数学期望的性质与条件期望
数学期望——精选推荐

数学期望⽬录数学期望定义离散型随机变量ξ有分布列x1x2⋯x k⋯p1p2⋯p k⋯如果级数 ∑k x k p k绝对收敛,则记Eξ=∑k x k p k称为ξ的数学期望.定义连续型随机变量ξ有密度函数p(x) ,若∫+∞−∞|x|p(x)dx<∞ ,则称Eξ=∫+∞−∞xp(x)dx为ξ的数学期望.定义随机变量ξ有分布函数F(x) ,若∫+∞−∞|x|dF(x)<∞ ,则称Eξ=∫+∞−∞xdF(x)为ξ的数学期望.设ξ为随机变量,η=f(ξ) ,则Eη=∫+∞−∞f(y)dFξ(y)当ξ连续时有密度函数p(x) ,则Eη=∫+∞−∞f(y)p(y)dy随机变量ξ,η独⽴同分布当且仅当对任意有界连续函数f有Ef(ξ)=Ef(η) .条件期望定义设ξ=x时,η的条件分布函数为Fη|ξ(y|x) ,则条件期望为E(η|ξ=x)=∫+∞−∞ydFη|ξ(y|x)若有条件分布列pη|ξ(y j|x) ,则E(η|ξ=x)=∑j y j pη|ξ(y j|x)若有条件密度函数pη|ξ(y|x) ,则E(η|ξ=x)=∫+∞−∞ypη|ξ(y|x)dy显然,若ξ,η相互独⽴,则E(η|ξ=x)=Eη .定理条件期望E(η|ξ=x) 可看作是x的函数,记为m(x) ,则m(ξ) 是随机变量,称m(ξ) 为已知ξ时η的条件期望,记为E(η|ξ) ,从⽽条件期望的数学期望有E[E(η|ξ)]=EηProof.利⽤期望定义m(x)=E(η|ξ=x)=∫+∞−∞ypη|ξ(y|x)dy=∫+∞−∞y p(x,y) pξ(x)dy则有E[E(η|ξ)]=E(m(ξ))=∫+∞−∞m(x)pξ(x)dx代⼊即证;直观上,E(η|ξ) 为在给定的ξ下的η的期望,它是ξ的函数,再求期望时,实际上是对所有的ξ求η的期望.全期望公式当ξ为离散型随机变量,记p i=P(ξ=x i) ,则Eη=∑i p i E(η|ξ=x i)[] Loading [MathJax]/jax/element/mml/optable/BasicLatin.js它是上⾯等式的直接推导.性质加法性质:Eξ1,⋯,Eξn存在,则∀c1,⋯,c n及b,有En∑i=1c iξi+b=n∑i=1c i Eξi+b乘法性质:若ξ1,⋯,ξn相互独⽴,Eξ1,⋯,Eξn存在,则E(ξ1⋯ξn)=Eξ1⋯Eξn有界收敛定理:设∀ω∈Ω有lim,且\forall n\ge 1,\ |\xi_n|\le M,则\lim_{n\to\infty}E\xi_n = E\xiE(h(\xi)\eta|\xi) = h(\xi)E(\eta|\xi) .柯西-施⽡茨不等式:|E(XY|Z)|\le \sqrt{E(X^2|Z)}\cdot \sqrt{E(Y^2|Z)} .⽅差定义称\xi-E\xi为\xi关于均值E\xi的离差,若E(\xi-E\xi)^2存在有限,则称其为\xi的⽅差,记作Var\xi或D\xiVar\xi = E(\xi-E\xi)^2 = E\xi^2 - (E\xi)^2为了统⼀量纲,有时使⽤标准差\sqrt{Var\xi} .切⽐雪夫不等式若⽅差存在,则\forall \epsilon>0,有P(|\xi-E\xi|\ge\epsilon)\le\dfrac{Var\xi}{\epsilon^2}Proof.⾮常巧妙的放缩法\begin{aligned} P(|\xi-E\xi|\ge\epsilon) &= \int_{|x-E\xi|\ge\epsilon}dF(x)\\ &\le \int_{|x-E\xi|\ge\epsilon}\dfrac{(x-E\xi)^2}{\epsilon^2}dF(x)\\ &\le \int_{-\infty}^{+\infty}\dfrac{(x-E\xi)^2}{\epsilon^2}dF(x)\\ &= \dfrac{1}{\epsilon^2}\int_{-\infty}^{+\infty}(x-E\xi)^2dF(x)\\ &= \dfrac{Var\xi}{\epsilon^2} \end{aligned}切⽐雪夫不等式说明\xi离均值E\xi的距离,被⽅差所控制,即\xi落在(E\xi-\epsilon,E\xi+\epsilon)的概率⼤于1-\frac{Var\xi}{\epsilon^2} .性质Var\xi = 0 \Leftrightarrow P(\xi=c)=1;切⽐雪夫不等式的直接推论.Var(c\xi+b) = c^2Var\xi .Var\xi \le E(\xi-c)^2 .加法性质:Var\left(\sum_{i=1}^n\xi_i\right) = \sum_{i=1}^nVar\xi_i + 2 \sum_{1\le i<j\le n} Cov(\xi_i,\xi_j)若\xi_1,\cdots,\xi_n两两独⽴,则Var\left(\sum_{i=1}^n\xi_i\right) = \sum_{i=1}^nVar\xi_i此时Cov(\xi_i,\xi_j) = 0 .协⽅差定义设\xi_i,\xi_j有联合分布F_{ij}(x,y),若E|(\xi_i-E\xi_i)(\xi_j-E\xi_j)|<\infty,称E(\xi_i-E\xi_i)(\xi_j-E\xi_j) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x-E\xi_i)(y-E\xi_j)dF_{ij}(x,y)为\xi_i,\xi_j的协⽅差,记作Cov(\xi_i,\xi_j) .性质Cov(\xi,\eta) = Cov(\eta,\xi) = E\xi\eta-E\xi E\eta\begin{aligned} E(\xi-E\xi)(\eta-E\eta) &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x-E\xi)(y-E\eta)dF(x,y)\\ &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(xy-xE\eta-yE\xi+E\xi E\eta)dF(x,y)\\ &= E\xi\eta - 2E\xi E\eta + E\xi E\eta = E\xi\eta - E\xi E\eta \end{aligned}加法性质:Cov\left(\sum_{i=1}^n\xi_i,\eta\right) = \sum_{i=1}^nCov(\xi_i,\eta)Cov(a\xi+c,b\xi+d) = abCov(\xi,\eta) .Cov(\xi,\eta) \le \sqrt{Var\xi}\sqrt{Var\eta} .Cov(a\xi+b\eta,c\xi+d\eta) = acCov(\xi,\xi) + (ad+bc)Cov(\xi,\eta) + bdCov(\eta,\eta) .协⽅差矩阵协⽅差矩阵的元素是随机向量各分量两两之间的协⽅差B = E(\xi-E\xi)(\xi-E\xi)^T = \left( \begin{matrix} b_{11} & b_{12} & \cdots & b_{1n}\\ b_{21} & b_{22} & \cdots & b_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ b_{n1} & b_{n2} & \cdots & b_{nn}\\ \end{matrix} \right),\quad b_{ij} = Cov(\xi_i,\xi_j)容易看出B对称半正定.若有变换\eta = C\xi,则有EC(\xi-E\xi)(C(\xi-E\xi))^T = CBC^T为\eta的协⽅差矩阵.⼆维随机向量的协⽅差矩阵C = \left( \begin{matrix} Var\xi & E\xi\eta - E\xi E\eta\\ E\xi\eta - E\xi E\eta & Var\eta \end{matrix} \right)相关系数的计算r_{\xi,\eta} = \dfrac{Cov(\xi,\eta)}{\sqrt{Var\xi Var\eta}}相关系数为0则不相关.相关系数定义令\xi^* = (\xi-E\xi)/\sqrt{Var\xi},\ \eta^* = (\eta-E\eta)/\sqrt{Var\eta},称r_{\xi\eta} = Cov(\xi^*,\eta^*) = E\xi^*E\eta^*为\xi,\eta的相关系数.柯西-施⽡茨不等式()任意随机变量\xi,\eta有|E\xi\eta|^2\le E\xi^2E\eta^2等式成⽴当且仅当\exists t_0,\ \mathrm{s.t.}\ P(\eta=t_0\xi) = 1 .Proof.考虑u(t) = E(\eta-t\xi)^2 = t^2E\xi^2-2tE\xi\eta+E\eta^2\ge 0,分析判别式即可.性质|r_{\xi\eta}| \le 1,并且当|r_{\xi\eta}| = 1,称\xi,\eta以概率1线性相关;若|r_{\xi\eta}| = 0,称\xi,\eta不相关.若⽅差有限,则有等价条件Cov(\xi,\eta) = 0\xi,\eta不相关E\xi\eta = E\xi E\etaVar(\xi+\eta) = Var\xi + Var\eta若\xi,\eta独⽴,且它们⽅差有限,则\xi,\eta不相关.对⼆元正态随机向量,两个分量不相关与独⽴等价.矩⽅差、协⽅差本质上都是对随机变量分布分离程度的度量,可以⽤矩的概念进⾏推⼴.原点矩:m_k=E\xi^k,称为k阶原点矩中⼼距:c_k = E(\xi-E\xi)^k,称为k阶中⼼矩绝对矩:M_{\alpha} = E|\xi|^{\alpha},\ \alpha\in\mathbb{R},称为\alpha阶绝对矩。
《概率论与数理统计》数学期望

§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
概率论与数理统计
§4.4 协方差和相关系数
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 协方差
1. 定义
§4.4 协方差和相关系数 协方差
2. 协方差的计算公式
概率论与数理统计
§4.1 数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
授课内容
数学期望的性质
§4.1 数学期望 离散型随机变量的数学期望
1. 定义
§4.1 数学期望 离散型随机变量的数学期望
关于定义的几点说明
(2) 级数的绝对收敛性保证了级数的和不随级数各项次序的改变 而改变 , 之所以这样要求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
§4.4 协方差和相关系数 相关系数
3. 不相关的定义
§4.4 协方差和相关系数 相关系数
4. 不相关性的判定
以下四个条件等价 (1) ρ 0; (2)Cov( X ,Y ) 0; (3) D( X Y ) DX DY;
(4)3 随机变量函数的数学期望 二维随机变量函数的数学期望
§4.3 随机变量函数的数学期望 二维随机变量函数的数学期望
一维随机变量函数的数学期望 二维随机变量函数的数学期望 授课内容 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
5 .不相关与相互独立的关系
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 例题
条件期望资料

析等。
• 可以基于矩生成函数进行求解,如政策效果最大化分析等。
⌛️
方法的优缺点
• 优点:有助于中央银行更好地评估政策工具的效果和风险,从而制定更有效 Nhomakorabea货币政策。
• 缺点:计算过程可能较为复杂,且需要已知货币政策的政策效果分
布。
05
条件期望在其他领域的应用
心理和行为规律。
• 缺点:计算过程可能较为复杂,且需要已知消费者的偏好分布。
消费者行为分析的基本问题
• 消费者行为分析是研究消费者在购买、使用和处理商品及服务过程中
的心理和行为规律的方法。
• 条件期望在消费者行为分析中的应用主要是计算消费者在已知某个条
件下,对商品或服务的期望效用。
条件期望在消费者行为分析中的求解方法
知某个条件下,对投资项目的期望收益。
02
条件期望在企业投资决策中的求解方法
• 可以基于概率分布进行求解,如风险调整收益分析、概
率调整收益分析等。
• 可以基于矩生成函数进行求解,如收益最大化分析等。
03
方法的优缺点
• 优点:有助于企业更好地评估投资项目的风险和收益,
从而做出更合理的投资决策。
• 缺点:计算过程可能较为复杂,且需要已知投资项目的
02
条件期望的计算方法
• 当Y是离散随机变量时,条件期望可以通过求和计算:
E(Y|X=x) = ∑y * P(Y=y|X=x)
• 当Y是连续随机变量时,条件期望可以通过积分计算:
E(Y|X=x) = ∫y * P(Y=y|X=x) dy
03
条件期望的性质
• 非负性:E(Y|X) ≥ 0,因为Y的平均值总是非负的。
3.3期望的性质与随机变量函数的期望

P X 1
因此出售一台设备净赢利Y 的分布律为
Y
100
1 e 4
4
100 300
1 1 e 4
- 1 4
p
E (Y ) = 100e
- 1
- 200 (1 - e
)
33.64 (元).
发行彩票的创收利润 某一彩票中心发行彩票10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个, 奖金各 5千元; 三等奖10个, 奖金各1千元; 四等奖100 个, 奖金各1百元; 五等奖1000个, 奖金各10元. 每张彩票的成本费为0.3元, 请计算彩票发行单 位的创收利润. 解: 设每张彩票中奖的金额为随机变量X, 则
二、 随机变量函数的数学期望
1. 问题的提出
数学期望 X g(X) 数学期望 E(X)
E( X ) =
E ( X ) xk pk
k
ò
+
-
xf (x )dx
E轾 g (X ) = 臌
g(x)是连续函数, g(X) 是 随机变量, 如: aX+b, X2等 等.
2. 随机变量函数数学期望的计算 如何计算随机变量函数的数学期望?
例 设随机变量 X 的概率分布为 1 2 3 X
1 求 E ( ) , E ( X 2 2). X 1 1 1 解: E ( ) 1 0.1 0.7 0.2 0.52 X 2 3
P
0.1
0.7
0.2
E ( X 2)
2
(1 2) 0.1 (2 2) 0.7 (3 2) 0.2 6.7
X 10000 p 1 105
数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
第11讲 数学期望

P
Exi=1.24
0.8
0.16
0.04
Ex=Ex1+...+Ex9=91.24=11.16
再多准备10%, 则约需为他们准备13发子弹
例9
一民航送客车载有20位旅客自机场开出, 旅客有10
个车站可以下车. 如到达一个车站没有旅客下车就不停 车. 以X表示停车的次数, 求E(X)(设每位旅客在各个车 站下车是等可能的, 并设各旅客是否下车相互独立). 解 引入随机变量
0.25a=0.5, 即a=2, k=3
某商店对某种家用电器的销售采用先使用后付款的方 例4 式, 记使用寿命为X(以年计), 规定: X1, 一台付款1500元;
1<X2, 一台付款2000元;
2<X3, 一台付款2500元;
X>3, 一台付款3000元.
设寿命X服从指数分布, 概率密度为
第四章
数字特征
第一节 数学期望
一、随机变量的数学期望
二、随机变量函数的数学期望
三、数学期望的性质
通常求出随机变量的分布并不是一件容易的事, 而人们更关心的是用一些数字来表示随机变量的 特点, 这些与随机变量有关的数字, 就是随机变 量的数字特征. 最常用的数字特征为数学期望, 方差和相关系数.
一、随机变量的数学期望
0 0
x
mxλe λydy
x
1 1 λx (m n) (m n) e nx. λ λ
1 1 λx E(Q) (m n) (m n) e nx. λ λ d 令 E(Q) (m n)e λx n 0, dx 得 而 1 n x ln . λ mn d2 λx E(Q) λ(m n)e 0, 2 dx
随机过程中的条件期望应用

随机过程中的条件期望应用随机过程是随机事件随着时间变化的数学模型。
它是概率论与统计学中的重要概念,被广泛应用于各个领域。
在随机过程中,条件期望是一个有用的工具,用来描述在给定一些条件的情况下,某个事件的平均值或期望值。
1. 条件期望的定义在随机过程中,条件期望是指在给定一些条件时,某个事件的平均值。
设X是一个随机变量,Y是另一个随机变量。
那么给定随机变量Y=y的条件下,X的条件期望E(X|Y=y)是在Y=y的条件下,X的平均值。
2. 条件期望的性质条件期望具有以下性质:- 线性性质:设a和b是实数,X和Y是随机变量,那么E(aX+bY|Y=y) = aE(X|Y=y) + bE(Y|Y=y)。
- 独立性质:如果X和Y是相互独立的随机变量,那么E(X|Y=y) = E(X)。
- 保持性质:如果X是一个可测函数,那么E(f(X)|Y=y) =f(E(X|Y=y))。
3. 条件期望在随机过程中的应用条件期望在随机过程中有广泛的应用,以下是其中的一些例子:3.1. 马尔可夫链马尔可夫链是一种随机过程,具有马尔可夫性质,即给定了前一个状态,下一个状态只依赖于当前状态。
在马尔可夫链中,条件期望可以用来计算给定当前状态的条件下,下一个状态的期望。
3.2. 随机游走随机游走是一种随机过程,表示随机漫步的模型。
在随机游走中,条件期望可以用来计算在给定当前位置的条件下,下一步移动的期望。
3.3. 排队论排队论是研究等待行列和相互竞争的问题的数学理论。
在排队论中,条件期望可以用来计算在给定一些条件下,等待时间、系统负载等指标的期望。
3.4. 信号处理在信号处理中,条件期望可以用来计算在给定一些条件下,信号的平均能量、功率等指标的期望。
4. 实际应用举例条件期望在实际应用中有着广泛的应用,以下是一些例子:4.1. 股票市场在股票市场中,投资者可以使用条件期望来估计某只股票未来的收益。
根据给定的一些条件,比如公司的财务状况、行业发展趋势等,可以计算出某只股票未来的收益的期望值。
数学期望及其性质

随机变量的数字特征
§1 数学期望
§1 数学期望
例 1:某班有 N 个人,其中有 ni 个人为 ai 分, i = 1,2,L k ,
∑n
i =1
k
i
= N , 求平均成绩。
解:
k ni 1 k 平均成绩为: ∑ ai ni = ∑ ai N i =1 N i =1 ni 若用 X 表示成绩,则 P{X = ai } ≈ N k k ni ai ⋅ ≈ a i ⋅ P{ X = a i } N i =1 i =1
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例4
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7
则 EXห้องสมุดไป่ตู้= 0*0.1+1*0.2+2*0.7 =1.6
若离散型随机变量 X 的分布律为: X 0 1 2 P 0.7 0.2 0.1 EX = 0*0.7+1*0.2+2*0.1 =0.4
n =1 ∞
时,才能保证级数 ∑ x n pn 的和与其级数 ∑ x n pn
n =1 n =1
∞
∞
的求和顺序无关.
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例2
甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数;
Y:乙击中的环数;
X P
Y P
8 0.1
8 0 .2
9 0.3
9 0 .5
到站时间 8:10,9:10 概率 1/6 8:30,9:30 8:50,9:50 3/6 2/6
返回主目录
第十三章 随机变量的数字特征
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
η
的条件期望, 的条件期望 记作
E{η ξ = xi },
有
同样可以定义给定的 η = y j 时关于 ξ 的条件期望为
E ξ η = y j = ∑ xi P{ξ = x i η = yi }
i
E { ξ = xi } = ∑ y j P{η = y j ξ = xi } η
{
}
对于二元连续型随机变量 (ξ ,η ), 定义
ξ 表示 名射手所需子弹数目, 则 ξ = ∑ ξ i , 表示9名射手所需子弹数目 名射手所需子弹数目, i =1 的分布如下: 并且 ξi 的分布如下:
9
2 3 1 P 0.8 0.16 0.04 Eξ i = 0.8 + 2 × 0.16 + 3 × 0.04 = 1.24
Eξ = E ( ∑ ξ i ) = ∑ Eξ i = 9 × 1.24 = 11.16
ξ 与 η 是否独立? 是否独立?
ξ /η
−1 1
0 .3 0.6 解 ξ⋅η − 1 0 1 0 .1 0 .2 0 .1 0.4 P 0.4 0.2 0.4 η 0.4 0.2 0.4 1 1.因为 p−1,0 = 0 ≠ P{ξ = −1} ⋅ P {η = 0} = 0.6 × 0.2 0
2. Eξ = −1 × 0.6 + 1 × 0.4 = −0.2, Eη = −1 × 0.4 + 0 × 0.2 + 1 × 0.4 = 0 E (ξ ⋅ η ) = −1 × 0.4 + 0 × 0.2 + 1 × 0.4 = 0
( 2) j
= ∑ x i p (i 1) ⋅ ∑ y j p (j2 ) = Eξ ⋅ Eη
i
j
注:此性质可推广到任意有限个独立随机变量. 此性质可推广到任意有限个独立随机变量. 该性质的逆命题不一定成立. 但要注意 该性质的逆命题不一定成立.
右表, 例1 (ξ ,η ) 的概率分布如 右表,问
ξi
P
a
p
a−b 1− p
公司可期望获益为Eξi > 0 Eξ i = ap + (a − b )(1 − p ) > 0
Eξ i = ap + (a − b )(1 − p ) P = a − b(1 − p ) > 0 即 a < b < a (1 − p ) −1 , 对于 m 个人,获益 ξ 元, 个人,
i j j i
i j
= Eξ + Eη
注:此性质可推广到任意有限个随机变量的情况,即对 此性质可推广到任意有限个随机变量的情况,
n > 2, 有 n E(ξ1 + ξ2 + ... + ξn ) = Eξ1 + Eξ2 + ... + Eξn = ∑ Eξ i
n n
i =1
特别地: 特别地: E ( 1 ξ ) = 1 ∑ i n ∑ Eξ i n i =1 i =1
−1 0 .3
0
1
ξ
以 所 ξ与η不 立 独 ;
ξ η 是 于 E(ξ ⋅η) − E ⋅ E = 0.
机 量 数 期 : 随 变 函 的 望 定理 :设ξ为r .v ,η = f (ξ ), 并且E[ f (ξ )]存在, 则
(1)若 (1)若
ξ
是离散型随机变量, 是离散型随机变量, 其概率分布为
ξi
a p
a−b 1− p
ξ = ∑ ξ i , Eξ = E (∑ ξ i ) = ∑ Eξ i = ma − mb(1 − p ) .
−1
m
m
m
i =1
i =1
i =1
m
§3.3 条件期望 取某一个定值, 对于二元离散型随机变量 (ξ ,η ), 在 ξ 取某一个定值 η 的数学期望, 的数学期望 称此期望为 的条件下, 比如 ξ = x i 的条件下 求 给定 ξ = xi 时关于
P{ξ = x k } = pk , k = 1,2,... 则
Eη = Ef (ξ ) = ∑f (xk ) pk
(2)若 (2)若 则
ξ
k
是连续型随机变量, 是连续型随机变量,其概率密度为
+∞
ϕ(x)
Eη = Ef (ξ ) = ∫ f (x)ϕ(x)dx −∞
−∞
例2
ξ
设ξ ,η 的分布如下, 的分布如下, 求 E (ξ + η ), E (ξ ⋅ η )
+∞
+∞
+∞
E(kξ +b) = E(kξ) +b = kE +b ξ
= E +b ξ
−∞
−∞
5 E (ξ + η ) = Eξ + Eη
证 是离散型随机变量, 假设 ξ ,η 是离散型随机变量,则
i j i j j i
E (ξ + η ) = ∑ ∑ ( x i + y j ) pij = ∑ ∑ x i pij + ∑ ∑ y j pij = ∑ x i ∑ pij + ∑ y j ∑ pij = ∑ x i pi(1) + ∑ y j p (j2 )
E (ξ + b) = E (ζ ) = ∫− ∞ xϕ ζ ( x )dx = ∫− ∞ xϕ ξ ( x − b)dx
令 z = x − b, 有
+∞
+∞
E (ξ + b) = ∫ ( z + b)ϕ ξ ( z )dz = ∫ zϕ ξ ( z )dz + b ∫ ϕ ξ ( z )dz −∞ −∞ −∞
6 若 ξ与 η独立,则 E (ξ ⋅ η ) = Eξ ⋅ Eη 是离散型随机变量, 证 假设 ξ ,η 是离散型随机变量, 由于ξ 与 η 独立
E (ξ ⋅ η )= ∑ ∑ x i y j pij = ∑ ∑ x i y j p i p
(1) i j i j
所以 pij = pi(1) p (j2 ) ,
0 1 2
ξ
与
η
独立, 独立,
η
P 1/ 4 1/ 2 1/ 4
0 1 2 P 1/ 9 4/ 9 4/ 9
1 4 4 12 4 1 1 1 Eη = 0 × + 1 × + 2 × = = Eξ = 0 × + 1 × + 2 × = 1 9 9 9 9 3 4 2 4 7 E (ξ + η ) = Eξ + Eη = , 由于ξ 与 η 独立, 所以 独立, 43 E (ξ 2 ) = E (ξ ⋅ ξ ) = Eξ ⋅ Eξ = 1 E (ξ ⋅ η ) = Eξ ⋅ Eη = 32 1 1 2 1 3 2 2 2 求E (ξ ) ? E (ξ ) = 0 × + 1 × + 2 × = 4 2 4 2
+∞
0
xλ e
− λx
dx =
1
λ
例5 据统计,一位40岁的健康(一般体检未发现病症) 40岁的健康 据统计,一位40岁的健康(一般体检未发现病症)者,在 年之内活着或自杀死亡的概率为p(0<p<1,p为已知), p(0<p<1,p为已知 5年之内活着或自杀死亡的概率为p(0<p<1,p为已知 , 年内非自杀死亡的概率为1 p.保险公司开办 保险公司开办5 在5年内非自杀死亡的概率为1-p.保险公司开办5年人 寿保险,参加者需交保险费a元(a已知),若5年之内非 寿保险,参加者需交保险费a (a已知) 已知 自杀死亡,公司赔偿b (b>a), 自杀死亡,公司赔偿b元(b>a),应如何定才能使公司 可期望获益;若有 若有m 参加保险, 可期望获益 若有m人参加保险,公司可期望从中 获益多少? 获益多少? 解 设 ξ i 表示公司从第 i 个参加者身上所得的收益 是一个随机变量, 其分布如下: 则 ξ i 是一个随机变量, 其分布如下:
η
P {η ξ = 0}
0 1 2
2 0 5
η
0 1 2
3 5
1 6 3 P {η ξ = 1} 10 10 10
作业: 作业:
P751,2,4
§3.2
数学期望的性质 数学期望的性质
1. E (c ) = c 2. E (aξ ) = aEξ
3. E (ξ + b ) = Eξ + b
4.E(kξ +b) = kE +b (线性性) 其中a , b, c , k是常数 ξ 线性性)
证
E (c ) = c × 1 = c 对于2,3, 对于2 3 是连续型随机变量, 我们都假设 ξ 是连续型随机变量, 设 ξ 的概率密度为 ϕ ξ ( x ), 分别设 η = aξ , ζ = ξ + b
E { x} = ∫− ∞ yϕ ( y x )dy η
+∞ −∞
表示在 ξ = x 的条件下关于 η 的条件期望 +∞ E { y} = ∫ xϕ( x y)dx ξ
−∞
表示在 η = y 的条件下关于 ξ 的条件期望
例6 设 ξ 与η 的联合分布为
ξ
η
0 1 2
3 2 0 15 15 求在 ξ = 0 和 ξ = 1 时, 0 关于 η 条件期望. 条件期望. 6 1 3 P {ξ = 0,η = j } 1 15 15 15 解 P{η = j ξ = 0}= P {ξ = 0} P {ξ = 0,η = j } j = 0,1,2 =
P{η = j ξ = 1}=
1 3
P {ξ = 1,η = j } P {ξ = 1}
=
P {ξ = 1,η = j }