中职数学模拟试卷及答案

合集下载

江苏省中等职业学校数学学业水平测试--模拟试卷共4套有答案

江苏省中等职业学校数学学业水平测试--模拟试卷共4套有答案

江苏省中等职业学校学业水平测试模拟试卷(一)数学一、单项选择题:本大题共15小题,每小题5分,共75分.在每题所给的A 、B 、C 、D 四个选项中,只有一个选项是正确的,请选出正确的选项,并在答题卡上将该项涂黑.1.下列关系式中不正确的是( ).A .0∈∅B .1∉{2,4}C .-1∈{x |x 2-1=0}D .2∈{x |x >0}2.不等式2x>- 2的解集是( ).A . {x| x >-1}B .{x| x <-1}C .{x| x >1}D .{x| x <1}3.下列函数中的奇函数是( ).A .y =x -2B .y=x1C .y=2x 2D . y=x 2-x4.下列函数中是指数函数的是( ).A .y=(-3)xB .xy ⎪⎭⎫ ⎝⎛=32 C .21x y = D .y=3.2x5.下列角中与30°角终边相同的角是( ).A .1000°B .-630°C .-690°D .-150°6.下列等式中,正确的是( ).A .sin 2α+cos 2α=1B .sin α tan α=cos αC .sin 4α +cos 4α=1D .cos α tan α=-sin α7.数列8,4,2,1,…中的2是第几项( ). A .1 B . 2 C . 3 D .48.已知点A (4,-4),B (8,8),则直线AB 的斜率为( ). A .4 B .3 C .2 D .-49.在长方体ABCD-A 1B 1C 1D 1中,下列表述正确的是( ). A .A 1A ⊥平面BB 1C 1C B .A 1A ⊥平面DC C 1D 1 C .A 1A // 平面ABCD D .A 1A // 平面BB 1C 1C10.从4名男生和4名女生中任选1人参加校合唱队,那么不同的选法有( ). A .1种 B . 4种 C .8种 D .16种11.[选做题]本题包括I 、II 两小题,请选定其中一题作答. I .二进制数(101101)2转换为十进制数为( )A .16B .25C .17D .45II .已知数组a =(1,2,1),b =(-2,1,2),则a ·b =( ).A BCDB 1C 1D 1A 1第9题图A .(2,2,2)B . (-1,3,3)C .4D . 212.[选做题]本题包括I 、II 两小题,请选定其中一题作答. I .看下面的四段话,其中不是解决问题的算法的是( ). A .从济南到北京旅游,先坐火车,再坐飞机抵达 B .方程x 2-1=0有两个实根C .解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1D .求1+2+3+4+5的值,先计算1+2=3,再求3+3=6,6+4=10,10+5=15,最终结果为15II .下图是根据某地近两年9月中旬旬日最高气温情况绘制的折线图,通过观察图表,可以判断这两年9月中旬气温比较稳定的年份是( ).A .2011年B .2012年C .2013年D .无法确定13.[选做题]本题包括I 、II 两小题,请选定其中一题作答.I .已知角α是锐角,sin α=21,则sin2α=( ). A .41 B .41 C .43 D .\23II .计算i +i 2 + i 3+ i 4 =( ).A . -1B .iC .1+iD .014.[选做题]本题包括I 、II 两小题,请选定其中一题作答. I .函数y =5sin(62π-x )的周期、振幅分别是( ). A .4π , 5 B . 4π, -5 C .π, 5 D .π, -5II .下列各式是复数的三角形式的是( ).A .z = 2(cos1 + i sin1)B .z = cos1- i sin1C .z = -5(cos1 + i sin1)D .z = 4(sin1+i cos1)15.[选做题]本题包括I 、II 两小题,请选定其中一题作答.I .平移坐标轴,将坐标原点移至O ' (1,1),则点(2,3)在新坐标系中的坐标为( ). A. (2,3) B. (-1,-2) C. (3,4) D. (1,2)II .下列点中在直线2x +3y =0上的是( ).A .(3 , 2)B .(2 , 3)C .( 3, -2 )D .(-2 , 3 )二、填空题:本大题共5小题,每小题5分,共25分.请把答案填写在答卷卡的相应位置上.16.已知f (x ) =4x -1,则f (2)= .17.已知向量a =(x ,2),b =(3,- 6),若a //b ,则x = .18.数据2,3,6,8,10,12的极差是 .19.已知sin x =22,且0≤x ≤2π,则x = .20.[选做题]本题包括I 、II 两小题,请选定其中一题作答.I .已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分,请将“求他的平均成绩的一个算法”补充完整.第一步:A =89,B=96,C =99; 第二步:S =A +B +C ; 第三步:x = ; 第四步:输出x .II .某项工程的流程图如下图所示(单位:min ):则 完成该工程的总工期是 .三、解答题:本大题共5小题,共50分.请把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.21.比较下列两个代数式的大小: x 4+2x 2+1, x 4+2x 2 +3 (本小题满分8分)22.已知sin α=0.6,α是第二象限角,求cos α、tan α. (本小题满分8分)23.在等差数列{a n }中,a 1=6,d=12,求a 9,S 9 . (本小题满分10分)24.若A (1,4)、B (-1,2)为圆C的一条直径的两个端点,求圆的标准方程.(本小题满分10分)25.用6m 长的篱笆在墙角围一块矩形菜地(如图),设菜地的长为x (m ),第20(Ⅱ)题图(1)将菜地的宽y(m)表示为x的函数,并指出该函数的定义域;(2)将菜地的面积S(m2)表示为x的函数,并指出该函数的定义域;(3)当菜地的长x(m)满足什么条件时,菜地的面积大于5m2?(本小题满分14分)墙江苏省中等职业学校学业水平测试模拟试卷(一)数学参考答案一、选择题:本大题主要考查基础知识、基本运算和基本思想方法.每小题5分,共计75分.二、填空题:本大题主要考查基础知识、基本运算和基本思想方法.每小题5分,共计25分.16. 717. -118. 1019. 420.Ⅰ3S; Ⅱ 24三、解答题21.x 4+2x 2+1<x 4+2x 2 +3 . 满分8分.22.cos α=-0.8、tan α=-0.75. 满分8分.23.a9=2,S9=36.满分10分.24.x2+(y-3)2=2 .满分10分.25.(1)y=6- x ,x∈(0,6);(2)S=(6- x)x ,x∈(0,6);(3)当1<x<5时,S>5 满分14分.江苏省中等职业学校学业水平测试模拟试卷(二)数学一、单项选择题:本大题共15小题,每小题5分,共75分.在每题所给的A 、B 、C 、D 四个选项中,只有一个选项是正确的,请选出正确的选项,并在答题卡上将该项涂黑.1.已知A ={0,1,2},B ={2,4},那么A ∩B =( ).A .{0}B .{2}C .{1,2}D .{0,1,2, 4}2.集合{x | -1<x ≤3}用区间表示正确的是( ).A .(-1,3)B .[-1,3)C .(-1,3]D .[-1,3]3.化简log 38÷log 32可得( )。

(完整版)江苏省中等职业学校数学学业水平测试--模拟试卷共4套有答案

(完整版)江苏省中等职业学校数学学业水平测试--模拟试卷共4套有答案

江苏省中等职业学校学业水平测试模拟试卷(一)数学一、单项选择题:本大题共15小题,每小题5分,共75分.在每题所给的A、B、C、D四个选项中,只有一个选项是正确的,请选出正确的选项,并在答题卡上将该项涂黑.1.下列关系式中不正确的是().A.0∈∅B.1∉{2,4} C.-1∈{x|x2-1=0} D.2∈{x|x>0}2.不等式2x>- 2的解集是().A.{x| x>-1} B.{x| x<-1} C.{x| x>1} D.{x| x<1}3.下列函数中的奇函数是().1C.y=2x2D.y=x2-x A.y=x-2 B.y=x4.下列函数中是指数函数的是( ).A .y=(-3)xB .xy ⎪⎭⎫ ⎝⎛=32 C .21x y = D .y=3.2x5.下列角中与30°角终边相同的角是( ).A .1000°B .-630°C .-690°D .-150°6.下列等式中,正确的是( ).A .sin 2α+cos 2α=1B .sin α tan α=cos αC .sin 4α +cos 4α=1D .cos α tan α=-sin α7.数列8,4,2,1,…中的2是第几项( ). A .1 B . 2 C . 3 D .48.已知点A (4,-4),B (8,8),则直线AB 的斜率为( ). A .4 B .3 C .2 D .-49.在长方体ABCD-A 1B 1C 1D 1中,下列表述正确的是( ). A .A 1A ⊥平面BB 1C 1C B .A 1A ⊥平面DC C 1D 1 C .A 1A // 平面ABCD D .A 1A // 平面BB 1C 1C10.从4名男生和4名女生中任选1人参加校合唱队,那么不同的选法有( ). A .1种 B . 4种 C .8种 D .16种11.[选做题]本题包括I 、II 两小题,请选定其中一题作答. I .二进制数(101101)2转换为十进制数为( )A .16B .25C .17D .45II .已知数组a =(1,2,1),b =(-2,1,2),则a ·b =( ).A BCDB 1C 1D 1A 1第9题图A .(2,2,2)B . (-1,3,3)C .4D . 212.[选做题]本题包括I 、II 两小题,请选定其中一题作答. I .看下面的四段话,其中不是解决问题的算法的是( ). A .从济南到北京旅游,先坐火车,再坐飞机抵达 B .方程x 2-1=0有两个实根C .解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1D .求1+2+3+4+5的值,先计算1+2=3,再求3+3=6,6+4=10,10+5=15,最终结果为15II .下图是根据某地近两年9月中旬旬日最高气温情况绘制的折线图,通过观察图表,可以判断这两年9月中旬气温比较稳定的年份是( ).A .2011年B .2012年C .2013年D .无法确定13.[选做题]本题包括I 、II 两小题,请选定其中一题作答.I .已知角α是锐角,sin α=21,则sin2α=( ). A .41B .41C .43D .\23II .计算i +i 2 + i 3+ i 4 =( ).A . -1B .iC .1+iD .014.[选做题]本题包括I 、II 两小题,请选定其中一题作答. I .函数y =5sin(62π-x )的周期、振幅分别是( ). A .4π , 5 B . 4π, -5 C .π, 5 D .π, -5II .下列各式是复数的三角形式的是( ).A .z = 2(cos1 + i sin1)B .z = cos1- i sin1C .z = -5(cos1 + i sin1)D .z = 4(sin1+i cos1)15.[选做题]本题包括I 、II 两小题,请选定其中一题作答.I .平移坐标轴,将坐标原点移至O ' (1,1),则点(2,3)在新坐标系中的坐标为( ). A. (2,3) B. (-1,-2) C. (3,4) D. (1,2)II .下列点中在直线2x +3y =0上的是( ).A .(3 , 2)B .(2 , 3)C .( 3, -2 )D .(-2 , 3 )二、填空题:本大题共5小题,每小题5分,共25分.请把答案填写在答卷卡的相应位置上.16.已知f (x ) =4x -1,则f (2)= .17.已知向量a =(x ,2),b =(3,- 6),若a //b ,则x = .18.数据2,3,6,8,10,12的极差是 .19.已知sin x =22,且0≤x ≤2π,则x = .20.[选做题]本题包括I 、II 两小题,请选定其中一题作答.I .已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分,请将“求他的平均成绩的一个算法”补充完整.第一步:A =89,B=96,C =99; 第二步:S =A +B +C ; 第三步:x = ; 第四步:输出x .II .某项工程的流程图如下图所示(单位:min ):则 完成该工程的总工期是 .三、解答题:本大题共5小题,共50分.请把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤.21.比较下列两个代数式的大小: x 4+2x 2+1, x 4+2x 2 +3 (本小题满分8分)22.已知sin α=0.6,α是第二象限角,求cos α、tan α. (本小题满分8分)23.在等差数列{a n }中,a 1=6,d=12,求a 9,S 9 . (本小题满分10分)24.若A (1,4)、B (-1,2)为圆C的一条直径的两个端点,求圆的标准方程.(本小题满分10分)25.用6m 长的篱笆在墙角围一块矩形菜地(如图),设菜地的长为x (m ),第20(Ⅱ)题图(1)将菜地的宽y(m)表示为x的函数,并指出该函数的定义域;(2)将菜地的面积S(m2)表示为x的函数,并指出该函数的定义域;(3)当菜地的长x(m)满足什么条件时,菜地的面积大于5m2?(本小题满分14分)墙江苏省中等职业学校学业水平测试模拟试卷(一)数学参考答案一、选择题:本大题主要考查基础知识、基本运算和基本思想方法.每小题5分,共计75分.二、填空题:本大题主要考查基础知识、基本运算和基本思想方法.每小题5分,共计25分.16. 717. -118. 1019. 420.Ⅰ3S; Ⅱ 24三、解答题21.x 4+2x 2+1<x 4+2x 2 +3 . 满分8分.22.cos α=-0.8、tan α=-0.75. 满分8分.23.a9=2,S9=36.满分10分.24.x2+(y-3)2=2 .满分10分.25.(1)y=6- x ,x∈(0,6);(2)S=(6- x)x ,x∈(0,6);(3)当1<x<5时,S>5 满分14分.江苏省中等职业学校学业水平测试模拟试卷(二)数学一、单项选择题:本大题共15小题,每小题5分,共75分.在每题所给的A 、B 、C 、D 四个选项中,只有一个选项是正确的,请选出正确的选项,并在答题卡上将该项涂黑.1.已知A ={0,1,2},B ={2,4},那么A ∩B =( ).A .{0}B .{2}C .{1,2}D .{0,1,2, 4}2.集合{x | -1<x ≤3}用区间表示正确的是( ).A .(-1,3)B .[-1,3)C .(-1,3]D .[-1,3]3.化简log 38÷log 32可得( )。

中职高三数学模拟试卷

中职高三数学模拟试卷

一、选择题(每题5分,共20分)1. 已知函数f(x) = x^2 - 4x + 3,其图像的对称轴是:A. x = 1B. x = 2C. x = 3D. x = -12. 若等差数列{an}的前n项和为Sn,且a1 = 3,S5 = 35,则公差d为:A. 2B. 3C. 4D. 53. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,cosA = 1/2,则边c的长度为:A. 2√6B. 4√6C. 6√6D. 8√64. 下列函数中,在定义域内单调递减的是:A. y = 2x - 3B. y = -x^2 + 4x + 3C. y = 1/xD. y = 3x^25. 已知复数z = 1 + i,则|z|的值为:A. √2C. 1D. 0二、填空题(每题5分,共25分)6. 若log2(3x - 2) = 1,则x = ________。

7. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第5项a5 = ________。

8. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为_______。

9. 若sinθ = 3/5,且θ为锐角,则cosθ的值为_______。

10. 二项式(2x - 3y)^3展开后,x^2y的系数为_______。

三、解答题(每题15分,共45分)11. (15分)已知函数f(x) = x^3 - 3x^2 + 4x + 6,求:(1)函数f(x)的零点;(2)函数f(x)的图像的对称中心。

12. (15分)已知等差数列{an}的前n项和为Sn,且a1 = 1,S10 = 55,求:(1)公差d;(2)数列{an}的第15项a15。

13. (15分)在直角坐标系中,已知点A(2, 3),点B在直线y = 2x + 1上,且|AB| = √10,求直线AB的方程。

四、证明题(20分)14. (20分)已知函数f(x) = x^2 - 4x + 5,证明:对于任意实数x,都有f(x) ≥ 1。

2024年浙江省中职数学高考押题模拟试卷(含答案)

2024年浙江省中职数学高考押题模拟试卷(含答案)

浙江省2024年中职职教高考文化统考终极押题预测数学试卷姓名 准考证号本试卷共三大题,共4页。

满分150分,考试时间120分钟考生注意:1.答题前,请务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别写在试卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸上相应的位置上规范答题,在本试卷上作答一律无效。

一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。

错涂、多涂或未涂均无分。

1.设全集U =R ,{|02}A x x =≤≤,{|11}B x x =-≤≤,则图中阴影部分表示的区间是( )A .[]0,1B .()(),12,-∞-+∞C .[]1,2-D .(,1][2,)-∞-+∞ 2.下列命题中正确的是( )A .若a b >,则11a b< B .若a b <,则22ac bc < C .若22a b >,则a b >D .若22a b c c>,则a b > 3.函数()121f x x =++的值域为( ) A .()(),11,-∞+∞B .()(),22,-∞+∞C .()(),11,-∞-⋃+∞D .()1,1- 4.若角α终边经过点()1,1-,则2sin 3cos cos 6cos 2sin ααααα++-的值为( ) A .54 B .1 C .34 D .32- 5. “x 为整数”是“21x +为整数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知直线l 的倾斜角θ10y +-=的倾斜角互补,则θ=( )A .30B .60C .120D .1507.已知数列{}n a 满足()*1111,21n n a a n a +==∈-N ,则5a 的值为( ) A .2 B .12 C .12- D .1-8.达-芬奇的经典之作《蒙娜丽莎》举世闻名,画中女子神秘的微笑,数百年来引无数观赏者对其进行研究.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行粗略测绘,将画中女子的嘴唇近似看作一段圆弧,并测得圆弧AC 所对的圆心角α为60 ,弦AC 的长为10cm ,根据测量得到的数据计算:《蒙娜丽莎》缩小影像作品中圆弧AC 的长为( )(单位:cm )A .600πB .100π3C .10π3D .5π39.某广场有一喷水池,水从地面喷出,如图,以水平面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线24y x x =-+(单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米10.若点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标是(3,4),则AB 的长为( )A .10B .5C .8D .611.已知向量()5,2a = ,()4,3b =-- ,若c 满足320a b c -+= ,则c = ( )A .()23,12--B .()23,12C .()7,0D .()7,0-12.直线220x y ++=与420ax y +-=互相垂直,则这两条直线的交点坐标为( )A .()1,4-B .()0,2-C .()1,0-D .0,12⎛⎫ ⎪⎝⎭13.湖州市书画历史悠久,渊源深厚,自东晋六朝以来形成了浓郁深厚的书画遗风,孕育出了一代代书法与绘画大家。

中职升学数学模拟试题二(含答案)

中职升学数学模拟试题二(含答案)

中职升学数学模拟试题(含答案)中职升学数学模拟试题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.2012201311i i +=-()(A)1i--(B)1i-+(C)1i-(D)1i+2.如下图,矩形ABCD 中,点E 为边CD 上的任意一点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于()(A )14(B )13(C )12(D )233.20.34log 4,log 3,0.3a b c -===,则()(A)a c b<<(B)c b a<<(C)a b c <<(D)b a c<<4.过点(1,3)P 且在x 轴上的截距和在y 轴上的截距相等的直线方程为()(A )40x y +-=(B )30x y -=(C )40x y +-=或30x y +=(D )40x y +-=或30x y -=5.某几何体的三视图如右图所示,则它的体积是()(A )283π-(B )83π-(C )82π-(D )23π6.(82展开式中不含..4x 项的系数的和为()(A )-1(B )0(C )1(D )27.已知向量(2,1)a =r ,(1,)b k =r,且a r 与b r 的夹角为锐角,则实数k 的取值范围是()(A )()2,-+∞(B )11(2,(,)22-+∞ (C )(,2)-∞-(D )(2,2)-8.已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到x x g 2sin )(=将()f x 的图象()(A )向右平移π6个长度单位(B )向右平移π12个长度单位(C )向左平移π6个长度单位(D )向左平移π12个长度单位9.过点(2,2)P -且与曲线33y x x =-相切的直线方程是()(A )916y x =-+(B )920y x =-(C )2y =-(D )916y x =-+或2y =-10.下列命题:①在ABC ∆中,若B A >,则B A sin sin >;②已知)1,2(),4,3(--==CD AB ,则AB 在CD 上的投影为2-;③已知1cos ,:=∈∃x R x p ,01,:2>+-∈∀x x R x q ,则“q p ⌝∧”为假命题;④已知函数26sin()(-π+ω=x x f )0(>ω的导函数的最大值为3,则函数)(x f 的图象关于3π=x 对称.其中真命题的个数为()(A )1(B )2(C )3(D )411.设圆锥曲线C 的两个焦点分别为1F 、2F ,若曲线C 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线C 的离心率等于()(A )2332或(B )223或(C )122或(D )1322或12.对于三次函数32()f x ax bx cx d =+++(0a ≠),定义:设()f x ''是函数()y f x ='的导数,若方程()0f x ''=有实数解x 0,则称点(x 0,f (x 0))为函数()y f x =的“拐点”.有同学发现:“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,若函数321151()3132122g x x x x x =-+-+-,则12342010()(()(()20112011201120112011g g g g g +++++ =()(A)2010(B)2011(C)2012(D)2013二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分)13.执行右侧的程序框图,输出的结果S 的值为.14.已知α、(0,)βπ∈,且1tan()2αβ-=,1tan 7β=-,O BA DC 2αβ-=.15.等差数列{}n a 的前n 项和为n S ,且936S =-,13104S =-,等比数列{}n b 中,55b a =,77b a =,则6b =.16.如右图,设A 、B 、C 、D 为球O 上四点,若AB 、AC 、AD 两两互相垂直,且AB AC ==,2AD =,则A 、D 两点间的球面距离.三、解答题:共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(满分12分)设数列{}n a 的前n 项和为n S .已知11a =,131n n a S +=+,n *∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n T 为数列{}n na 的前n 项和,求n T.18.(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果8X =,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望.19.(满分12分)如右图,在正三棱柱ABC —A 1B 1C 1中,AA 1=AB ,D 是AC 的中点.(Ⅰ)求证:B 1C//平面A 1BD ;(Ⅰ)求二面角A —A 1B —D 的余弦值.20.(满分12分)已知椭圆22221y x ab+=(0)a b >>的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M 、N 两点.(Ⅰ)若直线l 的方程为4y x =-,求弦MN 的长;(II )如果ΔBMN 的重心恰好为椭圆的右焦点F ,求直线l 的方程.21.(满分12分)设函数()()2()2ln 11f x x x =---.(Ⅰ)求函数)(x f 的单调递增区间;(II )若关于x 的方程()230f x x x a +--=在区间[]2,4内恰有两个相异的实根,求实数a 的取值范围.22.(满分10分)如下图,AB 、CD 是圆的两条平行弦,BE //AC ,BE 交CD 于E 、交圆于F ,过A 点的切线交DC 的延长线于P ,PC =ED =1,PA =2.(I )求AC 的长;(II )求证:BE =EF .23.(满分10分)在直角坐标系xOy 中,曲线C 的参数方程为2(1x tt y t =+⎧⎨=+⎩为参数),以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴的极坐标系下,曲线P 的方程为24cos 30p p θ-+=.(Ⅰ)求曲线C 的普通方程和曲线P 的直角坐标方程;(Ⅱ)设曲线C 和曲线P 的交点为A 、B ,求||AB .24.(满分10分)已知函数()|2||5|f x x x =---.(I )证明:3-≤)(x f ≤3;(II )求不等式)(x f ≥2815x x -+的解集.参考答案一、选择题(每小题5分,共60分)1~5DCCD A 6~10BBADB 11~12DA二、填空题(每小题5分,共20分)13.;14.34π-;15.±;16.23π。

2024年浙江省中职高二数学试卷(模拟测试)

2024年浙江省中职高二数学试卷(模拟测试)

浙江省中职高二数学试卷(模拟测试)注意事项:1.本试卷分问卷和答卷两部分,满分150分,时间120分钟.2.所有试题均需在答题纸上作答,在试卷和草稿纸上作答无效.3.答题前,考生务必将自己的姓名、准考证号等用黑色字迹的签字笔或钢笔填写在答题卷上,并涂好准考证号码.一、单项选择题(共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分.)1. 已知集合{}{}2,0,1,32A B x x =-=-<<∣,则A B ⋃=( )A. {}2,0,1-B. RC.{}31x x -<<∣ D. {}32x x -<<∣ 2. 若0a b <<,则下列不等式正确的是( )A. ||||a b >B. ||||a b <C. 33a b <D. 22a b <3. 520︒角的终边所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知|2|2x +<,则x 的取值范围是( )A. 0x ≥B. 20x -<<C. 40x -<<D. 2x ≤-5.下列函数中,与函数()f x = ) A. ()lg f x x = B. 1()f x x = C. ()||f x x = D. ()10x f x =6. 已知(1,2)AB =,且点A 的坐标为(2,3),点B 的坐标为( )A (1,1) B.(3,5) C. (1,1)-- D. (4,4) 7. “3x <”是“22x -<<”( )A. 充分条件B. 必要条件C. 充要条件D. 既非充分又非必要条件 8. 在ABC 中,若sin sin cos 0A B C =,则ABC 的形状是( )A. 等腰三角形B. 钝角三角形C. 锐角三角形D. 直角三角形 9. 在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为( ) A. 120 B. 120- C. 15 D. 15- .的10. 在数列{}n a 中,若1111,2n n a a a +==+,则101a =( ) A. 51 B. 52 C. 53 D. 5411. 直线过点(1,1)-,(2,1,则此直线的倾斜角为( ) A. π6 B. π4 C. π3 D. 5π612. 直线340x y +=与圆22()(34)9x y ++-=的位置关系是( )A. 相切B. 相离C. 相交但不过圆心D. 相交且过圆心 13. 5位同学排成一排照相,要求甲,乙两人必须站相邻的排法有( )种A. 20B. 24C.36 D. 48 14. 以双曲线221169x y -=的焦点为两顶点,顶点为两焦点的椭圆的方程是( ) A. 2212516x y += B. 221259x y += C. 2251162x y += D. 221925x y += 15. 已知角α的终边过点(6,8)-,则sin cos αα+=( ) A. 58- B. 15- C. 85 D. 43- 16. 若方程22124x y m m+=--表示焦点在y 轴上的椭圆,则( ) A. 23m << B. 34m << C. 24m << D. 3m >17. 下列命题中正确的是( )A. 平行于同一平面的两直线平行B. 垂直于同一直线的两直线平行C. 与同一平面所成的角相等的两直线平行D. 垂直于同一平面的两直线平行18. 盒子中有2个白球,3个红球,从中任取两个球,则至少有一个白球的概率为( ) A. 25 B. 23 C. 35 D. 71019. 已知函数2(1)2f x x x +=-+,则(3)f =( )A. 8B. 6C. 4D. 220. 已知双曲线22221x y a b-=的一条渐近线方程是43y x =.则双曲线的离心率为( )A. 53B. 43C. 54D. 32 二、填空题(共7小题,每小题4分,共28分)21. 函数2log (1)y x =-的定义域为____________.22. 已知0x >,则41x x++的最小值是____________. 23. 使2sin 1x a =+有意义的a 的取值范围是____________.24. 圆22(2)(2)2x y -++=截直线50x y --=所得的弦长为____________.25. 公比2q =-的等比数列{}n a 中,已知34,32n a a =-=,则n =____________.26. 如果圆锥高为4cm ,底面周长为10πcm ,那么圆锥的体积等于____________.27. 直线2y x =-与双曲线2213x y -=交于A 、B 两点,求弦长||AB =____________. 三、解答题(共8小题,共72分.解答应写出文字说明及演算步骤)28. 计算:22lg137114π125log 3432cos (2π)23-⎛⎫+-++- ⎪⎝⎭. 29. 已知函数2()22f x x bx c =++,当=1x -时,()f x 有最小值8-.(1)求b 、c 值;(2)解不等式:()0f x >. 30.已知n ⎛+ ⎝展开式中各项二项式系数之和64. (1)求n 的值.(2)求展开式中的常数项.31. 在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,且222b c a bc +-=.(1)求角A 的度数;(2)若c =2ABC S = ,求b 边长. 32. 已知过点(2,0)的直线l 与圆224x y +=相交,所得弦长为2,求直线l 的方程.33. 已知数列{}n a 是等差数列,前n 项和2n S n =,求: 的为第4页/共6页(1)4a 的值;(2)数列的通项公式;(3)求前25项的和25S .34. 如图,已知ABCD 是正方形,P 是平面ABCD 外一点,且PA ⊥面ABCD ,3PA AB ==.求:(1)二面角P CD A --的大小;(2)三棱锥P ABD -的体积.35. 如图,已知抛物线22(0)y px p =>的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)以AF 为直径作圆C ,请判断点M 与圆C 位置关系,并说明理由.的浙江省中职高二数学试卷(模拟测试)注意事项:1.本试卷分问卷和答卷两部分,满分150分,时间120分钟.2.所有试题均需在答题纸上作答,在试卷和草稿纸上作答无效.3.答题前,考生务必将自己的姓名、准考证号等用黑色字迹的签字笔或钢笔填写在答题卷上,并涂好准考证号码.一、单项选择题(共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分.) DCBCABBDDAACDBBADDCA二、填空题(共7小题,每小题4分,共28分)【答案】{1}x x >∣【答案】5【答案】[3,1]-【答案】6 【答案】3100πcm 3【答案】6三、解答题(共8小题,共72分.解答应写出文字说明及演算步骤)【28题答案】【答案】26【29题答案】【答案】(1)2,6b c ==-(2){3x x <-∣或1}x >【30题答案】【答案】(1)6n =.(2)540.【31题答案】【答案】(1)60A =︒(2)3b =【32题答案】0y --=0y +-=【33题答案】【答案】(1)7 (2)21n a n =- (3)625【34题答案】【答案】(1)45︒(2)92【35题答案】【答案】(1)24y x =(2)点M 在圆C 上,理由见解析。

中考中职数学试卷及答案

中考中职数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. 3.14159C. √9D. √252. 下列各式中,正确的是()A. 2x + 3y = 5B. 2(x + 3) = 2x + 9C. (2x + 3)² = 4x² + 6x + 9D. (2x - 3)² = 4x² - 6x + 93. 若a > 0,则下列不等式中正确的是()A. a² > 0B. a³ > 0C. a⁴ > 0D. a⁵ > 04. 在直角坐标系中,点A(-2,3)关于原点对称的点是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)5. 若函数f(x) = 2x + 1,则f(-3)的值为()A. -5B. -7C. 5D. 76. 下列各式中,分母有理化的正确方法是()A. √3/√2 √2/√2 = √6/2B. √3/√2 √2/√3 = √6/2C. √3/√2 √3/√3 = 3/2D. √3/√2 √2/√3 = 3/27. 下列各式中,完全平方公式正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²8. 若等腰三角形底边长为4,腰长为5,则该三角形的面积为()A. 10B. 12C. 16D. 209. 下列各式中,勾股定理正确的是()A. a² + b² = c²B. a² + c² = b²C. b² + c² = a²D. a² - b² = c²10. 若x² - 4x + 3 = 0,则x的值为()A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 若a² = 9,则a的值为_________。

职高数学试题及答案

职高数学试题及答案

职高数学试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:C2. 函数y = 2x + 3的斜率是多少?A. 2B. 3C. 4D. 5答案:A3. 圆的面积公式是πr^2,其中r是圆的半径。

已知圆的面积是25π,那么半径r是多少?A. 5B. 3C. 4D. 2答案:B4. 一个等差数列的前三项是2,5,8,那么第四项是多少?A. 11B. 10C. 12D. 9答案:A二、填空题(每题5分,共20分)5. 已知函数f(x) = 3x - 1,求f(2)的值。

答案:56. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。

答案:57. 已知一个等比数列的前三项是2,4,8,那么第四项是______。

答案:168. 一个圆的周长是2πr,已知周长是16π,那么半径r是______。

答案:8三、解答题(每题10分,共30分)9. 解方程:2x - 3 = 7。

答案:x = 510. 已知一个等差数列的前四项是a, a+d, a+2d, a+3d,求第五项。

答案:a+4d11. 求函数y = x^2 - 6x + 8在x = 3处的值。

答案:1四、证明题(每题15分,共15分)12. 证明:如果a, b, c是实数,且a^2 + b^2 = c^2,那么a, b, c 构成一个直角三角形。

答案:略(注:此处应包含完整的证明过程,由于篇幅限制,此处用“略”表示。

)五、应用题(15分)13. 一个工厂生产了100个产品,其中10个是次品。

如果随机抽取一个产品,求抽到次品的概率。

答案:0.1注意:本试题及答案仅供参考,请根据实际情况进行调整和修改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届滁州市应用技术学校
数学试卷
(本卷满分150分,考试时间120分钟)
考生注意:所有答案都要写在答题卡上,写在试题卷上无效。

只能用黑色(蓝色)钢笔(圆珠笔)填写,其他笔答题无效。

(作图用铅笔)。

第一部分(选择题 共60分)
一、选择题:(本大题共12小题,每小题5分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若集合{}0A x x =<,集合{}1B x x =<,则集合A 与集合B 的关系是( )。

A .A B = B .B A ⊆
C .A B

D .B A ∈
2.函数12
()log f x x =的定义域是:( )。

A .(0,)+∞ B .[0,)+∞
C .(0,2)
D .R
3.若0.60.4a a <,则a 的取值范围为:( )。

A .1a >
B .01a <<
C .0
a >
D .无法确定
4、原点到直线y =kx +2的距离为2,则k 的值为:( )。

A. 1
B. -1
C.
±1 D. ±7
5.若sin α与cos α同号,则α是:( )
A .第一象限角
B .第三象
限角
C .第一、二象限角
D .第一、
三象限角
6.平行于同一条直线的两条直线一定:( )。

A .垂直
B .平行
C .异面
D .平行或异面 7






{a
n
}
中,a 1+a 2+a 3+a 4+a 5=15 , 则a 3= ( )。

A. 2 B. 3 C. 4 D. 5
8.等比数列{}n a 中,若210a =,320a =,则5S 等于:( )。

A .155
B .150
C .160
D .165
9.椭圆
22
1916
x y +=的焦点坐标是:( )。

A
.( B .(7,0)±
C
.(0,
D .(0,7)±
10.已知向量(3,2)=-a ,(1,1)=-b ,则32a +b 等于:( )。

A .(7,4)- B .(7,4)
C .
(7,4)--
D .(7,4)-
11.4(1)x -的展开式中,2x 的系数是:( )。

A .6
B .6-
C .4
D .4-
12.在下列抛物线中,准线到焦点距离为2的是 : ( )
A .y 2=8x
B .x 2=-4y
C .y 2
=-2x
D .x 2
=y
第二部分(非选择题 满分90
分)
二、填空题:(本大题共4个小题,每小题4分,共16分.)
13.不等式2230x x +-<的解集是 。

14.若2(2)2
x
f x x -=
+,则(2)f = 。

15.过点(1,1)-,且与直线3210x y -+=垂直的直线方程为 。

16.若事件A 与事件A 互为对立事件,且
()0.2P A =,则()P A = 。

三、解答题:(本大题共6小题,满分74分,17~21每题12分,22题14分。

解答应写出文字说明、证明过程和演算步骤.) 17、(本小题满分12分)设集合{}c b a M ,,=,写出M 的所有子集,并指出其中的真子集。

18.(本小题满分12分)已知2
1
)4tan(=+απ
(I)求αtan 的值; (II)求
α
α
α2cos 1cos 2sin 2+-的值。

19、(每题6分,共12分)
(1)计算:lg25+lg40 (2)解绝对值不等式:513>+x
20.(本小题满分12分)在同一平面内,求过两直线240x y ++=和50x y -+=的交
点,且与直线210x y ++=垂直的直线方程。

21.(本小题满分12分)过圆22(2)9x y -+=外一点M (1,7)引圆的切线,求此切线的长。

22. (本小题满分12分)一斜率为43
的直
线l 过一中心在原点的椭圆的左焦点F 1,且与椭圆的二交点中,有一个交点的纵坐标为3,已知椭圆右焦点2F 到直线的距离为512,
求:
(1)直线l 的方程
(2)椭圆的标准方程.
2015届滁州市中等职业学校高三
第一次联考
数学答题卷
一、选择题:(本大题共12小题,每小题5分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.)
二、填空题:(本
大题共4个小
题,每小题4分,
共16分.)
13. 14.15. 16.
三、解答题:(本大题共6小题,满分74分,17~21每题12分,22题14分。

解答应写出文字说明、证明过程和演算步骤.)
17.解:
18.解:
19.解:20.解:
21.解:
22.解:
2015届滁州市中等职业学校高三
第一次联考
参考答案和评分标准
一、选择题:
二、埴空题:
13.(-3,1) 14. 31

15.2x+3y+1=0 16. 0.8
三、解答题:
17、 解:子集共有8个:φ,{}a ,{}b ,{}c ,{}b a ,,{}c a ,,{}c b ,,{}c b a ,,,
除了集合{}c b a ,, 以外的7个集合,都是集合M 的真子集。

解: (I)解:
αααπα
π
απtan 1tan 1tan 4tan 1tan 4tan )4tan(-+=-+=+ 由 2
1
)4tan(=+απ,有 2
1
tan 1tan 1=-+αα 解得
3
1
tan -=α ……………………4分
(II)解法一:
1cos 21cos cos sin 22cos 1cos 2sin 222-+-=+-αα
ααααα …
…………6分
α
α
αcos 2cos sin 2-= 652
13121
tan -=--=-=α …
…………………12分
解法二:由(I),3
1
tan -=α,得
αα22
cos 91cos 1=- ∴
10
9
cos 2=α ………………………6分
于是
5
41cos 22cos 2=-=αα …
……………………8分
5
3
cos 32cos sin 22sin 2-=-==αααα …………………………10分 代入得:
65
5
41109
532cos 1cos 2sin 2-=+--=+-ααα ……………………12分
19.解:(1)原式=lg(25×
40)=lg1000=lg10³=3lg10=3×
1=3 ……………6分
(2) 513>+x 或
513-<+x
43>x 或 63-<x 3
4>x 或 2-<x
所以原不等式的解集
为:

⎬⎫
⎩⎨
⎧-<>234|x x x 或 ……………12分 20.解:由⎩⎨⎧=+-=++05042y x y x 解得:
⎩⎨
⎧=-=2
3y x ……………6分
所以交
点坐

(-3,2)。

……………8分
直线x+2y+1=0的斜率k 1=21-,
所以所求直线的斜率k=2. ……………10分 所求直线方程为;y-2=2(x+3), 即:
2x-y+8=0. ……………12分
21.解:设圆心为O ,切点为A 。



OM=
2
550491==+;
OA=3 ……………6分 所以AM=
41
950=-。

……………12分
22.解:(1)由已知设F 1(-c ,0),F 2(c ,0)(c >0), 所以直线l 方程
为)(43
c x y +=,----------2分
整理得0343=+-c y x ,由F 2到直线l 距离为
512
,得
512
)4(3|
30432
2=
-++⨯-c c |,即2||=c , 所以c =2. ----------5分 故直线l





3460x y -+=----------7分
(2)直线l 与椭圆一交点A 的纵坐标为3,故A 在直线l 上,所以有
063430=+⨯-x ,即20=x ,即A (2,3).
----------9分
设椭圆方程为122
22=+b
y a x (0>>b a ),因
点A 在椭圆上且c =2,所以14
22=-+a a ,
去分母得0161724=+-a a ,解得12=a 或
162=a ,----------12分
因为c a >,所以162=a ,故
12222=-=c a b ,椭圆标准方程为112
162
2=+y x .----14分。

相关文档
最新文档