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.【答案】(1)解:如图中,由翻折得: ,(2)解:如图,结论: .理由:如图中,由翻折得:,如图,结论:,理由: ,,.【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.2.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.3.如图(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;(2)将(1)中的纸片沿GF剪下,得梯形纸片ABFG,再将GF沿GM折叠,F落在F′处,GF′与BF交于H,且ABHG为长方形(如图2);再将纸片展开,将AG沿GN折叠,使A 点落于GF上一点A,(如图3).在两次折叠的过程中,求两条折痕GM、GN所成角的度数?【答案】(1)解:∵∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′)∴GE平分∠DED′,FE平分∠CED′,∴∠DED′=2∠DEG,∠CED′=2∠CEF∴∠DED′+∠CED′=180°即2∠CEF+2∠DEG=180°∴∠CEF+∠DEG=90°答:∠CEF与∠DEG的关系是互余.(2)解:如图,由题意得:GM平分∠FGF, GN平分∠AGF设∠FGM=∠F'GM=x,∠FGN=∠AGN=y∴2y-2x=90°,即y-x=45°,∴∠MGN=∠FGN-∠FGM=45°答:两条折痕GM、GN所成角的度数为45°.【解析】【分析】(1)根据折叠的性质,可知GE平分∠DED′,FE平分∠CED′,再利用角平分线的性质,可证得∠DED′=2∠DEG,∠CED′=2∠CEF,然后根据平角的定义,可解答。

七年级上册重庆市一中数学期末试卷专题练习(解析版)

七年级上册重庆市一中数学期末试卷专题练习(解析版)

七年级上册重庆市一中数学期末试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,∠AOB=∠COD=90°,射线OE,FO分别平分∠AOC和∠BOD.(1)当OB和OC重合时,如图(1),求∠EOF的度数;(2)当∠AOB绕点O逆时针旋转至图(2)的位置(0°<∠BOC<90°)时,求∠EOF的度数.【答案】(1)解:当OB和OC重合时,∠AOD=∠AOC+∠BOD=180°,又∵射线OE,FO分别平分∠AOC和∠BOD,∴∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COF+∠BOF= (∠AOC+∠BOD)= ×180°=90°(2)解:∵∠AOB=∠COD=90°,∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COE+∠BOF﹣∠BOC= ∠AOC+ ∠BOD﹣∠BOC= (∠AOC+∠BOD)﹣∠BOC= (∠AOB+∠BOC+∠COD+∠BOC)﹣∠BOC= (180°+2∠BOC)﹣∠BOC=90°+∠BOC﹣∠BOC=90°【解析】【分析】(1)由角平分线的性质可得∠COE=∠AOC,∠BOF=∠BOD;由平角的定义可得∠AOC+∠BOD=180°,由角的构成可得∠EOF=∠COE+∠BOF,代入计算即可求解;(2)同理可求解。

2.如图,已知直线AB与直线CD相交于点O,∠BOE=90°,FO平分∠BOD,∠BOC:∠AOC=1:3.(1)求∠DOE、∠COF的度数.(2)若射线OF、OE同时绕O点分别以2°/s、4°/s的速度,顺时针匀速旋转,当射线OE、OF的夹角为90°时,两射线同时停止旋转.设旋转时间为t,试求t值.【答案】(1)解:∵∠BOC:∠AOC=1:3,∴∠BOC=180°× =45°,∴∠AOD=45°,∵∠BOE=90°,∴∠AOE=90°,∴∠DOE=45°+90°=135°,∠BOD=180°-45°=135°,∵FO平分∠BOD,∴∠DOF=∠BOF=67.5°,∴∠COF=180°-67.5°=112.5°(2)解:∠EOF=90°+67.5°=157.5°,依题意有4t-2t=157.5-90,解得t=33.75.故t值为33.75.【解析】【分析】(1)根据∠BOC:∠AOC=1:3,∠BOC+∠AOC=180°,即可算出∠BOC 的度数,然后根据对顶角相等由∠AOD = ∠BOC得出∠AOD 的度数,根据平角的定义,由∠AOE=∠AOB-∠BOE算出∠AOE的度数,进而根据∠DOE=∠AOE+∠AOD算出∠DOE的度数,∠BOD=∠AOB-∠AOD算出∠BOD的度数,再根据角平分线的定义得出∠BO 的度数,最后根据∠COF=∠COB+∠BOF即可算出答案;(2)根据角的和差,由∠EOF=∠EOB+∠BOF算出∠EOF的度数,根据题意OE转过的角度为4t°,OF转过的角度为2t°,根据题意列出方程 4t-2t=157.5-90,求解即可。

重庆一中初中数学七年级上期末经典练习题(含答案)

重庆一中初中数学七年级上期末经典练习题(含答案)

一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.C4.D5.D6.C7.D8.A9.C10.D11.D12.C13.无14.D15.B二、填空题16.83元【解析】【分析】设该商品的进价是x元根据售价﹣进价=利润列出方程并解答【详解】设该商品的进价是x元依题意得:1079﹣x=30x解得x=83故答案为:83元【点睛】本题考查一元一次方程的应用读17.【解析】【分析】根据条件求出前几个数的值再分n是奇数时结果等于-n是偶数时结果等于-然后把n=2019代入进行计算即可得解【详解】a1=0a2=-|a1+1|=-|0+1|=-1a3=-|a2+2|18.100【解析】【分析】设这件童装的进价为x元根据利润=售价﹣进价即可得出关于x 的一元一次方程解之即可得出结论【详解】解:设这件童装的进价为x元依题意得:120﹣x=20x解得:x=100故答案为:119.36°或108°【解析】【分析】先根据题意画出图形分两种情况作图结合图形来答题即可【详解】①如图∠AOC=∠AOB+∠BOC=72°+36°=108°②如图∠AOC=∠AOB﹣∠BOC =72°﹣3620.【解析】【分析】正方体的表面展开图相对的面之间一定相隔一个正方形根据这一特点确定出相对面再根据相对面上的两个数字互为倒数解答【详解】正方体的表面展开图相对的面之间一定相隔一个正方形x与是相对面y与221.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形第一个图案有4个基本图形则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型22.1【解析】【分析】把x=1代入代数式求出ab的关系式再把x=﹣1代入进行计算即可得解【详解】x=1时ax3﹣3bx+4=a﹣3b+4=7解得a﹣3b=3当x=﹣1时ax3﹣3bx+4=﹣a+3b+423.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数由此可得答案【详解】是三次单项式系数是故答案为:三【点睛】本题考查了单项式的知识掌握单项式系数及次24.14【解析】因为线段AB被点CD分成2:4:7三部分所以设AC=2xCD=4xBD=7x因为MN分别是ACDB的中点所以CM=DN=因为mn=17cm所以x+4x+=17解得x=2所以BD=14故答25.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°BM为∠CBE的平分线∴∠EBM=∠CBE=×75°=375°∵BN为∠DBE的平分线∴∠EBN=∠EBD=×6三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:解析丢失2.C解析:解析丢失3.C解析:解析丢失4.D5.D解析:解析丢失6.C解析:解析丢失7.D解析:解析丢失8.A解析:解析丢失9.C解析:解析丢失10.D解析:解析丢失11.D解析:解析丢失12.C解析:解析丢失13.14.D解析:解析丢失15.B解析:解析丢失二、填空题16.83元【解析】【分析】设该商品的进价是x元根据售价﹣进价=利润列出方程并解答【详解】设该商品的进价是x元依题意得:1079﹣x=30x解得x=83故答案为:83元【点睛】本题考查一元一次方程的应用读解析:解析丢失17.【解析】【分析】根据条件求出前几个数的值再分n是奇数时结果等于-n 是偶数时结果等于-然后把n=2019代入进行计算即可得解【详解】a1=0a2=-|a1+1|=-|0+1|=-1a3=-|a2+2|解析:解析丢失18.100【解析】【分析】设这件童装的进价为x元根据利润=售价﹣进价即可得出关于x的一元一次方程解之即可得出结论【详解】解:设这件童装的进价为x元依题意得:120﹣x=20x解得:x=100故答案为:119.36°或108°【解析】【分析】先根据题意画出图形分两种情况作图结合图形来答题即可【详解】①如图∠AOC=∠AOB+∠BOC=72°+36°=108°②如图∠AOC=∠AOB﹣∠BOC=72°﹣36解析:解析丢失20.【解析】【分析】正方体的表面展开图相对的面之间一定相隔一个正方形根据这一特点确定出相对面再根据相对面上的两个数字互为倒数解答【详解】正方体的表面展开图相对的面之间一定相隔一个正方形x与是相对面y与2解析:解析丢失21.3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形第一个图案有4个基本图形则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型解析:解析丢失22.1【解析】【分析】把x=1代入代数式求出ab的关系式再把x=﹣1代入进行计算即可得解【详解】x=1时ax3﹣3bx+4=a﹣3b+4=7解得a﹣3b=3当x=﹣1时ax3﹣3bx+4=﹣a+3b+4解析:解析丢失23.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数由此可得答案【详解】是三次单项式系数是故答案为:三【点睛】本题考查了单项式的知识掌握单项式系数及次解析:解析丢失24.14【解析】因为线段AB被点CD分成2:4:7三部分所以设AC=2xCD=4xBD=7x因为MN分别是ACDB的中点所以CM=DN=因为mn=17cm所以x+4x+=17解得x=2所以BD=14故答解析:解析丢失25.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°BM为∠CBE 的平分线∴∠EBM=∠CBE=×75°=375°∵BN为∠DBE的平分线∴∠EBN=∠EBD=×6解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。

精品解析:重庆市第一中学校2024-2025学年七年级上学期第一次月考语文试题(解析版)

精品解析:重庆市第一中学校2024-2025学年七年级上学期第一次月考语文试题(解析版)

重庆一中初2027届2024—2025学年度上期阶段性消化作业语文试卷(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上、不得在试题卷上直接作答。

2.作答前认真阅读答题卡上的注意事项。

3.考试结束、由监考人员将试题卷和答题卡一并收回。

一、语文知识及运用(30分)如果你在秋天,来到重庆一中……你会偶遇秋日的迎霞湖,它静谧得仿佛能听见每一缕风的呢喃。

湖里的荷叶不再像夏日般精神抖擞,而是被qī()冷的秋风染上黄晕,仿佛是特意造访这个季节的沉默诗人。

倘若你从未去过项家书院,或许,你会以为那是一个在岁月长河中已然沉寂的老者。

直到你真的走进——徘徊在银杏树下,抚摸静默的木门,凝望低垂的屋yán(),感受它们在对历史的应和中绽放的崭新光彩。

你还不能错过艺术楼前的柿子树。

在每一个如约而至的秋天,它们都喜出望外地迎来期待中的丰收。

柿子树上的鸟儿,也在枝头呼朋引伴,烂màn()地歌唱着秋天的旋律。

1. 请给加点字注音。

抖擞()徘徊()应和()2. 请根据拼音写出汉字。

qī()冷屋yán()烂màn()3. 文中划线词语运用有误的一项是()A. 静谧B. 造访C. 喜出望外D. 呼朋【答案】1. ①. sǒu ②. huái ③. hè2. ①. 凄②. 檐③. 漫3. C【解析】【1题详解】本题考查字音。

抖擞:dǒu sǒu,振作;奋发。

徘徊:pái huái,比喻犹豫,拿不定主意。

应和:yìng hè,应声唱和。

【2题详解】本题考查字形。

凄冷:qī lěng,意思是凄凉冷落;凄清寒冷。

屋檐:wū yán,房屋前后坡的边缘部分。

烂漫:làn màn,颜色鲜明而美丽;也指坦率自然,毫不做作。

【3题详解】本题考查词语运用。

A.静谧:安静,形容静寂无声或恬静的模样。

重庆一中七年级数学上册第一章《有理数》经典练习题(含答案)

重庆一中七年级数学上册第一章《有理数》经典练习题(含答案)

1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分D 解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D .【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.4.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .12C 解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C .【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.5.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小.6.若1<a <2,则化简|a -2|+|1-a |的结果是( )A .a -1B .1C .a +1D .a -3B解析:B【解析】【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.【详解】∵1<a<2∴a-2<0,1-a<0∴|a-2|+|1-a|= -(a-2)-(1-a)=-a+2-1+a=1,因此答案选择B.【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.7.定义一种新运算2x yx yx+*=,如:2212122+⨯*==.则()(42)1**-=()A.1 B.2 C.0 D.-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 8.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+ B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.9.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.10.下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.11.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.12.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A 、B 、C 中,a 与b 的关系还有可能互为相反数,故选项A 、B 、C 不一定成立,D.若a =﹣b ,则|a|=|b|,正确,故选D .【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.13.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是( )A .3504×103B .3.504×106C .3.5×106D .3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n 的形式,其中1≤|a|<10,n 为整数,10的指数n 比原来的整数位数少1.【详解】3504000=3.504×106,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.计算-2的结果是( ) A .0B .-2C .-4D .4A 解析:A【详解】解:因为|-2|-2=2-2=0,故选A .考点:绝对值、有理数的减法15.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.2.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.3.数轴上,如果点 A所表示的数是3-,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.4.数轴上A、B两点所表示的有理数的和是 ________.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.5.在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.6.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.7.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n解析:32【分析】观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行第五个数是26436432-=-=.故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.8.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 9.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.10.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+ (99)100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.11.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.1.在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.2.计算:(1)6÷(-3)×(-32)(2)-32×29-+(-1)2019-5÷(-54)解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 3.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+ =23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 4.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=--- 47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。

重庆市语文初一上学期试题及解答参考(2024年)

重庆市语文初一上学期试题及解答参考(2024年)

2024年重庆市语文初一上学期模拟试题及解答参考一、积累与运用(本大题有7小题,每小题3分,共21分)1、下列词语中加点字的注音全部正确的一项是()A. 毒瘤(lǒu)悔恨(huǐ hèn)震慑(shè)精神抖擞(sǒu)B. 拔擢(zhuó)沉着(chén zhùo)毛骨悚然(sǒng)惊愕(è)C. 沉溺(nì)沧桑(cāng sāng)气概(gài)鸿鹄之志(hú)D. 惊悚(sǒng)汹涌澎湃(péng pài)精疲力竭(jié)遒劲(qiú)答案:C解析:A项中“瘤”应读作“liú”;B项中“着”应读作“zháo”;D项中“遒”应读作“qiú”。

因此,C项中所有加点字的注音均正确。

2、下列句子中,没有语病的一项是()A. 为了解决这个难题,我们小组反复讨论,集思广益,最终取得了共识。

B. 我觉得这部电影非常好看,特别是那个男主角,他演得非常生动。

C. 这位老师的课堂氛围很活跃,学生们都愿意来听他的课。

D. 他不仅成绩优秀,而且热心公益,是我们学习的榜样。

答案:A解析:B项中“我觉得这部电影非常好看”应改为“我觉得这部电影非常好看,特别是男主角的表演”;C项中“这位老师的课堂氛围很活跃”应改为“这位老师的课堂氛围很活跃,吸引了众多学生”;D项中“他不仅成绩优秀,而且热心公益”应改为“他不仅成绩优秀,而且热心公益,是我们学习的榜样”。

因此,A项中没有语病。

3、下列句子中,加点词使用不正确的一项是:A. 我们学校的操场,绿树成荫,风景如画。

B. 爷爷今年已经八十岁了,但身体依然健朗。

C. 这个故事情节曲折,引人入胜。

D. 她的成绩在班上名列前茅,是老师眼中的得意门生。

答案:B解析:在句子“爷爷今年已经八十岁了,但身体依然健朗。

”中,“依然”一词表示照常、依旧,通常用于形容某种状态没有改变。

重庆一中七年级数学上册第二章《整式的加减》经典练习题(含答案)

重庆一中七年级数学上册第二章《整式的加减》经典练习题(含答案)

1.与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒2.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.3.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100, 故选C . 【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系. 4.下列各代数式中,不是单项式的是( ) A .2m - B .23xy -C .0D .2tD 解析:D 【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择. 【详解】A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D . 【点睛】本题考查单项式的定义,较为简单,要准确掌握定义. 5.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C 【分析】本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积. 【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-. 故选:C . 【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.6.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b cA .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B解析:B 【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可. 【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=. 故选:B . 【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 7.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009C解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n,然后把n 的值代入进行计算即可得解. 【详解】 解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-, 故选择C 【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.8.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号. 9.下列式子中,是整式的是( ) A .1x + B .11x + C .1÷x D .1x x+ A 解析:A 【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可. 【详解】解:A. 1x +是整式,故正确; B.11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x +是分式,故错误. 故选A. 【点睛】本题主要考查了整式,关键是掌握整式的概念.10.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 11.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+ D .2(1)22x y x y --=-- C解析:C 【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C . 【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键. 12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8-C .6和8D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数. 13.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B 【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断. 【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错;(3)单项式-x 3y 2的系数是-1,正确; (4)3x 2-y+5xy 2是3次3项式,故错误. 故选:B . 【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.14.已知3a b -=-,2c d +=,则()()a d b c --+的值为( ) A .﹣5 B .1C .5D .﹣1A解析:A 【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可. 【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5, 故选:A . 【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( ) A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D. 【点睛】此题考查多项式,解题关键在于掌握其定义.1.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个 解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点. 而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点. 即()12n n m -=故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.2.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0 【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0, 故答案为0.3.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0 【解析】 由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+ 解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果. 【详解】解:设这个多项式为A, 则A=(3m 2+m-1)-(m 2-2m+3) =3m 2+m-1-m 2+2m-3 =2m 2+3m-4, 故答案为2m 2+3m-4. 【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键. 5.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:a b -a a b +=a b ×a a b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可. 【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为ab,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b+.故答案为:a b -a a b +=a b ×a a b+.【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律. 7.将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x .(1)单项式:_______________; (2)多项式:_______________; (3)整式:_________________;(4)二项式:_______________.③④⑨①②⑤①②③④⑤⑨②⑤【分析】根据单项式多项式整式二项式的定义即可求解【详解】(1)单项式有:③④0⑨;(2)多项式有:①②⑤;(3)整式有:①②③④0⑤⑨;(4)二项式有:②⑤;故答案为:(解析:③④⑨ ①②⑤ ①②③④⑤⑨ ②⑤ 【分析】根据单项式,多项式,整式,二项式的定义即可求解. 【详解】(1)单项式有:③23xy -,④0,⑨2x ;(2)多项式有:①223a b ab b ++,②2a b +,⑤3yx -+; (3)整式有:①223a b ab b ++,②2a b +,③23xy -,④0,⑤3y x -+,⑨2x ;(4)二项式有:②2a b +,⑤3yx -+; 故答案为:(1)③④⑨;(2)①②⑤;(3)①②③④⑤⑨;(4)②⑤ 【点睛】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义. 8.若212m ma b -是一个六次单项式,则m 的值是______.2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6再解即可【详解】由题意得解得故答案为:2【点睛】此题主要考查了单项式的次数关键是掌握单项式的相关定义解析:2根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6,再解即可.【详解】由题意,得26m m +=,解得2m =.故答案为:2【点睛】此题主要考查了单项式的次数,关键是掌握单项式的相关定义.9.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示) …………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解解析:83n -【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.10.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y -与3-x y 是同类项,从而可求出m 的值.解:∵若单项式322m x y -与3-x y 的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.11.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.1.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n 个点阵图相对应的等式.解析:(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n -1)=n 2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n 个图形黑点个数为1+3+5+…+(2n -1)=n 2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.2.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式.佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程.解析:是从第①步开始出错的,见解析【分析】根据多项式的加减运算法则进行运算即可求解.【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下:根据题意,得:()()222223x y xy x y xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +.故答案为222x y xy +.【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算.3.求多项式的值222232424a b ab a b ab --+-,其中1a =-,2b =-.解析:24a b --,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式24a b =--,当1a =-,2b =-时,原式2=-.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.4.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值.解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆一中七年级上册练习精华试题及答案分析
第Ⅰ卷 选择题(共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.5的倒数是( ).
A . -5
B .5
C .1/5
D .-1/5
2. 12点15分,钟表上时针与分针所成的夹角的度数为 A . B . C . D .
3.在有理数﹣3,0,,﹣6,3.6,﹣2015中,属于非负数的有( )
A .1个
B .2个
C .3个
D .4个
5.下面的计算正确的是 ( )
(A) 02
2=+-yx y x (B)2352
2=-m m
(C)4222a a a =+ (D)mn n m n m 2422=-
5.下列各组中的两项,属于同类项的是……………………………………………( )
A .-2x 3与-2x 2
B .12a 3b 与4
3ab 2 C .-125与15 D .0.5x 2y 与0.5x 2z
6.对有理数a 、b ,规定运算如下:a ※ b =a +ab ,则-2 ※ 3的值为………………( )
A .-8
B .-6
C .-4
D .-2
7.如图,数轴上有O ,A ,B ,C ,D 五点,根据图中各点所表示的数,表示数的点会
落在( )
A .点O 和A 之间
B .点A 和B 之间
C .点B 和C 之间
D .点C 和D 之间
(第7题图)
A
C
B
D
O
8.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2013次跳后它停的点所对应的数
为……………………………………………………………………………………()
A.1 B.2 C.3 D.5
9.实数a、b在数轴上的位置如图所示,下列式子错误的是( )
A.a<b B.|a|>|b|
C.-a<-b D.b-a>0
10.现有一个长方体水箱,从水箱里面量得它的深是30cm,底面的长是25cm,宽是20cm.水
箱里盛有深为acm(0<a≤8)的水,若往水箱里放入棱长为10cm的立方体铁块,则此时
水深为()
A. B. C. D.
第Ⅱ卷非选择题(共90分)
二、填空题(本大题共5个小题,每小题3分,共15分)
11.(4分)2.5的相反数是,的倒数是.
12.若a^2-4=5,则a的值是__.
13.已知a^2-b=8,b=8,则a-b的值为____________________.
14.现定义某种运算“*”,对任意两个有理数a,b,有a*b=a b,则(﹣3)*2=.
15.在同一平面内,若∠BOA=80°,∠BOC=55°,OD是∠BOA的角平分线,则∠COD的度数为___________________.
(第8题)
三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算题
(1)23﹣37+3﹣52;
(2);
(3);
(4).
17.计算:(满分6分,每小题3分)
(1)2a-5b+3a+b(2)3(2a2b-ab2)-4(ab2-3a2b)
18.已知:A=2a2+3ab-2a-1,B=-a2+ab+1
(1)当a=-1,b=2时,求4A-(3A-2B)的值;
(2)若(1)中的代数式的值与a的取值无关,求b的值.
19、男女运动员各一名在环形跑道上练习长跑,男运动员比女运动员速度快,他们从同一起点沿相反方向同时出发,每隔25秒相遇一次.现在他们从同一起跑点沿相同方向同时出发,经过25分钟男运动员追上女运动员,并且比女运动员多跑20圈.
求 (1) 男运动员的速度是女运动员的多少倍? (2) 男运动员追上女运动员时,女运动员跑了多少圈?
20.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开
拼成一个正方形。

(1)拼成的正方形的面积是多少?它的边长是多少?
(2) 在3×3方格图中,画出一个面积为5的正方形。

(3)请你把十个小正方形组成的图形纸,剪开并拼成一个大正方形,在原图上用
虚线画出剪拼示意图。

拼成的大正方形的边长是_________
(第2小题)
(第3小题)
21.(本题满分5分)某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套。

如果每套比原销售价降低10元销售,则每天可多销售100套。

该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价-每套西服的进价)。

1、按原销售价销售,每天可获利润元。

2、若每套降低10元销售,每天可获利润元。

3、如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销
售200套。

按这种方式:
(1)若每套降低10x元,则每套的销售价格为_____ ________元;(用代数式表示)
(2)若每套降低10x元,则每天可销售_________ ____ 套西服。

(用代数式表示)
(3)若每套降低10x元,则每天共可以获利润元。

(用代数式表示)
22、(12分)水是生命之源泉,是人体需要的第一营养素,具有极为重要的生
理功能。


此,学校为保障学生身心健康,在每个教室里安放有一台饮水机(如图),饮水机上
有两个放水管,课间时同学们依次到饮水机前用茶杯接水,假设接水过程中水不发生
泼洒,每个同学所接的水量都是相等的,两个放水管同时打开时,它们的流量相同,
如果放水时先打开一个水管,2分钟后,再打开第二个水管,放水过程中阀门一直开
着,饮水机的存水量(升)与放水时间(分钟)的关系如下表所示:放水时间(分)0 2 12 …
饮水机中存水量(升)18 17 8 …
(1)当两个放水管都打开时,求每分钟的总出水量;
(2)如果从开始到2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几
分钟?
(3)按(2)的放水方法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?
23.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=6 0°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,则∠ACB的度数为__________;
②若∠ACB=140°,求∠DCE的度数;
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.。

相关文档
最新文档