条件数学期望例题ppt课件

合集下载

3.6 条件分布与条件期望--概率论课件

3.6 条件分布与条件期望--概率论课件
=
-r
r x
2 2
r 2 x2
x r


r x r x
2
2
2
2
0,
1 dy, 2 r
r xr
其他
r xr 其他
2 r 2 x 2 , 2 r 0,
同理,
fY ( y ) f ( x, y )dx
2 r y , r y r 2 r 0, 其他
1 2 2 F | ( x | y ) 为 N a1 ( y a2 ), 1 (1 ) 分布 2
2 2 2 F| ( y | x) 为 N a2 ( x a1 ), 2 (1 ) 分布 1
注意
FX Y ( x y ), f X Y ( x y ) 仅是 x 的函数,
y是常数, 对每一 fY (y) >0 的 y 处, 只要
符合定义的条件, 都能定义相应的函数. FY X ( y x), fY X ( y x) 相仿论述. 类似于乘法公式:
f ( x, y ) f X ( x ) f Y X ( y x ) fY ( y ) f X Y ( x y )
( x a1 )( y a2 )
1 2
( y a2 ) 2 2 2
1 e 2 2
( y a2 )2 2 2 2
1 ( x a1 )2 ( x a1 )( x a2 ) 2 ( y a2 )2 exp 2 2 2 2 2 1 2 2 21 1 2(1 ) 1 1
2 x a1 1 1 y a2 exp 2 2 2(1 ) 1 2 2 1 1

《数学期望》课件

《数学期望》课件
注意事项
在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策

数学期望E(x)D(x).ppt

数学期望E(x)D(x).ppt
绝对收敛,则有
E(Y ) E[g( X )] g( x) f ( x)dx
注释
A.在计算随机变量的函数Y=g(X)的期望时,我们可以先 确定Y=g(X)的分布进而计算函数Y的期望E(Y)。但由 前两章的讨论可以看出,确定Y=g(X)的分布并不容易。 因此在计算随机变量函数的期望时,我们一般利用定 理的结论去计算。定理的重要意义在于当我们求E(Y) 时,不必知道Y的分布而只需知道X的分布就可以了。
B.在计算一些分布较复杂甚至难以确定的随机变量的期 望时,如能将X表示成有限个简单随机变量之和,那 么利用期望的性质计算就可大大简化我们的问题。这
也是计算期望的一个技巧。
C.上述定理还可以推广到二个或二个以上随机变量的函 数情况。例如,设Z是随机变量X,Y的函数Z=g(X, Y)(g是连续函数),那么,Z也是一个随机变量,若二
1
x 2
e 2 2 dx
2
令 x t,
E(X) 1
t2
t e 2 dt
t2
e 2 dt .
2
2
特别地,若XN(0,1),则E(X)=0。
(1) 几个常见连续型随机变量的数学期望 i.若XU(a,b),则E(X)=(a+b)/2. 证:X的概率密度为
f
(
x)
b
Y 8 2 9 5 10 3 9.1 10
结果:甲平均击中的环数9.3, 乙平均击中的环 数9.1,甲水平较高。
根据概率的统计定义作分析:击中次数N 与N的比值,是这 i
N次试验中射中环数的频率,按概率的统计定义,当N很大时, N /N接近于射中环数的概率。
i
1. 离散型随机变量的数学期望
维随机变量(X,Y)的概率密度为f(x,y)则有

4.1-数学期望PPT课件

4.1-数学期望PPT课件

1
1
84
1
.
13
例4.5 Xe(), 求EX?
f
(
x)
1
x
e
,
0,
x0 x0
E X x f(x )d x 1 x e xd x0x d (e x)
0
xex0 0exdx 0exd(x)ex0
(10)
提示: limxex x
lim x
x
x
0
e
.
14
三、随机变量函数的数学期望
0 x ,y 1 ,E (X Y )?
e lse
11
E ( X Y ) g ( x ,y ) f( x ,y ) d x d xx y ( x y ) d y
- -
设X表示掷一次骰子的得分, 则X的分布律为
X
x1
x2
x3
pk
1/6
3/6
2/6
求掷了N次的平均得分?
.
3
平 均 分 总 总 次 分 数 x 1 n 1 x 2 N n 2 x 3 n 3 x 1n N 1 x 2n N 2 x 3n N 3
nN1 f1当 N p116
平 均 分 x 1p 1 x 2p 2 x 3p 3
由此得出离散型随机变量的数学期望的定义
.
4
定义4.1 设离散型随机变量X, 它的分布律为
X x1 x2 … xn …
pk p1 p2 … pn …
若级数 xkpk绝对收敛, k1
则称其为X的数学期望(期望、均值),记为E(X),EX. 即
EXE(X) xkpk k1
.
5
注:
①EX是X在各次试验中的观察值的算数平均值的近似值

《数学期望》PPT课件

《数学期望》PPT课件
于X 和Y 的二元函数,则同样可定义随机变量 Z 的数学期望如下:
24
(1)c(rX,Y)已{知 pij},
则 ZgX,Y的数学期望为
E Z E gX ,Y gx i,yj p i.j i, 1j 1
(2)c(tX,Y)已f知 (x,y),
则 ZgX,Y的数学期望为
P { X x } p k 1 , 2 , , kk
若级数 gxk收 敛pk,则 k1 E (Y )E g X gxk pk k1
16
例1 设离散型随机变量X 的分布列为
X
-1
0
2
3
1131
P k
8
4
8
4
试计算:E X , E X 2和 E 2 X 1 。
17
解 由数学期望的定义可得
E X 1 10123311;1
8 4 8 48
E X 2 1 2 1 0 2 1 2 2 3 3 2 1 3;1 8 4 8 48
E 2 X 1 3 1 1 1 3 3 5 1
84 8 4
7. 4
18
例2 设 X 服从参数为 的泊松分布,试
Ex
x
fxd
x
9
反之,如果积分
x
发f 散x,d则x
称随机变量 X 的数学期望不存在。
例4 设 X 服从 (a,b)区间上的均匀分布, 求 X 的数学期望。
10
解 已知 X 的概率密度为
1
f
x
b
ቤተ መጻሕፍቲ ባይዱ
a
0
, xa,b,
从而
, 其它。
E x xx fd x b ax b 1 a d x 1 2 a b
14

4-1数学期望 ppt课件

4-1数学期望  ppt课件

若级数 xk pk 绝对收敛,则称此级数的和为随 i 1
机变量 X 的数学期望。记作 :EX.

既有 EX xk pk i 1
数学期望简称期望,又称均值.
PPT课件
4
数学期望
例1 甲、乙两人射击,他们射击水平由下表给出:
X:甲击中的环数
Y:乙击中的环数
X
8
9 10
Y
P
0.1 0.3 0.6

5

1 ex 0
4 e x
EM xfM (x)dx
x0 x0
0 x 5 1 ex 4 exdx
137 1
160
PPT课件
10
数学期望
2. 令:N=min{X1, X2, X3, X4, X5}, X1, X2, X3, X4, X5是 独立同分布的,于是 利用第三章第五节P99;5.8式
P
试问哪一个人的射击水平高?
解:甲、乙的平均环数为:
8
9
10
0.2 0.5 0.3
EX 8 0.1 9 0.3 10 0.6 9.5
EY 8 0.2 9 0.5 10 0.3 9.1
甲的射击水平比乙的高.
从平均环数上看
PPT课件
5
数学期望
2. 连续型
第四章 随机变量的数字特征
§1 数学期望 §2 方差 §3 协方差及相关系数 §4 矩
PPT课件
1
数学期望
§4.1 数学期望
数学期望的概念
随机变量函数的数学期望
数学期望的性质
PPT课件
2
数学期望
例1: 某班有N人参加 考试,其中有ni个人为ai ,i=1,2,…

概率论与数理统计-数学期望_图文

概率论与数理统计-数学期望_图文

因每个球落入每个盒子是等可能的均为1/M, 所以,对第i 个盒子,一个球不落入这个盒子 内的概率为(1-1/M)。故N个球都不落入这个 盒子内的概率为(1-1/M)n ,即
最常用的数字特征是:期望和方差。
第四章 数字特征
§4.1 数学期望
4.1.1 离散型随机变量的数学期望 概念引入:
某车间对工人生产情况进行考察,车工 小张每天生产的废品数 X 是一个随机变量 。如何定义 X 的平均值?
若统计了100天小张生产产品的情况,发现 : 32天没有出废品;30天每天出一件废品; 17天每天出两件废品;21天每天出三件废品。
可以得到这n天中,每天的平均废品数为
这是以频率为 权的加权平均
由频率与概率的关系,
不难想到:求废品数X的平 均值时,用概率替代频率, 得平均值为:
这样,就得到一个确定的数
这是以概率为 权的加权平均
——随机变量X的期望(均值) 。
定义1: 设X是离散型随机变量, 概率分布为 P{X=xk}=pk , k=1,2, …。
解:设组织货源 t 吨。显然,应要求
2000≤t ≤4000。国家收益Y(单位:万元)是X
的函数Y=g(X)。表达式为
由已知条件, 知X的概率密度函为
可算得当 t = 3500 时, E(Y)=-2t2 + 14000t-8000000
达到最大值 1.55×106。 因此,应组织3500吨货源。
概率论与数理统计-数学期望_图文.ppt
前面讨论了随机变量及其分布。 如果我 们知道了随机变量 X 的概率分布,那么,关 于 X 的全部概率特征也就知道了。
然而,在实际问题中,概率分布是较难 确定的。且有时在实际应用中,我们并不需 要知道随机变量的所有性质,只要知道其一 些数字特征就够了。

3.5条件数学期望ppt课件

3.5条件数学期望ppt课件
算出罪犯的身高. 这个公式是如何推 导出来的?
25
设一个人身高为 X ,脚印长度为Y .
显然,两者之间是有统计关系的,故
应作为二维随机变量 (X ,Y )来研究. 由于影响人类身高与脚印的随机
因素是大量的、相互独立的,且各因 素的影响又是微小的,可以叠加的. 故
由中心极限定理知 (X ,Y )可以近似看
3.5 条件数学期望
条件分布 条件数学期望 条件数学期望的性质
1
回顾上节课知识点
• 1、n维随机变量函数的数学期望及求解 • 2、最值数学期望的求解 • 3、 n维随机变量函数的数学期望的性质
及应用 • 4、相关系数及性质
2
1、n维随机变量函数的数学期望及求解
3
2、最值数学期望的求解
4
3、 n维随机变量函数的 数学期望的性质及应用
可得出以脚印长度作自变量的身高近似公式.
思考:例3.5.2
28
连续型与离散型条件数学期望性质
定义
E ( X
|Y
y)
i
xi P( X xi | Y y)
xp(x | y)dx
29
注意点
E(X| Y=y) 是 y 的函数.
所以记 g(y) = E(X| Y=y). 进一步记 g(Y) = E(X| Y).
5
4、相关系数及性质回顾
6
相关矩阵
7
相关系数的性质
8
习题讲解
9
10
11
回顾条件分布
对二维随机变量(X, Y), ➢ 在给定Y取某个值的条件下, X的分布; ➢ 在给定X取某个值的条件下, Y的分布.
12
13
一、回顾条件分布
(1)、事件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ERn n .
这个结果是正确的,现在给出一个归纳性证明.
由 于 显 然 有 ER1 1 , 假 定 对 于 k 1, , n 1 , 有 ERk k .
24
为了计算 ERn ,我们先对第一轮中的匹配
数 Yn 取条件.它给出
ERn EERn Yn
n
PYn
i
ERn
Yn
i.
i0
25
现在,给定最初一轮的全部匹配数 i ,需 要的轮数将等于1加上余下的 ni 个人 匹配他们的帽子需要的匹配轮数.
5
解:
以 N 记事故次数,以 X i 记在第 i 次事故中的受伤人
数 , i 1, 2, , 那 么 伤 者 总 数 可 以 表 示 为
N
X i .现在
i 1
E
N i 1
Xi
E
E
N i 1
Xi
N

6
但是
N
n
E i1 Xi N n E i1 Xi N n
n
E Xi i1
记 X 表示该读者遇到的印刷错误
数.令
1 Y 2
如果读者选取数学书 , 如果读者选取历史书
3
则由全期望公式,得
EX EEX Y PY 1EX Y 1 PY 2EX Y 2
12 15 7 . 222
4
例 2(随机变量的随机数量和的期望) 假定一工 厂设备每周出现事故次数的期望为 4.又假定在每次 事故中受伤工人数是具有相同均值 2 的独立随机变 量.再假定在每次事故中受伤工人数与每周发生的 事故数目相互独立.每周受伤人数的期望是多少?
条件数学期望例题
1
例 1 某人准备读一章数学书或者一章历史 书.如果他在读一章数学书中印刷错误数是服从 均值为 2 的 Poisson 分布,而他在读一章历史 书中的印刷错误数是服从均值为 5 的 Poisson 分布.假设该读者选取哪一本书是等可能时,求 该读者遇到的印刷错误数的期望是多少?
2
解:
EX 10 .
18
例 5 在一次聚会上,N 个人将自己戴的 帽子扔到屋子中央.将这些帽子充分混合 后,每人随机选取一顶.求取到自己的帽子 的人数的期望数.
19
解:
以 X 记取到自己的帽子的人数.再设
1 Xi 0
第 i 个人取到自己的帽子, 其它情形
i
1,
2,
,
N ,
N
则有 X X i . i 1
26
所以,
n
ERn PYn i 1 ERn i i0 n 1 ERn PYn 0 PYn i ERni i 1 n 1 ERn PYn 0 n iPYn i (由归纳假设) i 1 1 ERn PYn 0 n1 PYn 0 EYn ERn PYn 0 n1 PYn 0 27
22
例 6(匹配轮数问题) 假设在上面的例题中, 取到自己的帽子的人离开,而其余人(没有匹配 到的那些人)将他们取的帽子放到房间中央,混 杂后重新取.假定这个过程连续进行到每个人都 取到自己的帽子为止.假定 Rn 是开始时有 n 个人
出席的轮数.求 ERn .
23
解: ⑴ 由上例推出,不论留在那里的人有多少,平均每轮有一 次匹配.这就使人想到
果矿工选取第 2 个门,那么 3 小时后他将回到他的矿井.但是,一旦他回到
矿井,问题就和以前一样了,而直到他到达安全地的附加时间的期望正是
EX .因此,
EX Y 2 3 EX .
在方程(3.7)中其它等式后面的推理是相似的.
17
因此,
EX 1 2 3 EX 5 EX ,
3 解方程,得
定相继的抛掷是独立的,这就推出在第一次出现反面直到正面首次
出现时的附加抛掷次数的期望是 EN .
13
因此,
EN Y 11.
将式(3.6)代入方程(3.5),推出
EN p 1 p1 EN ,
解方程,得
EN 1 .
p
14
例 4 某矿工身陷有三个门的矿井之中.经第 1 个门的通道行进 2 小时后,他将到达安全地;经第 2 个门的通道前进 3 小时后,他将回到矿井原地; 经第 3 个门的通道前进 5 小时后,他又将回到矿井 原地.假定这个矿工每次都等可能地任意一个门, 问直到他到达安全地所需时间的期望是多少?
(由 N 与 X i 相互独立)
nEX1, (由随机变量序列Xi独立同分布)
7
由它导出
E N Xi N N EX1
i1
因此,
E
N i 1
Xi
E E
N i 1
Xi
N
EN EX1
EN EX1.
8
所以,在上面的例子中,在一周中受伤人
数的期望值为
E
N
X
i
EN
E
X1
4
2
8

i1
9
例 3(几何分布的期望) 连续抛 掷一枚出现正面的概率为 p 的硬币直 至出现正面为止.问需要抛掷的次数的 期望多少?
10
解:
以 N 记需要抛掷的次数,而令
1 Y 0
如果第一次抛掷的结果是正面 . 如果第一次抛掷的结果是反面
11
现在
EN EEN Y
PY 1 EN Y 1 PY 0 EN Y 0
15
解: 令 X 记矿工到达安全地所需的时间,以Y 记他 最初选取的门.现在
EX EEX Y ຫໍສະໝຸດ 3P Yi
EX
Y
i
i 1
3 1 E X Y i , i1 3 16
然而
EX Y 1 2 , EX Y 2 3 EX , EX Y 3 5 EX . (3.7) 为了理解为什么这是正确的,我们以 EX Y 2为例,给出其如下推理.如
20
现在,因为第 i 个人等可能地在 N 个帽子中取一个,
这就推出
PXi
1
P第 i
个人取到自己的帽子
1 N

随之,
EXi 1 PXi 1 0 PXi 0 1 , i 1, 2, , N .
N
21
将上式代入上面的方程,得
EX
E
N
X
i
i1
N
EXi i 1
N
1
i1 N
1.
因此,无论聚会上有多少人,平均总有一人取到自己的帽子.
其中最后一个等式用了上例中建立的结果
EYn 1.由前面的方程推出 ERn n .
28
p EN Y 1 1 p EN Y 0.
(3.5)
12
然而
EN Y 11, EN Y 01 EN.
(3.6)
为了明白为什么式(3.6)是正确的,我们考察 EN Y 1,由于Y 1,
我们知道第一次抛掷结果是正面,所以,需要抛掷的次数的期望是
1.另一方面,如果Y 0 ,第一次抛掷结果是反面.然而,由于假
相关文档
最新文档