地源热泵热响应测试报告
丰县中医院新城分院地源热泵热响应测试报告教程

丰县中医院新城分院地源热泵工程地下埋管换热器热响应测试报告中国矿业大学力学与建筑工程学院热能利用研究所徐州纳奇能源科技有限公司2014-06-26目录1工程简介 (1)2地源热泵系统简介 (1)2.1工作原理 (1)2.2地源热泵的特点 (1)2.3地源热泵适用性与地下换热器换热性能影响因素分析 (3)2.3.1地温因素 (4)2.3.2岩土热物性 (4)2.3.3埋管形式 (4)2.3.4埋管深度 (5)2.3.5埋管间距 (6)2.3.6季节性地下岩土热平衡问题 (6)3地埋管换热器热响应测试 (6)3.1测试目的 (7)3.2主要测试内容 (7)3.3测试原理与方法 (8)3.3.1测试依据 (8)3.3.2测试仪器与原理 (8)3.4测试方案 (11)3.4.1测试孔的定位 (11)3.4.2测试过程 (12)4岩土层结构 (14)5测试结果与数据分析 (15)5.1试验井测试结果 (15)5.1.1岩土初始平均温度的确定 (15)5.1.2试验井土壤导热系数的确定 (15)5.1.3试验井夏季工况岩土排热能力的确 (17)5.1.4试验井冬季工况岩土取热能力的确定 (18)5.2测试结果汇总 (21)6测试结论与分析 (23)1工程简介江苏徐州丰县中医院新城分院项目位于丰县开发区,东环路东侧,经六路西侧,南方路南侧,南环路北侧,地势平坦,交通便捷。
该工程建筑物主要由病房综合楼、急诊楼和辅助用房及地下车库组成。
用地面积85亩,规划分为二期,其中一期为住院楼和门急诊楼、二期为住院综合楼和医技楼以及配套设施用房。
总建筑面积91597平方米,地下建筑面积为22268平方米。
工程以节能、环保、低碳为设计理念,拟采用地源热泵系统作为中央空调冷热源。
按照规划要求,设计U形竖直埋管换热形式,地埋换热管下管深度100m。
由于地源热泵设计的特殊性,需为后期地埋管换热器设计和施工提供比较准确的地质和换热数据,因此受项目工程部委托,本次测试主要完成该工程2处试验孔地下埋管换热器的热响应试验。
v2地源热泵岩土热物性测试报告标准样式

xxxxx地源热泵岩土热物性测试技术报告华中科技大学环境科学与工程学院地源热泵研究所华中科技大学建筑节能技术中心武汉二O一一年十月地源热泵岩土热物性测试技术报告项目名称:xxxxxx地源热泵岩土热物性测试测试单位:华中科技大学环境科学与工程学院地源热泵研究所华中科技大学建筑节能技术中心测试时间:2011-10-11 ~ 2011-10-13目录1 测试目的和测试依据............................ 错误!未定义书签。
测试目的.................................... 错误!未定义书签。
测试参考标准................................ 错误!未定义书签。
2 测试原理与方法................................ 错误!未定义书签。
岩土热响应试验.............................. 错误!未定义书签。
现场测试方法............................... 错误!未定义书签。
3 测试仪器和要求................................ 错误!未定义书签。
规范要求.................................... 错误!未定义书签。
测试单位测试用岩土热物性测试仪及其检定/校准证书错误!未定义书签。
测试单位地源热泵岩土热物性测试技术研究成果.. 错误!未定义书签。
4 测试方案...................................... 错误!未定义书签。
项目概况.................................... 错误!未定义书签。
测试孔成孔条件.............................. 错误!未定义书签。
岩土热响应试验测试步骤...................... 错误!未定义书签。
地源热泵热响应测试报告

7、测试条件下换热情况 .................................................................. 10
黑龙江某项目一期工程岩土热响应测试报告
1、 项目概况 建设单位:哈尔滨市某公司 建设地点:根据本工程特点和场地范围,地源热泵地埋管换热器地热响应埋 管测试采用竖直埋管形式,仅对一个钻孔进行热响应试验,实际测试孔参数如下: 孔径 170mm,钻孔深度为自然地面以下 124 m,底部 4m 为淤泥沉降,实际 可供埋管深度 120m,双 U 管,管径 DN32,材质 PE100。 测试目的:通过本次测试,获得埋管与岩土体的岩土热物性参数如:埋管区 域内土壤初始地温、岩土体综合导热系数等,为地源热泵系统的设计提供依据。 测试时间:本次试验从 2010 年 10 月 21 日中午 13:30 开始,2010 年 10 月 25 日中午 12:30 结束。 2、测试设备及方案 1)测试装置简图
黑龙江某项目一期工程岩土热响应测试报告
项目编号:xxxxxxxx
黑龙江某项目一期工程
岩土热响应测试报告
测试单位:能源研发中心 报告时间:2010 年 11 月 19 日
黑龙江某项目一期工程岩土热响应测试报告
目录
1、项目概况 ....................................................................................... 1
s 2T
rb r , t 0 rb r , t 0
(1) (2) (3) (4)
T T0
s T r | r rb q l
t 0
T T0
地源热泵系统岩土热响应试验

地源热泵系统岩土热响应试验地源热泵系统是一种利用地下土壤或岩石储存的热量来进行空调和供暖的节能系统。
与传统空调系统相比,地源热泵系统具有更高的能效和更低的运行成本,因此在近年来受到了越来越多的关注和应用。
为了更好地了解和优化地源热泵系统的性能,进行岩土热响应试验是非常必要的。
岩土热响应试验是指通过实地采样和试验室测试的方法,对地下土壤或岩石中的热量传输特性进行研究,以评估地源热泵系统在不同地质条件下的性能表现。
通过岩土热响应试验,可以获取到地下岩土的热传导系数、储热特性、热扩散系数等参数,为地源热泵系统的设计和运行提供重要的参考依据。
岩土热响应试验通常分为野外实地采样和室内试验两个阶段。
在野外实地采样阶段,研究人员会选择地理条件较为典型的地区,进行地下岩土的取样和数据采集工作。
通过对不同深度和不同类型的岩土进行取样和测试,可以获取大量的原始数据,为后续的室内试验提供样本和参考。
在室内试验阶段,研究人员会将野外采集到的岩土样本带回实验室,并进行一系列的物理试验和分析。
首先是对岩土样本的物理性质进行分析,包括密度、孔隙结构、水分含量等方面的测试。
其次是对岩土样本的热传导特性进行测试,通过测定不同温度下的导热系数和热扩散系数,来评估岩土样本的储热能力和热传输特性。
最后还会对岩土样本的温度-时间响应曲线进行测定,来评估岩土在长期稳定状态下的温度变化规律。
地源热泵系统岩土热响应试验在国内外已经得到了广泛的应用和推广。
通过对地下岩土热传导特性的深入研究,不仅可以为地源热泵系统的设计和运行提供科学依据,还可以为地下岩土的热资源利用和环境保护提供技术支持。
在未来的研究中,可以进一步加强对岩土热响应试验方法的改进和创新,为地源热泵系统的可持续发展做出更大的贡献。
×××××××××公司地埋管地源热泵系统岩土热响应试验及评价报告2

xxxxxxX公司地埋管地源热泵岩土热响应试验及评价报告XXXXXXXXXXXXXX X年X月X X日目录1. 工程概况....................................................... 2 .2. 试验测试目的 .................................................. 2...3. 场地气象条件、测试孔及地层条件简介 ............................. 3..4. 现场使用的岩土热物性测试仪器及测试方法简介 ..................... 4.4.1 岩土热物性测试仪简介................................................................... 4.. .4.2 测试过程简介................................................................... 6.. .4.3 测试理论 .................................................... 7 .5. 土壤的初始平均温度T 的测定..................................... 9..6.岩土比热容计算................................................................... 1.. 0.7. 测试孔测试结果分析................................................................... 1.. 07.1 供电电压、循环液流流量、压力损失与加热时间的关系曲线 (10)7.2 载热流体温度与加热时间的关系曲线 ............................ 1. 17.3 测试孔土壤平均热传导系数的确定 .............................. 1.27.4 测试孔钻孔热阻的计算................................................................... 1.. 3.8. 场地浅层地热能换热量预测................................................................... 1..39. 结论和建议................................................................... 1.. 5.10. 勘察资质证书和仪器校正证书................................................................... 1.. 6XXXXXXX公司地埋管地源热泵岩土热响应试验及评价报告1. 工程概况拟建项目位于XXXXXXXXXXXXXX,主要由加工车间和办公楼组成,总建筑面积XXX平方米,拟采用节能环保的地埋管地源热泵供热与制冷。
地源热泵系统岩土热响应试验

地源热泵系统岩土热响应试验【摘要】本研究旨在通过地源热泵系统岩土热响应试验,探讨其在实际应用中的效果和优势。
文章首先介绍了地源热泵系统岩土热响应试验的背景和研究目的,并阐述了其研究意义。
接着详细描述了试验方法、试验设计、试验过程、数据分析和结果讨论,从而全面呈现了实验过程及结果。
最后得出了关于地源热泵系统岩土热响应试验的结论,展望了未来研究方向,总结了本研究的重要发现。
通过本研究,可以为地源热泵系统的进一步优化和应用提供重要参考,促进绿色环保技术的发展。
【关键词】地源热泵系统、岩土热响应试验、试验方法、试验设计、试验过程、数据分析、结果讨论、结论、展望未来研究方向、总结、研究目的、研究意义、引言1. 引言1.1 地源热泵系统岩土热响应试验的背景地源热泵系统是一种利用地下岩土中储存的热能为建筑提供供暖和制冷的系统,具有高效节能、环保等优点。
地源热泵系统的性能受到岩土热响应特性的影响,因此需要进行岩土热响应试验来研究其热传导、储能和释能过程。
地源热泵系统岩土热响应试验是通过对地下岩土进行加热或降温,观察岩土温度变化和热传导规律,从而评估地源热泵系统的性能和效果。
通过岩土热响应试验,可以优化地源热泵系统的设计和运行,提高其热工性能和节能效果,为建筑节能减排提供科学依据。
地源热泵系统岩土热响应试验也可以为地热能资源的开发利用和岩土热响应规律的研究提供重要数据支持。
开展地源热泵系统岩土热响应试验具有重要的理论和实践意义。
1.2 研究目的研究目的是为了探究地源热泵系统在岩土地质条件下的热响应特性,为系统的设计、运行和优化提供科学依据。
通过开展岩土热响应试验,可以深入了解岩土层对地源热泵系统热传递的影响机制,为系统的热性能进行有效评估和改进。
具体地,研究目的包括:一是验证地源热泵系统在岩土地质条件下的热响应特性,包括热传导、热吸收和热交换等方面的影响;二是研究不同岩土地质条件下地源热泵系统的热性能差异,为系统的设计和优化提供参考依据;三是探讨岩土层对地源热泵系统热传递效率的影响机制,为系统的运行管理和能耗控制提供理论支持。
地源热泵系统岩土热响应试验

地源热泵系统岩土热响应试验地源热泵系统是利用地下存储的能量进行空调和供热系统的一种环保、节能的方式。
为了了解不同岩土类型对地源热泵系统的热响应,进行地源热泵系统岩土热响应试验。
该试验通过对不同岩土类型的温度变化和热传导系数进行测定,为地源热泵系统设计和应用提供了重要的参考依据。
试验需要选取具有代表性的不同类型的岩土进行热响应实验。
首先进行现场勘探和测量工作,确定岩土类型、厚度、渗透系数等参数。
然后根据这些参数进行岩土热响应试验设计。
试验选用地面埋置式水源热泵来实现对岩土热响应的测定,利用温度计、热电偶等装置来测量地下岩土温度和热传导系数。
在试验过程中,需先将岩土表层刨开,露出暴露的岩土表层,以便安装热电偶和温度计,然后将地下水源热泵机组连接到暖通空调系统上,实现与室内空调的联动。
在试验中,经常地对岩土温度的变化进行监测,测定各种岩土在不同季节和环境条件下的热传导系数以及气候条件、季节变化等对岩土热响应的影响。
还可以对地源热泵系统的系统效率、能量利用效果进行测定,以评估该系统的整体性能。
在试验完成后,分析试验结果。
试验结果表明,不同岩土类型及季节对地源热泵系统的热响应都有一定影响,不同岩土类型的热传导系数差异较大,砂stone、泥岩和石灰岩的热传导系数分别为1.0 W/mK、1.3 W/mK和1.5 W/mK。
此外,随着季节和气候变化,热传导系数也有所不同,夏季两岩土平均热传导系数分别为1.1 W/mK、1.5 W/mK,冬季分别为0.9 W/mK、1.2 W/mK。
同时,地源热泵系统的系统效率随季节变化较大,夏季效率较低,冬季效率较高。
地源热泵测试报告

一、项目基本情况(一)项目概况邯郸市康桥国际大厦位于邯郸市邯山区陵园路东段,总建筑面积48737.04m2,占地面积6916.9m2 。
大厦地下2层,地上29层,局部30层。
地下2层战时为人防,平时为汽车库,自行车库,及设备用房。
1-3层为商业,4-29层为办公。
总建筑高度为97.45m(地上),图1为康桥国际大厦总平面图。
该项目拟采用地源热泵空调系统来解决建筑的夏季制冷、冬季采暖需要。
图1 康桥国际大厦总平面图(二)项目进度康桥国际大厦已于2009年6月开工建设,计划于2011年05月竣工并投入使用,目前该工程即将封顶,部分施工面的空调、水、电等各专业已具备进场作业的条件。
二、项目测试背景及目的(一)项目测试背景结合项目的特点、周围市政供热的现状,并考虑到系统的运行费用,康桥国际大厦项目拟采用地源热泵空调系统。
地埋管换热器的换热能力及项目所在地土壤的地层情况作为地源热泵空调系统设计的核心、成败的关键,必须给予足够的重视;同时,该项目作为目前邯郸市最大的使用地源热泵空调这种清洁能源形式的项目,无已建成类似规模的项目实际运行数据可以借鉴,因此,为了确保本项目采用地源热泵空调形式的成功,并在邯郸地区起到示范作用,必须对项目所在地的地层情况、地埋管换热器的换热能力等进行测试,取得准确可靠的原始数据,为项目的设计提供可靠的依据。
为了支持项目建设、配合工程进度,尽快确定地源热泵空调设计方案,北京金万众空调制冷设备有限责任公司于2010年8月5日至2010年8月17日在工地现场组织进行了钻孔试验及地埋管换热器竖直换热管换热能力测试。
(二)项目测试目的本次测试的目的主要是希望通过本次测试,能够为整个项目的地源热泵空调系统设计提供准确的原始数据。
具体包含以下几个方面:(1)了解项目所在地地层情况;(2)得出双U竖直换热管及单U竖直换热管的单井换热能力;(3)通过对单管换热能力测试给出群井换热能力分析。
三、项目测试单位基本情况康桥国际大厦项目地源热泵空调工程中的地埋管换热器竖直换热管换热能力测试由北京金万众空调制冷设备有限责任公司组织并实施,北京工业大学热泵工程中心作为协作单位进行土壤热物性测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1
测试装置简图
由图 1 可知,地源热泵模拟工况条件的设备由可调功率加热器、循环水泵、流量 调节阀、涡轮流量计、玻璃管温度计、智能温度采集模块组成。本装置系统功率 大(最大可调至 13kW)且运行稳定:地埋管内流量、供水温度依据设计要求可
2
黑龙江某项目一期工程岩土热响应测试报告
手工调节设定。试验采用智能温度采集模块(内含微型计算机)进行数据采集, 每隔一分钟采集一次数据,自动存储数据,所测得的岩土体的导热系数 λ、钻孔 的热阻等测试精度高。 2)测试方案: 本测试孔基本数据及测试运行工况如表 1。
T T0
r , t 0
式中 T=T(r,t)—— t 时刻 r 处的岩土温度,℃; λs——岩土导热系数,W/(m· K); T0 ——未受扰动的岩土原始温度,℃; ρs——岩土的密度,kg/m3 ; cs——岩土的比热,kJ/(kg· K); ql——单位长度线热源热流强度,ql =Q/H W/m; rb——钻孔半径, m;
图5
实测平均温度与计算平均温度的对比
由参数估计法计算结果可知, 与通过线性拟合的斜率法得到的岩土导热系数 (分别 2.0 和 1.73W/(m·K)) 、钻孔总热阻(分别为 0.030 和 0.0274(m· K )/ W) , 差别不大。从图 5 也可看出对应计算得到的进出水平均温度非常接近,而且与实 测得到的进出水平均温度变化趋势基本一致,反映了计算的准确性。
T 0 0 . 0274 ql
( m K ) /W
b) 基于圆柱面热源模型的校核与参数估计法计算 (1)圆柱面热源下参数估计法的计算 编写软件,利用圆柱面热源模型计算不同参数条件下的方差,取测试稳定后 48 小时的整点数据。从表 2、3 可以看出当岩土导热系数 λs=2.0W/(m· K),钻孔 总热阻 R0 =0.030(m· K )/ W 时,方差最小,此时对应的导热系数和钻孔总热阻即 为参数估计法所求参数。 表 2
利用线性拟合法得到岩土综合导热系数 (1)测试孔周围的岩土导热系数:
s
ql 4 m 58 . 67 4 3 . 1416 2 . 6923 1 . 73 W/(m K)
(2)测试孔热阻的计算
R0 b ql 1 4
s
4 s ln c r 2 s s b
7、测试条件下换热情况 .................................................................. 10
黑龙江某项目一期工程岩土热响应测试报告
1、 项目概况 建设单位:哈尔滨市某公司 建设地点:根据本工程特点和场地范围,地源热泵地埋管换热器地热响应埋 管测试采用竖直埋管形式,仅对一个钻孔进行热响应试验,实际测试孔参数如下: 孔径 170mm,钻孔深度为自然地面以下 124 m,底部 4m 为淤泥沉降,实际 可供埋管深度 120m,双 U 管,管径 DN32,材质 PE100。 测试目的:通过本次测试,获得埋管与岩土体的岩土热物性参数如:埋管区 域内土壤初始地温、岩土体综合导热系数等,为地源热泵系统的设计提供依据。 测试时间:本次试验从 2010 年 10 月 21 日中午 13:30 开始,2010 年 10 月 25 日中午 12:30 结束。 2、测试设备及方案 1)测试装置简图
2、测试设备及方案............................................................................ 1
3、计算模型 ....................................................................................... 2
表 3
项目 0.027
测试孔不同参数条件下的平均方差
0.029
7
0.028
0.030
0.031
0.032
黑龙江某项目一期工程岩土热响应测试报告
1.8 1.9 2.0 2.1 2.2
1.093 0.245 0Fra bibliotek133 0.565 1.396
1.213 0.293 0.117 0.490 1.268
1.340 0.348 0.107 0.421 1.145
4、试验数据处理与结果分析 ............................................................. 5
5、项目所在地岩土柱状图及地下温度分布 ...................................... 9
6、岩土热物性参数分析 .................................................................. 10
T f ( t ) T0 Q
f
(t )
的计算公式为:
3
s H
10
[ 0.89129 0.36081 lg Fo 0.05508 lg Fo 3.596 10
2
lg Fo ]
3
ql R0
(13)
基于圆柱面热源模型的参数估计法就是根据从总体中抽取的样本估计 总体分布中包含的未知参数的方法,当目标函数达到最小值时对应的各项物 性值即为待求解的岩土热物性参数最优估计值。数值计算流程参见图 2。
3、计算模型 a)线热源模型 : 线源模型将钻孔内外的地层视为整体, 将埋管换热器看作具有一个当量直径 的线热源, 通过解一维瞬态热传导问题来确定在线源径向某一平面位置上的地层 温度。钻孔周围的传热实际上简化为一维轴对称问题 ,其控制方程、初始条件和 边界条件分别为 :
T t 1 T 2 s cs r r r
T t 1 T 2 s cs r r r
s 2T
rb r , t 0 rb r , t 0
(8) (9) (10) (11)
T T0
2 rb s T r | r rb q l
t 0
3
黑龙江某项目一期工程岩土热响应测试报告
t——时间,s。 理论解析解埋管内流体平均温度 T f ( t ) 为:
T f (t ) q ln t l 4 s 4 s ql 4as ln( 2 ) q l R 0 T 0 r b
4
黑龙江某项目一期工程岩土热响应测试报告
t——时间,s。 对方程(8)~(11)联合求解可以得到以下的解析解:
T ( r, t)
0
T
Q
s H
G( F o , p )
(12)
式中 T=T(r,t)—— t 时刻 r 处的岩土温度,℃; T0 ——未受扰动的岩土原始温度,℃; Q——响应测试仪加热功率,W; H——钻孔深度, m; λs——岩土导热系数,W/(m· K); G(Fo,p) ——理论积分解 G 函数; Fo——傅立叶准则; 根据理论解析解得到埋管流体的平均温度 T
1.474 0.410 0.104 0.359 1.030
1.615 0.479 0.108 0.304 0.922
1.763 0.256 0.119 0.256 0.821
(2)利用圆柱热源的校核对比 将采用线性拟合得到的导热系数与钻孔热阻带入圆柱热源模型下的进出水 平均温度计算式(13)中,得到计算循环水的平均温度,将其温度变化情况与实 测的循环平均温度进行对比,详见图 5。
表1 测试孔深(m) 测试孔直径(mm) 埋管类型 循环流速(m/s) 测试孔周围岩土 测试孔基本数据
120 U 形管外径(mm) 32 170 U 形管壁厚(mm) 3 双U U 形管管脚间距(mm) 70 0.63 循环流量(L/s ) 0.67 导热系数 λs (W/(m· K) ) 体积比热容 ρsc s (kJ/(m3· K) ) 待求 1463.2
8
黑龙江某项目一期工程岩土热响应测试报告
5、项目所在地岩土柱状图及地下温度分布
图3
测试孔的进出水温度、温差及排热功率变化情况
去除开始测试时前 20 组不稳定的测试数据,选取剩余共计 48 组数据,在时 间对数坐标系下得到测试埋管进出水温度变化情况,见图 4 。由图中可知, R2=0.9221,表明其相关性非常好。
6
黑龙江某项目一期工程岩土热响应测试报告
图4
测试孔进出水平均温度的线性拟合
岩土热物性 参数初始值
埋管传热模型 (线热 源或柱热源)
计算 (Tf,cal)i 重新估计热 物性值 计算目标优 化函数 F 实测 (Tf,exp)i
否
F 是否为最小值 是 输出岩土热物性 的最终优化值
图2
参数估计法的数值计算流程图
5
黑龙江某项目一期工程岩土热响应测试报告
4、试验数据处理与结果分析 a) 基于线热源模型的线性拟合法参数计算: 从记录的数据中选取整点进出水温度数据, 并计算出进出水平均温度及埋管 的进回水温差,在恒定流量( G=0.67L/s)的情况下利用计算的实时温差,得到 实时的排热量(即排热功率) ,详见图 3。测试从 10 月 21 日 13:30 至 10 月 22 日 16:30 为了得到岩土未受扰动的初始温度,没有进行加热;图示时间起点选为 16:30 启动加热器开始排热测试的时间, 直到 2010 年 10 月 25 日中午 12:30 结束, 共计 68 个小时。从图中看出测试井排热工况在运行 20 个小时后趋于稳定,得到 了较稳定的供回水温差, 测试过程中保持流量恒定, 即达到了恒热流测试的条件。
黑龙江某项目一期工程岩土热响应测试报告
项目编号:xxxxxxxx
黑龙江某项目一期工程
岩土热响应测试报告