八年级实数经典例题及习题4

合集下载

八年级数学_实数习题精选(含答案)

八年级数学_实数习题精选(含答案)

1 / 3八年级数学_实数习题精选(含答案)填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。

2、ππ-+-43= _____________。

3、2的平方根是__________。

4、实数a,b,c 在数轴上的对应点如图所示 化简cb c b a a ---++2=________________。

5、若m 、n 互为相反数,则n m +-5=_________。

6、若2)2(1-+-n m =0,则m =________,n =_________。

7、若a a -=2,则a______0。

8、12-的相反数是_________。

9、38-=________,38-=_________。

10、绝对值小于π的整数有__________________________。

一、 选择题:(本题共10小题,每小题3分,共30分) 11、代数式12+x,x ,y ,2)1(-m ,33x 中一定是正数的有( )。

A 、1个B 、2个C 、3个D 、4个 12、若73-x 有意义,则x 的取值范围是( )。

A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥3713、若x,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。

A 、0B 、21C 、2D 、不能确定 14、下列说法中,错误的是( )。

A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-1 15、64的立方根是( )。

A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba3的值是( )。

A 、 41B 、- 41C 、433D 、4317、计算33841627-+-+的值是( )。

A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。

初二(下)实数的知识点与练习题

初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

(必考题)初中数学八年级数学上册第二单元《实数》检测卷(答案解析)(4)

(必考题)初中数学八年级数学上册第二单元《实数》检测卷(答案解析)(4)

一、选择题1.下列计算正确的是( )A .32221-=B .1025÷=C .325+=D .(4)(2)22-⨯-= 2.16的平方根是( )A .4B .4±C .2±D .-2 3.下列各式计算正确的是( ) A .31-=-1B .38= ±2C .4= ±2D .±9=3 4.下列各式计算正确的是( ) A .235+= B .2236=() C .824+= D .236⨯= 5.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.8 6.一个正方形的面积为29,则它的边长应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 7.计算))202020203232⨯的结果为( ) A .-1 B .0 C .1 D .±18.172178a a b --=+a b - ). A .3± B .3 C .5D .5± 9.已知三角形的三边长a 、b 、c 满足2(2)a +3b -|c 7|=0,则三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定10.下列计算结果,正确的是( ) A 2(3)- 3 B 2+57C .233=1D .2(5)=5 11.在下列数中,是无理数的是( )A .2.1313313331…(两个1之间依次多一个3)B .0.101001-C .227D 364-12.与66最接近的整数是( ) A .9 B .8 C .7 D .6 二、填空题 13.计算:34011|3|(23)2-⎫⎛-+---+-= ⎪⎝⎭____. 14.化简:()()2223x x---=______ 15.计算()()2323-⨯+的结果是_____. 16.若2|1|0++-=a b ,则2020()a b +=_________. 17.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .18.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:43@1232⎛⎫-- ⎪ ⎪⎝⎭(7543)2-=※________. 19.计算1248⨯的结果是________________. 20.已知实数a 、b 在数轴上的位置如图所示,化简2()a b a b -++=_____________三、解答题21.计算:(1)(π﹣2020)0﹣33+-843. (2122733-232.22.计算:3161532272-23.24.计算:(101122-⎛⎫- ⎪⎝⎭25.已知(25|50x y -++-=.(1)求x ,y 的值;(2)求xy 的算术平方根.26.计算:21-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可.【详解】 ∵=∴选项A 错误;∵2= ∴选项B 错误; ∵∴选项C 错误; ∵∴选项D 正确.故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关键.2.C解析:C【分析】先计算16的算术平方根a,再计算a的平方根即可.【详解】∵=,4∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.3.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.4.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB、错误,212=(;C==D==故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.5.B解析:B【分析】先根据勾股定理求得A点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2,∴OA OB ==∴A所表示的数为∵23.612.9613=<,23.713.6913=>, ∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.6.C解析:C【分析】一个正方形的面积为29“夹逼法”的近似值,从而解决问题.【详解】解:∵正方形的面积为29,∴,5<6.故选:C .【点睛】此题主要考查了无理数的估算能力,解决本题的关键是得到最接近无理数的有理数的值.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.C解析:C【分析】利用二次根式的运算法则进行计算,即可得出结论.【详解】解:))2020202022⨯ 202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦ 2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.8.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a ≥0,∴a=17,∴b+8=0,解得b=-8, ∴5==,故选:C .【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键. 9.C解析:C【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c =∴a =,3b = ,c =又∵ 222279a c b +=+==∴该三角形为直角三角形故选C .【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.10.D解析:D【分析】利用二次根式的性质对A 、D 进行判断;根据二次根式的加减法对B 、C 进行判断.【详解】解:A、原式=3,所以A选项错误;B B选项错误;C、原式C选项错误;D、原式=5,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.A解析:A【分析】根据无理数的定义判断即可.【详解】解:A. 2.1313313331…(两个1之间依次多一个3)是无理数,符合题意;B. 0.101001-是有限小数,不是无理数,不符合题意;C. 227是分数,不是无理数,不符合题意;D. 4=-,是整数,不是无理数,不符合题意;故选:A.【点睛】本题考查了无理数的定义,解题关键是熟记无理数是无限不循环小数.12.B解析:B【分析】直接得出89<<,进而得出最接近的整数.【详解】解:∵<<,∴89<<∵28.267.24=∴8.故选B.【点睛】的取值范围是解题关键.二、填空题13.【分析】原式第一项利用有理数的乘方运算法则第二项利用绝对值的代数意义第三项利用负整数指数幂的法则第四项利用零指数幂的运算法则分别化简各项后再进行加减运算即可【详解】解:=-1+3+8+1=11故答案解析:11【分析】原式第一项利用有理数的乘方运算法则,第二项利用绝对值的代数意义,第三项利用负整数指数幂的法则,第四项利用零指数幂的运算法则分别化简各项后,再进行加减运算即可.【详解】解:34011|3|(22-⎛⎫-+---+ ⎪⎝⎭=-1+3+8+1=11.故答案为:11.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.14.-1【分析】根据二次根式有意义的条件求出的范围再根据二次根式的性质和绝对值的性质化简即可得到答案【详解】由可知故答案为:【点睛】本题考查了二次根式化简求值正确掌握二次根式有意义的条件二次根式的性质绝 解析:-1【分析】根据二次根式有意义的条件,求出x 的范围,再根据二次根式的性质和绝对值的性质化简,即可得到答案.【详解】20x -≥,∴2x ≤,30x ∴-<223x x -=---,∴()2323231x x x x x x ---=---=--+=-故答案为:1-.【点睛】本题考查了二次根式化简求值,正确掌握二次根式有意义的条件,二次根式的性质,绝对值的性质是解题关键.15.1【分析】根据二次根式混合运算的法则进行计算即可【详解】解:原式=故答案为:1【点睛】本题考查二次根式的混合运算熟练掌握运算法则是解题的关键解析:1【分析】根据二次根式混合运算的法则进行计算即可.【详解】解:原式=222431-=-=,故答案为:1.【点睛】本题考查二次根式的混合运算,熟练掌握运算法则是解题的关键.16.1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2b=1代入计算即可【详解】∵且∴a+2=0b-1=0∴a=-2b=1∴故答案为:1【点睛】此题考查代数式的求值正确掌握算术平方根的非负性及解析:1【分析】根据算术平方根的非负性及绝对值的非负性求出a=-2,b=1,代入计算即可.【详解】 ∵|1|0-=b 0,|1|0b -≥,∴a+2=0,b-1=0,∴a=-2,b=1,∴202020201()(21)a b +-+==,故答案为:1.【点睛】此题考查代数式的求值,正确掌握算术平方根的非负性及绝对值的非负性求出a=-2,b=1是解题的关键.17.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm∴40BD=cm∴AD==cm=∵DE DBDE=cm∴40∴)=-=cmAE AD DE401∴)AC AE==cm401401.故答案为:)【点睛】本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解.18.【分析】先将新定义的运算化为一般运算再计算二次根式的混合运算即可【详解】解:=====故答案为:【点睛】本题考查新定义的实数运算二次根式的混合运算能根据题意将新定义运算化为一般运算是解题关键解析:1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】-※解:2=2-=2=2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.19.【分析】利用二次根式的乘法运算法则进行计算即可【详解】解:=故答案为:【点睛】本题考查二次根式的乘法熟练掌握二次根式的乘法运算法则是解答的关键【分析】利用二次根式的乘法运算法则进行计算即可.【详解】=【点睛】本题考查二次根式的乘法,熟练掌握二次根式的乘法运算法则是解答的关键.20.【分析】先根据数轴的定义可得从而可得再化简绝对值和二次根式然后计算整式的加减即可得【详解】由数轴的定义得:则因此故答案为:【点睛】本题考查了数轴绝对值二次根式整式的加减熟练掌握数轴的定义是解题关键 解析:2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此()a b b a a b -=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.三、解答题21.(1)-2;(2)4【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可.【详解】解:(1)原式=()12212-⨯+-+=121+=2-;(2)原式()32-=231+-=4.【点睛】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键.22.【分析】根据二次根式的性值计算即可;【详解】原式66=--⨯+,+6,;【点睛】本题主要考查了二次根式的混合运算,准确计算是解题的关键.23.-4【分析】利用立方根的定义、二次根式的乘法法则及二次根式的性质进行化简,再合并化简结果即可.【详解】1342=-+--4=-.【点睛】此题考查了实数的混合运算,掌握立方根的定义、二次根式的乘法法则以及二次根式的性质是解题的关键.24.3--【分析】先分别计算负指数、二次根式化简、0指数和绝对值,再进行加减即可.【详解】解:原式(212=--- ,212=---+=3-【点睛】本题考查了负指数、二次根式化简、0指数和绝对值有关的实数计算,熟练按照法则进行计算是解题关键.25.(1)5x =5y =+2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.26.1.【分析】按照二次根式性质,立方根的定义,绝对值的意义,化简即可.【详解】解:原式12412=-⨯=1.【点睛】本题考查了二次根式的性质,立方根的定义,绝对值的化简,熟记性质是解题的关键.。

(压轴题)初中数学八年级数学上册第二单元《实数》测试(答案解析)(4)

(压轴题)初中数学八年级数学上册第二单元《实数》测试(答案解析)(4)

一、选择题1.下列计算正确的是( )A .1=B 2=C =D 2.下面是一个按某种规律排列的数表,那么第7行的第2个数是:( )A B C D .3.,2π,0.其中无理数出现的频率为( )A .0.2B .0.4C .0.6D .0.8 4.若制作的一个长方体底面积为24,长、宽、高的比为4:2:1,则此长方体的体积为( )A .216B .C .D .5.81的平方根是( )A B .9- C .9 D .9± 6)A .3B .﹣3C .±3D .6 7.一个正方体的水晶砖,体积为380cm ,它的棱长大约在( ) A .45cm cm -之间 B .67cm cm -之间 C .78cm cm -之间 D .89cm cm -之间8.x 的取值范围是( )A .0x ≥B .1x ≤C .1x ≥-D .1≥x 9.下列说法中不正确的是( )A .0是绝对值最小的实数B 2=C .3是9的一个平方根D .负数没有立方根 10.已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmBCD .3dm11.实数a 、b 在数轴上的位置如图所示,那么a b -+的结果是( )A .2aB .2bC .2a -D .2b -12.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( ) A .①② B .①②③ C .②③ D .③二、填空题13.计算:23-=______ ;364=______. 14.面积为2的正方形的边长是__________. 15.对于正整数n ,规定111()(1)1f n n n n n ==-++,例如:111(1)1212f ==-⨯,111(2)2323f ==-⨯,111(3)3434f ==-⨯,…则(1)(2)(3)(2021)f f f f ++++= _______ 16.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.17.比较大小:22-_____________1(填“>”、“=”或“<”). 18.已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________. 19.如图所示,在数轴上点A 所表示的数为a ,则a 的值为____________________.20.3a ++|b ﹣2|=0,则(a+b )2020的值为______.三、解答题21.已知2x +3的算术平方根是5,5x +y +2的立方根是3,求x ﹣2y +10的平方根. 22.已知23a =23b =-a 2+b 2﹣3ab 的值.23.(1)计算:﹣2020159(2)求x 的值:23x ﹣10=6.24.规定一种新运算a b ad bc c d =-,如213(2)23218=⨯-⨯-=-. (1)若1xy =-,则2363x y -=________;(2)当1x =-时,求223213222x x x x -++--+--的值. 25.化简(1)+(226.计算:2016(2019)|52π-⎛⎫--- ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】二次根式的混合运算,加减法的基础是同类二次根式;除法运算按照法则进行,二次根式的化简,先乘后化简即可.【详解】 ∵=∴选项A 错误;∵22=, ∴选项B 错误; ∵∴选项C 错误; ∵∴选项D 正确.故选D.【点睛】本题考查了二次根式的混合运算,熟记二次根式混合运算的基本法则,特别是同类二次根式是加减运算的基础是解题的关键.2.B解析:B【分析】根据观察,可得规律(n-1)最后一个数是(n-1),可得第n 行的第二个数的算术平方根【详解】……第n第7行的第2故答案为:B.【点睛】本题是通过算术平方根的变化探究数字变化规律,观察得出规律是解题关键.3.C解析:C【分析】根据无理数的意义和频率意义求解.【详解】=π是无限不循环小数,解:∵2∴π是有理数,∴由30.6=可得无理数出现的频率为0.6,5故选C .【点睛】本题考查无理数和频率的综合应用,熟练掌握无理数和频率的意义是解题关键.4.C解析:C【分析】设出长宽高,利用底面积,求出高,最后再求出体积【详解】设长方体的高为x,则长为4x,宽为2x,由题意得:4x×2x=24解得x x=(舍去)长方体的体积为故答案选:C【点睛】主要考查的是平方根的定义及算术平方根意义,,熟练掌握定义是解题的关键. 5.D解析:D【分析】根据平方根的定义求解.【详解】∵2(9)±=81,∴81的平方根是9±,故选:D.【点睛】此题考查平方根的定义,熟记定义并掌握平方计算是解题的关键.6.A解析:A【分析】9,再利用算术平方根的定义求出答案.【详解】∵9,∴3,故选:A.【点睛】.7.A解析:A【分析】【详解】解:∵正方体的水晶砖,体积为380cm,∴3,∵<<∴45<<,故选:A.【点睛】本题考查了立方根的估算,找到两个连续整数的立方,一个大于80,一个小于80是解题关键.8.D解析:D【分析】利用二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:D.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.9.D解析:D【分析】根据实数,平方根和立方根的概念逐一判断即可.【详解】0的绝对值是0,负数的绝对值为正数,正数的绝对值为正数,正数大于0,故A正确;2,故B正确;9的平方根是3±,故C正确;任何数都有立方根,故D错误;故选D.【点睛】本题考查了实数的概念,求一个数的平方根或立方根,熟练掌握平方根和立方根的概念是本题的关键.10.B解析:B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a=,解得:a=∴dm.故选:B.【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键.11.D解析:D【分析】由数轴可得到0b a <<a b =+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴a b -=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.12.D解析:D【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.【详解】解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误; ②∵42=16,∴4是16的算术平方根,故②错误,③平方根等于它本身的数只有0,故③正确,④8的立方根是2,故④错误.故选:D .【点睛】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.二、填空题13.-94【分析】分别根据乘方和开方的意义即可求解【详解】解::-9故答案为:-9;4【点睛】本题考查了乘方和开方的意义理解乘方和开方的意义是解题关键注意在计算-32时底数为3解析:-9 4【分析】分别根据乘方和开方的意义即可求解.【详解】解::23-=-94=.故答案为:-9;4.【点睛】本题考查了乘方和开方的意义,理解乘方和开方的意义是解题关键,注意在计算-32时,底数为3.14.【分析】设正方形的边长为x根据题意得求解即可【详解】解:设正方形的边长为x由题意得∴x=(负值舍去)故答案为:【点睛】此题考查平方根的实际应用正确求一个数的平方根是解题的关键【分析】设正方形的边长为x,根据题意得22x=,求解即可.【详解】解:设正方形的边长为x,由题意得22x=,∴(负值舍去),【点睛】此题考查平方根的实际应用,正确求一个数的平方根是解题的关键.15.【分析】根据题意可得:原式=再根据加法的结合律相加计算即可【详解】解:原式=故答案为:【点睛】本题考查了数字类规律探究和新定义问题正确理解题意准确计算是关键解析:2021 2022【分析】根据题意可得:原式=111111112233420212022-+-+-++-,再根据加法的结合律相加计算即可.【详解】解:原式=111111112021 11223342021202220222022 -+-+-++-=-=.故答案为:2021 2022.【点睛】本题考查了数字类规律探究和新定义问题,正确理解题意、准确计算是关键.16.>【分析】根据勾股定理求出OB长确定点A表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.17.【分析】先估算出无理数的大小再进行比较即可【详解】解:∵1<2<4∴1<<2∴0<<1故答案为:<【点睛】此题考查实数的大小比较关键是估算出无理数的大小解析:<【分析】的大小,再进行比较即可.【详解】解:∵1<2<4,∴1<2,∴0<21,故答案为:<【点睛】的大小.18.12或【分析】根据平方和立方的意义求出a 与b 的值然后代入原式即可求出答案【详解】解:∵a2=64b3=64∴a=±8b=4∴当a=8b=4时∴a+b=8+4=12当a=-8b=4时∴a+b=-8+4解析:12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.19.【分析】根据图示得到圆的半径为所以A点表示的数为【详解】∵圆的半径为∴A点表示的数为故答案为【点睛】此题主要考查了实数与数轴之间的对应关系关键是要判断出圆的半径然后根据实数计算法则求解即可解析:1-【分析】A点表示的数为1--【详解】∵圆的半径为,∴A点表示的数为1--故答案为1【点睛】此题主要考查了实数与数轴之间的对应关系,关键是要判断出圆的半径,然后根据实数计算法则求解即可.20.1【分析】首先根据非负数的性质可求出ab的值进而可求出ab的和【详解】∵∴a+3=0b﹣2=0∴a=﹣3b=2;因此a+b=﹣3+2=﹣1则(a+b)2020=(﹣1)2020=1故答案为:1【点睛解析:1【分析】首先根据非负数的性质可求出a、b的值,进而可求出a、b的和.【详解】b-=∵20∴a+3=0,b﹣2=0,∴a=﹣3,b=2;因此a+b=﹣3+2=﹣1.则(a+b)2020=(﹣1)2020=1.故答案为:1.【点睛】本题主要考查算术平方根与绝对值的非负性及乘方,熟练掌握算术平方根与绝对值的非负性及乘方是解题的关键.三、解答题21.±9【分析】根据立方根与算术平方根的定义得到5x +y +2=27,2x +3=25,则可计算出x =11,y =﹣30,然后计算x ﹣2y +10后利用平方根的定义求解.【详解】解:因为2x +3的算术平方根是5,5x +y +2的立方根是3,∴23255227x x y +=⎧⎨++=⎩解得:1130x y =⎧⎨=-⎩, ∴x ﹣2y +10=81,∴x﹣2y +10的平方根为:9=±.【点睛】本题主要考查了算术平方根,平方根与立方根,熟记相关定义是解答本题的关键. 22.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵2a =+2b =-∴a +b =4,(2431ab =+=-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.23.(1)2)x=2.【分析】(1)根据实数的混合运算的基本顺序依次计算即可;(2)根据立方根的定义求解即可.【详解】(1)原式(2)∵23x ﹣10=6,∴23x =16,∴3x =8,∴x=2.【点睛】本台考查了实数的混合运算和立方根的定义,熟练掌握混合运算的基本顺序和立方根的定义是解题的关键.24.(1)12;(2)7-【分析】(1)利用新定义的运算得到618xy +,将xy 的值代入即可求解(2)先将x 的值代入求解,再利用新定义的运算求解即可【详解】(1)2363x y -=618xy +1xy =-∴原式=()618611812xy +=⨯-+=(2)当1x =-时,223321222x x x x --++--+-=4352----=()()()()42357-⨯---⨯-=- 【点睛】本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.25.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.26.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2016(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54⨯+---3=+-154=-2【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.。

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练(含参考答案)

八年级数学实数计算专项训练练习1 平方根与算术平方根(1)1. 求下列各数的平方根:(1)100; (2)0.0081; (3)499; (4)169.2. 求下列各数的平方根与算术平方根:(1)(-6)2; (2) 0; (3)-3; (4)163. 求下列各式的值: (1)225; (2)4936-; (3)121144±.4. 求下列各式中的x :(1)02592=-x ; (2)36)12(42=-x ;(2)81162=x ; (4)025)2(2=--x .5. 计算:(1)169144+; (2)1691971•(3)04.025÷练习2 平方根与算术平方根(2)1. 填空:(1)=121 ; (2)=-256 ; (3)=43 ; (4)=-412 . 2.求下列各数的平方根与算术平方根: (1)196; (2)(-3)2; (3)49151; (4)0.5625.3.求下列各数的算术平方根,并用符号表示出来:(1)7.12; (2)(-3.5)2; (3)3.25; (4)412.4. 求下列各式的值: (1)0004.0-; (2)256169±; (3)818±; (4)2)8(-.5. 求下列各式中的x :(1)025692=-x ; (2)25)12(42=-x ;(3)822=x ; (4)126942-=x练习3 立方根1. 求下列各数的立方根:(1)-27; (2)-0.125; (3)27102; (4)729;2. 求下列各式的值:(1)3512-; (2)38729; (3)3008.0-;(4)31292⨯⨯; (5)31000-; (6)364--.3. 计算:(1)33512729+-; (2)333001.01251241027.0-+--.4. 求下列各式中的x : (1) 08273=-x ; (2)54)32(413=+x ;(3)81)1(33=-x ; (4)216)2(3-=+-x .练习4 平方根与立方根1. 求下列各数的平方根: (1)169; (2)9100; (3)2)5(-; (4)412.2. 求下列各数的立方根: (1)125; (2)2764; (3)81-; (4)2)8(-.3. 求下列各式中的x :(1)81162=x ; (2)11253=x ;(2)81631)14(2=-+x ; (4)64)3(273-=-x .练习5 实数的混合运算(Ⅰ)1. 计算:(1)9125833-+--; (2)222)3(2)32()6(----+-;(3)0332019)279(8)1(+++-; (4)3220183)21()1(---+--;(5)23)6(216-+-; (6)31081412+-+-π;(7)130)31(27)14.3()2(--++-+--π; (8)230)3(27)2(12149--+--+π.练习6 实数混合运算(Ⅱ)1. 计算:(1)81)1()21(01--+-; (2)3322782+---;(3)2)71(27)1(130-+-⨯--π; (4)28)5()2()41(3021÷--⨯-+--.2.求下列各式中的x :(1)2764)9(3-=-x ; (2)0121)3(312=-+x ;(3)0216)1(83=--x ; (4)048)43(312=--x .练习7 实数混合运算(Ⅲ)1. 计算:(1)03)2019(4)8(π+++-; (2)20193)1(829-+-+-+; (3)3008.01003631-⨯; (4))281(12151322-+--;(5)13)31(98-+--; (6)2)21(40)3(2-+----π;(7)02)33()1(93-+--+-; (8)148)3(432-----+;(9)230)1.0(27213-+-⎪⎭⎫ ⎝⎛-+-π; (10)3221691)21(--+---.练习8 实数的混合运算(Ⅳ)1. 求下列各式中的x :(1)822=x ; (2)81253=x ;(3)12)1(312=-x ; (4)064)1(273=++x .2.计算:(1))41(28)2009(30-+-+-; (2)0312)8(24)3(-⨯-+--;(3)032)2()2(641-⨯--+-; (4)9)21(3)4(2)4()3(27823333-⨯-+-⨯---.练习9 二次根式(Ⅰ)1.求下列各式的值: (1)32; (2)250; (3)3248; (4)203. 2.计算: (1)169144964⨯; (2)40219031⨯;(3)271032121÷-; (4)227818⨯÷; (5)1.1337.2⨯; (6)5232232⨯÷;(7))2223(18⨯-÷; (8)213827÷⨯.3.已知0276433=-++b a ,求b b a )(-的立方根。

初二数学之实数基础练习(含解析)

初二数学之实数基础练习(含解析)

初二数学之实数基础练习一.选择题(共8小题)1.(2016春•固镇县期末)二次根式的值是()A.﹣2 B.2或﹣2 C.4 D.22.(2016秋•巴中校级期中)的平方根是()A.± B.±C.D.3.(2016•海沧区模拟)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D4.(2016春•德州校级期中)下列说法中正确的是()A.9的平方根是3 B.的算术平方根是±2C.的算术平方根是4 D.的平方根是±25.(2016春•伽师县校级期中)的平方根为()A.±8 B.±4 C.±2 D.46.(2016春•龙口市期中)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.3+B.15+C.3+3D.15+77.(2016春•盐亭县校级月考)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣8.(2015秋•天水期末)若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1二.填空题(共4小题)9.(2016•乐山模拟)有理数9的算术平方根是______.10.(2015•淮北模拟)计算:的平方根=______.11.(2015春•丹江口市期末)若一个正数的两个平方根是2a﹣1和﹣a+2,则a=______,这个正数是______.12.(2015秋•邵阳县校级期末)若2a﹣4与3a﹣1是同一个数的平方根,则a的值为______.三.解答题(共2小题)13.(2015•浦东新区三模)计算:20150﹣()+﹣|2﹣3|14.(2015春•潘集区期中)已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.初二数学之实数基础练习参考答案与试题解析一.选择题(共8小题)1.(2016春•固镇县期末)二次根式的值是()A.﹣2 B.2或﹣2 C.4 D.2【分析】根据算术平方根的意义,可得答案.【解答】解:=2,故D正确,故选:D.【点评】本题考查了二次根式的性质,=a(a≥0).2.(2016秋•巴中校级期中)的平方根是()A.± B.±C.D.【分析】首先根据算术平方根的性质化简,再根据平方根的定义即可求出结果.【解答】解:∵,∴的平方根是±,∴的平方根是±.故选A.【点评】此题主要考查了平方根的定义和性质,解决本题的关键是先求得值.3.(2016•海沧区模拟)如图数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与11﹣2最接近的点是()A.A B.B C.C D.D【分析】由于,所以,所以,因为点B表示的数是﹣1.5,在﹣2~﹣1之间,所以点B最接近.【解答】解:∵,∴,∴,∵点B表示的数是﹣1.5,在﹣2~﹣1之间,∴点B最接近,故选:B.【点评】此题主要考查了估算无理数的大小,可以直接估算所以无理数的值,也可以利用“夹逼法”来估算.4.(2016春•德州校级期中)下列说法中正确的是()A.9的平方根是3 B.的算术平方根是±2C.的算术平方根是4 D.的平方根是±2【分析】根据平方根,算术平方根的定义对各选项分析判断后利用排除法求解.【解答】解:A、9的平方根是±3,故本选项错误;B、∵=4,∴的算术平方根是2,故本选项错误;C、的算术平方根是2,故本选项错误;D、∵=4,∴的平方根是±2,故本选项正确.故选D.【点评】本题考查了算术平方根,平方根的定义,要注意先求出的值,这也是本题最容易出错的地方.5.(2016春•伽师县校级期中)的平方根为()A.±8 B.±4 C.±2 D.4【分析】首先根据立方根的定义化简,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.6.(2016春•龙口市期中)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.3+B.15+C.3+3D.15+7【分析】按所示的程序将n=输入,结果为3+,小于15;再把3+作为n再输入,得15+7,15+7>15,则就是输出结果.【解答】解:当n=时,n(n+1)=(+1)=3+<15,当n=3+时,n(n+1)=(3+)(4+)=15+7>15,故选D【点评】本题以一种新的运算程序考查了实数的运算,要注意两方面:①新的运算程序要准确;②实数运算要准确.7.(2016春•盐亭县校级月考)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣【分析】由x得出x<0,再利用二次根式的性质来化简求解.【解答】解:由x可知x<0,所以x=﹣=﹣,故选:C.【点评】本题主要考查了二次根式的性质与化简,解题的关键是求出x<0.8.(2015秋•天水期末)若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1【分析】由于一个正数的平方根有两个,且互为相反数,可得到2m﹣4与3m﹣1互为相反数,2m﹣4与3m﹣1也可以是同一个数.【解答】解:∵2m﹣4与3m﹣1是同一个正数的平方根,∴2m﹣4+3m﹣1=0,或2m﹣4=3m﹣1,解得:m=1或﹣3.故选D.【点评】本题主要考查了平方根的概念,解题时注意要求是一个正数的平方根.二.填空题(共4小题)9.(2016•乐山模拟)有理数9的算术平方根是3.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【解答】解:∵32=9,∴9算术平方根为3.故答案为:3.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.10.(2015•淮北模拟)计算:的平方根=±2.【分析】先求出的值,再根据平方根的定义解答.【解答】解:∵=8,∴的平方根为,±即±2.故答案为:±2.【点评】本题考查了平方根与算术平方根的定义,是基础概念题,熟记概念是解题的关键,要注意先求出的值,再进行解答.11.(2015春•丹江口市期末)若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.【分析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.12.(2015秋•邵阳县校级期末)若2a﹣4与3a﹣1是同一个数的平方根,则a的值为1或﹣3.【分析】由于一个正数有两个平方根,它们互为相反数,由此即可列出关于a的方程,解方程即可解决问题.【解答】解:依题意可知:2a﹣4+(3a﹣1)=0,或2a﹣4=3a﹣1,解得:a=1或a﹣3.故答案为:1或﹣3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三.解答题(共2小题)13.(2015•浦东新区三模)计算:20150﹣()+﹣|2﹣3|【分析】分别进行零指数幂、二次根式的化简、分数指数幂、绝对值的化简等运算,然后合并.【解答】解:原式=1﹣+2+2﹣(3﹣2)=3.【点评】本题考查了二次根式的混合运算,涉及了零指数幂、二次根式的化简、分数指数幂、绝对值的化简等等知识掌握运算法则是解答本题关键.14.(2015春•潘集区期中)已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.【分析】根据平方根的定义求出a的值,再根据立方根的定义求出b的值,最后计算2(a+b)的值,即可解答.【解答】解:由已知得,2a﹣1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:±=±4.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.。

精选八年级实数单元测试题(含答案)

精选八年级实数单元测试题(含答案)

精选八年级实数单元测试题(含答案)精选八年级实数单元测试题(含答案)一、基础测试1.算术平方根:如果一个正数x等于a,即x2=a,那么这个x正数就叫做a的算术平方根,记作,0的算术平方根是。

2.平方根:如果一个数x的等于a,即x2=a那么这个数a就叫做x 的平方根(也叫做二次方根式),正数a的平方根记作 .一个正数有平方根,它们 ;0的平方根是 ;负数平方根.特别提醒:负数没有平方根和算术平方根.3.立方根:如果一个数x的等于a,即x3=a,那么这个数x就叫做a的立方根,记作.正数的立方根是,0的立方根是,负数的立方根是。

4、实数的分类5.实数与数轴:实数与数轴上的点______________对应.6.实数的相反数、倒数、绝对值:实数a的相反数为______;若a,b 互为相反数,则a+b=______;非零实数a的倒数为_____(a≠0);若a,b 互为倒数,则ab=________。

7.8.数轴上两个点表示的数,______边的总比___边的大;正数_____0,负数_____0,正数___负数;两个负数比较大小,绝对值大的反而____。

9.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.二、专题讲解:专题1平方根、算术平方根、立方根的概念若a≥0,则a的平方根是,a的算术平方根;若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。

【例1】的平方根是______【例2】327的平方根是_________【例3】下列各式属于最简二次根式的是()A.【例4】(2010山东德州)下列计算正确的是(A)(B)(C)(D)【例5】(2010年四川省眉山市)计算的结果是A.3B.C.D.9专题2实数的有关概念无理数即无限不循环小数,初中主要学习了四类:含的数,如:等,开方开不尽的数,如等;特定结构的数,例0.010010001…等;某些三角函数,如sin60,cos45等。

初二实数章节练习题及答案

初二实数章节练习题及答案

初二实数章节练习题及答案实数是数学中一个重要的概念,它包括有理数和无理数两部分。

在初二的实数章节中,我们需要掌握有理数和无理数的性质、加减乘除法则以及实数的比较等内容。

为了帮助同学们更好地复习和巩固这一章节的知识,我整理了一些实数练习题,并附上了详细的答案和解析。

练习题一:有理数的四则运算1. 计算:(-2/3) + (5/6) - (3/4)答案:首先要找到一个公共分母,分母可以取6和4的最小公倍数12。

将分数进行通分得到:(-8/12) + (10/12) - (9/12) = -7/12解析:要进行有理数的加减运算,首先需要找到一个公共分母,然后进行通分,最后根据相同的分母进行运算。

2. 计算:(7/8) × (-4/9)答案:(-28/72) = -7/18解析:有理数的乘法是将分数的分子相乘得到新的分子,分母相乘得到新的分母,然后再进行约分。

3. 计算:(-15/4) ÷ (3/5)答案:(-75/12) = -25/4解析:有理数的除法可以转化为乘法,即将除法转换为乘法的倒数,然后进行乘法运算。

练习题二:实数的比较1. 判断下列各组数的大小关系:0.5, -2.7, -2, -2.05答案:从小到大的顺序是:-2.7, -2.05, -2, 0.5解析:实数的大小比较可以通过数轴上的位置来判断,数越靠右边越大,数越靠左边越小。

2. 将下列各数填入括号内使不等关系成立:(-3) < ( ) < (-2)答案:(-3) < (-2.5) < (-2)解析:在两个给定的数之间插入一个数时,可以通过取中间值或者使用小数来使不等关系成立。

练习题三:无理数的性质1. 判断下列说法是否正确,并给出理由:(1) 根号2是一个无理数。

(2) π是一个无理数。

答案:(1) 正确,根号2是一个无理数。

根号2不能表示为两个整数的比值,因此它是无理数。

(2) 正确,π是一个无理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级实数练习
经典例题
类型一.有关概念的识别
1.下面几个数:0.23,
1.010010001…,,3π,
,,其中,
无理数的个数有()
A、1
B、2
C、3
D、4
解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,
是无理数
故选C
举一反三:
【变式1】下列说法中正确的是()
A、的平方根是±3
B、1的立方根是±1
C、
=±1 D、
是5的平方根的相反数
【答案】本题主要考察平方根、算术平方根、立方根的概念,
∵=9,9的平方根是±3,∴A正确.
∵1的立方根是1,=1,
是5的平方根,∴B、C、D都不正确.
【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()
A、1
B、 1.4
C、
D、
【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为
,由圆的定义知|AO|=,∴A表示数为
,故选C.
【变式3】
【答案】∵π= 3.1415…,∴9<3π<10
因此3π-9>0,3π-10<0

类型二.计算类型题
2.设,则下列结论正确的是()
A. B.
C. D.
解析:(估算)因为,所以选B
举一反三:
【变式1】1)1.25的算术平方根是__________;平方根是__________.2) -27立方根是__________. 3)___________,
___________,
___________.
【答案】1);
.2)-3. 3),

【变式2】求下列各式中的
(1)(2)
(3)
【答案】(1)(2)x=4或x=-2(3)x=-4
类型三.数形结合
3. 点A在数轴上表示的数为
,点B在数轴上表示的数为
,则A,B两点的距离为______
解析:在数轴上找到A、B两点,
举一反三:
【变式1】如图,数轴上表示1,的对应点分别为A,B,
点B关于点A的对称点为C,则点C表示的数是().
A.- 1 B.1-
C.2-
D.-2
【答案】选C
[变式2]已知实数、
、在数轴上
的位置如图所示:
化简
【答案】:
类型四.实数绝对值的应用
4.化简下列各式:
(1)
|-1.4|
(2) |π-3.142|
(3)
|-|
(4) |x-|x-3|| (x≤3)
(5) |x2+6x+10|
分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。

解:(1) ∵=1.414…<
1.4
∴|-1.4|=1. 4-
(2) ∵π=3.14159…<3.142
∴|π-3.142|=3.142-π
(3) ∵<
, ∴|-|=
-
(4) ∵x≤3, ∴x-3≤0,
∴|x-|x-3||=|x-(3-x)|
=|2x-3| =
说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对
这个绝对值的基本概念要有清楚的认识,并能灵活运用。

(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|
∵(x+3)2≥0, ∴(x+3)2+1>0
∴|x2+6x+10|= x2+6x+10
举一反三:
【变式1】化简:
【答案】
=+
-=类型五.实数非负性的应用
5.已知:
=0,求实数a, b的值。

分析:已知等式左边分母不能为0,只能有
>0,则要求a+7>0,分子
+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a, b的值。

解:由题意得
由(2)得 a2=49 ∴a=±7
由(3)得 a>-7,∴a=-7不合题意舍去。

∴只取a=7
把a=7代入(1)得b=3a=21
∴a=7, b=21为所求。

举一反三:
【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。

解:∵(x-6)2++|y+2z|=0
且(x-6)2≥0, ≥0, |y+2z|≥0,
几个非负数的和等于零,则必有每个加数都为0。

∴解这个方程组得
∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65
【变式2】已知那么a+b-c的值为___________
【答案】初中阶段的三个非负数:,
a=2,b=-5,c=-1; a+b-c=-2
类型六.实数应用题
6.有一个边长为11cm的正方形和一个长为13cm,宽
为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。

解:设新正方形边长为xcm,
根据题意得 x2=112+13×8
∴x2=225
∴x=±15
∵边长为正,∴x=-15不合题意舍去,
∴只取x=15(cm)
答:新的正方形边长应取15cm。

举一反三:
【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。

(4个长方形拼图时不重叠)
(1)计算中间的小正方形的面积,聪明的你能发现什么?
(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积
多24cm2,求中间小正方形的边长.
解析:(1)如图,中间小正方形的边长是:
,所以面积为=
大正方形的面积=,
一个长方形的面积=。

所以,
答:中间的小正方形的面积,
发现的规律是:(或

(2) 大正方形的边长:
,小正方形的边长:
,即

又大正方形的面积比小正方形的面积多24 cm2
所以有,
化简得:
将代入,得:
cm 答:中间小正方形的边长2.5 cm。

类型七.易错题
7.判断下列说法是否正确
(1)的算术平方根是-3;(2)
的平方根是±15.
(3)当x=0或2时,(4)
是分数
解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故
(2)表示225的算术平方根,即
=15.实际上,本题是求15的平方根,
故的平方根是
.
(3)注意到,当x=0时,
=,显然此
式无意义,
发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,
x=0.
(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.
类型八.引申提高
8.(1)已知
的整数部分为a,小数部分为b,求a2-b2的值.
(2)把下列无限循环小数化成分数:①②

(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.
解:由得
的整数部分a=5,
的小数部分


(2)解:(1) 设x=①
则②
②-①得
9x=6
∴.
(2) 设①
则②
②-①,得
99x=23
∴.
(3) 设①
则②。

相关文档
最新文档