金属/陶瓷复合材料润湿性的研究

合集下载

金属陶瓷复合材料

金属陶瓷复合材料

金属陶瓷复合材料金属陶瓷复合材料(学习型)文摘:众所周知,金属材料具有抗热震性好、韧性好等特点,可以应用于许多领域到广泛应用,但是它又因易氧化和高温强度不高等缺点限制了发展。

而陶瓷材料具有硬度高,耐热性好,耐腐蚀等特点,如果通过一定的工艺方法将他们结合起来制成金属陶瓷,则可兼有二者的优点。

使制成的新材料具有硬度大、高温强度高、高温蠕变性好,抗热震性好、抗氧化、耐腐蚀、耐磨损等众多优异的性能,得到更加广泛的应用。

关键词:金属陶瓷;复合原理;润湿性;热力学共存性简介:陶瓷由金属结合相和陶瓷主相组成。

然而,这并不意味着任何金属相和陶瓷相的组合都具有优异的金能量。

因此,如何选择材料,如何使材料完美结合,将是本文研究的重点。

1.金属陶瓷材料体系的选择原则对于金属陶瓷来说,要使其具有理想的性能,需要考虑的主要问题是如何把将两种以上的材料结合起来,以获得理想的结构。

相界面的润湿性、化学反应和组分的溶解对相界面的结合有重要影响。

因此,材料体系的选择应遵循以下原则:第一,熔融金属与陶瓷相的润湿性要良好,这是决定金属陶瓷性能优劣的主要条件之一。

第二,金属相与陶瓷相之间不发生剧烈的化学反应,如果反应太剧烈,纯金属相就会变成金属化合物,而无法达到用金属来改善陶瓷脆性的目的。

第三,金属相和陶瓷相的热膨胀系数相差不可过大,对于单一材料来说膨胀系数愈小,抗热震性愈好。

但对金属陶瓷来说,除考虑整体膨胀系数外,还要考虑组元材料热膨胀系数的差别,这种差别如果太大,便会使材料在急冷、急热条件下产生巨大的热应力,甚至使材料产生裂纹或断裂。

此外,为了获得良好的微观结构,对金属相和陶瓷相的含量应有适当的要求。

最理想的结构应该是陶瓷相的细颗粒均匀分布在金属相。

金属相以连续的薄膜状态存在,包裹着陶瓷颗粒。

根据这一要求,陶瓷的用量一般为15%~80%。

2.金属陶瓷复合材料的原理2.1金属相与陶瓷相间的润湿性问题由于陶瓷和金属的晶体类型和物理化学性质不同,它们的相容性很差,大多数液态金属不能润湿陶瓷。

陶瓷颗粒增强铁基表面复合材料的研究现状与最新进展

陶瓷颗粒增强铁基表面复合材料的研究现状与最新进展

要 系统 深入研 究不 同氧化锆含量 的Z A陶瓷 力学性 能 、 T
热物性参 数等对复合 材料界面结构 与性 能的影响 。
4 展 望
陶瓷颗粒 增强 铁基 复合材 料无 疑 已成为替 代传 统 钢铁 耐 磨材 料 的首 选 材料 ,国外 I Ma o eu 公 司 为  ̄ ) gt ax t 代表 ,开 发 的陶瓷 颗粒增 强金 属基 复合材 料 已得到 工 业应 用 ,并形 成 了垄 断态 势 ,对 国内耐磨 材料 产业 提 出了挑 战 ,形 势相 当严 峻 。国 内关 于 陶瓷颗粒 增强 铁 基 复合 材料 的研究起 步较早 ,已有2 余 年的研究历 史 , 0 但 大多 仅停 留在 实验 室研究 的层 面上 ,如何 尽快 实现 其 规模 化 、集 成 化 、产 业化 工业应 用 ,是广 大科 技工

9Байду номын сангаас0・ 2 1 / 铸 造 9 0 29
庆 《造杂 创 白 年 祝铸 》志 刊 周
【] Z ag 8 hn Gu sa g Xig Jad n . Ga Yi n mpc w a oh n , n i og n o mi.I at er
r s sa c o W C/ d e d se l c mpo ie a d is i t ra i l e it n e f Ha f l t e o i st n t n e r c a
提 高材料 的断裂韧 性 。由表 3 以看 出 ,如果在 氧化铝 可 陶瓷 中引入 一定 量 的氧化锆 ,复相 陶瓷 的线胀 系 数将 会 更 加接 近钢铁 材料 ,同时与 铁液 的润 湿性 也会 有所 改善 。这就 意 味着Z A陶瓷颗 粒在兼 具 良好 韧性 的 同 T 时 ,更适 合 于通过铸 渗 法制备 复合 材料 ,是 未来 颗粒 增强 铁基 表面 复合材 料 的发展方 向。 当然 ,随着 氧化

陶瓷增强钢铁基复合材料中基体与陶瓷的选择

陶瓷增强钢铁基复合材料中基体与陶瓷的选择

2019年17期方法创新科技创新与应用Technology Innovation and Application陶瓷增强钢铁基复合材料中基体与陶瓷的选择*汝娟坚1,贺涵2(1.昆明理工大学冶金与能源工程学院,云南昆明650093;2.昆明理工大学材料科学与工程学院,云南昆明650093)1概述陶瓷增强钢铁基复合材料是先进复合材料的重要组成部分,主要作为高效耐磨材料应用于机械、矿山、水泥、电力、冶金、船舶、化工和煤炭等工业领域中,消耗量巨大,因此耐磨复合材料近年来逐渐成为耐磨材料领域的研究热点[1]。

但是,钢铁液与陶瓷的润湿性差,所以制备陶瓷/钢铁复合材料相当困难;同时陶瓷/钢铁界面基本为机械结合,结合强度低,复合材料力学性能低,导致该复合材料在抗磨损服役过程中,可靠性和耐磨性较差。

因此陶瓷增强钢铁基复合材料基体与陶瓷的选择尤为关键,同时改善钢铁液与陶瓷的润湿性也格外重要。

2钢铁基体与陶瓷的选择2.1钢铁基体的选择(1)高铬铸铁高铬铸铁中碳化物类型主要有三种,分别为(Fe ,Cr )23C 6、(Fe ,Cr )7C 3和(Fe ,Cr )3C 。

M 7C 3的晶体硬度为1200-1800HV ,高于M 3C (840-1100HV )及M 23C 6(1000-1100HV )。

由于高铬耐磨铸铁中铬元素含量以及铬碳比较高,所以碳化物是以(Fe ,Cr )7C 3为主要形式存在的[2-3]。

选用高铬铸铁作为基体材料有以下三个优点:第一,高铬铸铁由于马氏体的存在而具有优异的耐磨性能以及较高的强度。

既保证了对陶瓷增强体的承载作用,又提高了复合材料整体的耐磨性。

第二,该金属的高温流动性较好,能更好的渗入到预制体的孔隙中。

第三,高铬铸铁与陶瓷不会因高温的作用下而生成脆性相,影响使用寿命。

(2)高锰钢高锰钢作为一种抗冲击耐磨材料广泛应用于冶金矿山、煤炭、电力等行业。

高锰钢是一种延性耐磨材料,冲击韧性很高,室温下高达a ku 276.6。

先进陶瓷与金属连接的现状及展望

先进陶瓷与金属连接的现状及展望

1前言先进陶瓷材料具有硬度高、强度大、耐高温、耐磨性能好、抗腐蚀、抗氧化等优良的特性和广阔的应用前景,尤其是在电子、能源、交通、发动机制造、航空航天等领域。

然而,陶瓷的韧性值较低,属于脆性材料,采用机械加工的方法难以制备出尺寸较大和复杂结构的构件,为了克服先进陶瓷的脆性及难加工等问题,拓宽其进一步的应用与发展,常将陶瓷与金属连接起来,在性能上形成一种互补关系,使之成为理想的结构和工程材料,以满足现代工程的应用[1-2]。

陶瓷与金属的连接既是连接领域的热点问题又是难点问题,首先金属与陶瓷在化学键型、物理和化学特性、力学性能及微观结构等方面具有较大的差异;其次,陶瓷与金属的热膨胀系数相差较大,连接时在界面处导致残余应力的集中,致使接头强度下降。

生产中常用钎焊或扩散焊的方法将陶瓷与金属(陶瓷)连接起来,随着连接技术的深入研究,相继研发了一些新的方法(中性原子束焊、激光焊、超声波焊、微波焊以及燃烧合成技术等)[3]。

本文针对近年陶瓷与金属连接而开发的连接技术进行阐述,总结最新的研究成果并对其进行展望。

2陶瓷与金属的连接技术15世纪中叶,我国明代景泰蓝的制作开创了陶瓷与金属连接技术的先河,但是,具有产业化的、工业规模的连接技术则始于20世纪30年代。

Wattery 和德律风根公司的Pulfrich于1935~1939年在陶瓷表面喷涂一层高熔焦仁宝1,2,荣守范1,李洪波1,朱永长1,刘文斌1,张圳炫1(1.佳木斯大学材料科学与工程学院,佳木斯154007;2.佳木斯大学机械工程学院,佳木斯154007)陶瓷与金属连接是陶瓷面向工程应用的关键技术。

本文阐述了适用于陶瓷与金属连接的各种方法及其机理、特点和工程上的应用。

指出钎焊和扩散焊具有很好的适应性,并对陶瓷与金属连接的研究前景进行了展望。

金属;连接方法(1980年~),男,黑龙江省佳木斯人,博士研究生。

黑龙江省教育厅项目(2016-KYYWF-0567). All Rights Reserved.点金属(Ni 、W 、Fe 、Cr 、Mo )进行活化处理,采用间接钎焊的方法,制造陶瓷电子管,该项技术于1940年获得专利,称之为德律风根法。

金属间化合物/Al2O3陶瓷基复合材料的研究进展

金属间化合物/Al2O3陶瓷基复合材料的研究进展
何 柏 林 , 光 耀 , 燕 平 熊 缪
( 东交通大学 机 电工程学 院 , 西 华 江 南 昌 3 0 1 ) 3 0 3
摘 要 : z 。陶 瓷 的 脆 性 本 质 极 大 的 限 制 了 其 使 用 范 围 。在 提 高 氧 化 铝 陶 瓷 韧 性 的研 究 中 , Alo
利 用金 属 间化 舍物 作 为 第二相 来增韧 氧 化铝 陶瓷 已成 为研 究热 点之 一 。本 文从 金属 间化 合 物
ห้องสมุดไป่ตู้
化 等一 系列 的优异 性 能 , 目前 已广 泛 用 于 许 多 高 新
技 术领 域 , 是 其 陶瓷 材 料 的 脆 性 本 质 在 很 大 程 度 但 上 限制 了它 的发 展 和 应 用 。因 此 , 善 氧 化 铝 陶瓷 改 的韧性 成 为其 得到 进一 步 应用 的核 心 问题 。 近年来 , 提 高氧 化 铝 陶瓷韧 性 的研 究 中 , 用 在 利 金 属 间化合 物 作 为第二 相 来增 韧氧 化 铝 陶瓷 已成 为 研 究 热点 之一 , 取 得 了重 要 的研 究 成 果 。本 文 从 并
中 图 分 类 号 : 3 . ; F 2 . G6 3 8 T 1 5 4 文 献标 识 码 : A 文 章 编 号 :0 6 6 4 ( 0 8 0 — 0 3 一 O 10 — 53 20 )3 0 1 5 P RoG S N I E RE S I NT RM E AL I S A1O E T L C / 2 3 RAM I SB E oMP S TE C C AS D C o I S
化 合 物 ,即 Ni 、 Ni 、Ni 。 。 A1 A1 、Ni 。 和 A1 z A1 Ni 。 。 目前 , — 系金 属 间化 合 物 中研 究 最多 A1 Ⅲ Ni Al

金属与陶瓷的润湿性概述

金属与陶瓷的润湿性概述

金属与陶瓷的润湿性概述作者:刘娟娟苟小斌来源:《城市建设理论研究》2013年第24期摘要:研究金属对陶瓷的润湿性对开发新型金属—陶瓷体系,探寻和发展材料的制备技术,制备高性能金属—陶瓷复合材料有着重要的现实意义。

本文阐述了润湿性的分类、界面化学反应对金属—陶瓷润湿性和陶瓷材料性能的影响,并介绍了润湿性研究的实验研究方法,探讨改善润湿性的途径。

关键词:金属—陶瓷;接触角;化学反应;润湿性中图分类号:TL25 文献标志码:A 文章编号:1 引言金属—陶瓷复合材料作为一种以一种或多种陶瓷相为基体,以金属或合金为粘结相的复合材料[1],如何发挥其中陶瓷相基体的优良性能一直是科研人员研究的重点方向。

其中陶瓷与金属润湿性的好坏很大程度上决定了金属—陶瓷复合材料综合性能的发挥,因此金属—陶瓷复合材料研究的热点在于开发新型金属—陶瓷体系、改善金属—陶瓷界面结合状况以提高材料综合性能,这一切都是建立在金属对陶瓷具有良好的润湿性的基础之上。

研究金属对陶瓷的润湿性对制备高性能金属—陶瓷复合材料有着重要的现实意义。

金属陶瓷复合材料的研究还处于初期阶段。

研究较多的有金刚石、石墨、SiC、Al2O3、ZrO2、TiC等陶瓷相和金属合金所组成的体系。

由于陶瓷和金属的晶体类型及物理化学特性的差异,两者的相容性很差,绝大部分液态金属都不能润湿陶瓷,因此如何改善金属与陶瓷的润湿性,从而改善材料的综合性能性能成为当前材料制备中的一个重要问题。

2 润湿性的分类根据陶瓷—金属的界面结合情况,金属对陶瓷的润湿过程可分为非反应性润湿和反应性润湿。

非反应性润湿是指界面润湿过程中不发生化学反应,润湿过程的驱动力仅仅是扩散力及范德华力。

其中液态金属的表面张力是决定液态金属是否能在固相陶瓷表面润湿的主要热力学参数。

一般此类润湿过程进行得很快,在很短的时间内就能达到平衡;且温度和保温时间对润湿性影响不大。

非反应性润湿体现出对体系成分的不敏感性。

添加合金元素对改善金属—陶瓷润湿性有较大的影响,其机制为合金元素在液态金属表面及固—液界面的吸附和富集,降低了液态金属表面张力及固—液界面张力。

金属基自润滑复合材料固体润滑剂研究进展

金属基自润滑复合材料固体润滑剂研究进展

第47卷第5期燕山大学学报Vol.47No.52023年9月Journal of Yanshan UniversitySept.2023㊀㊀文章编号:1007-791X (2023)05-0398-13金属基自润滑复合材料固体润滑剂研究进展邹㊀芹1,2,王㊀鹏1,徐江波1,李艳国2,∗(1.燕山大学机械工程学院,河北秦皇岛066004;2.燕山大学亚稳材料制备技术与科学国家重点实验室,河北秦皇岛066004)㊀㊀收稿日期:2022-05-25㊀㊀㊀责任编辑:唐学庆基金项目:丹凤朝阳人才支持计划(丹人才办[2019]3号);河北省高等学校科学研究重点项目(ZD2021099)㊀㊀作者简介:邹芹(1978-),女,安徽淮北人,博士,教授,博士生导师,主要研究方向为超硬及特种陶瓷材料㊁摩擦磨损;∗通信作者:李艳国(1978-),男,河北唐山人,博士,副研究员,主要研究方向为金属基复合材料,Email:lyg@㊂摘㊀要:固体润滑剂在金属基自润滑复合材料中的应用正在迅速增加,特别是在极端环境(高温㊁高负载等)条件下工作的耐磨材料㊂目前,金属基自润滑复合材料中常使用的固体润滑剂主要有无机层状固体润滑剂㊁金属及其化合物㊁MAX 金属陶瓷㊁有机物固体润滑剂㊁碳纳米材料固体润滑剂㊁多元复合固体润滑剂等,其种类很多,且各自有其适用的环境和基体㊂根据基体材料以及工况环境选择相匹配的固体润滑剂,可以保证金属基自润滑复合材料具有良好的减摩耐磨效果㊂针对上述内容,本文综述了金属基自润滑复合材料采用的固体润滑剂种类㊁基本性质㊁优缺点㊁润滑机理,总结了固体润滑剂的适用温度及其在金属基自润滑复合材料中的应用情况,并对金属基自润滑复合材料固体润滑剂的发展趋势进行了展望㊂关键词:金属基自润滑复合材料;固体润滑剂;润滑机理;研究进展;展望中图分类号:TB331㊀㊀文献标识码:A㊀㊀DOI :10.3969/j.issn.1007-791X.2023.05.0030㊀引言固体润滑剂[1]是金属基自润滑复合材料的重要组成部分,在金属基自润滑复合材料中的应用具有很长的历史㊂早在19世纪初期[2-3],石墨和Pb 已经作为润滑剂用于低速运转的机器上㊂20世纪30年代,添加固体润滑剂的铁基自润滑轴承在德国出现㊂20世纪60年代,添加MoS 2的金属基自润滑复合材料逐渐产生,并对超音速飞机的问世起到了重要的推动作用[4]㊂到目前为止,由于固体润滑剂可在一些特殊工况下(见表1)起润滑作用,这对高新技术的发展起到了重要的推动作用[5]㊂金属基自润滑复合材料固体润滑剂种类很多,包括无机层状固体润滑剂㊁金属及其化合物㊁MAX 金属陶瓷㊁有机物固体润滑剂㊁多元复合固体润滑剂等,其各有优缺点,且仍处于不断发展阶段㊂表1㊀固体润滑剂的适用场景Tab.1㊀Applicable scenaries of solid lubricants适用场景具体应用高负载滑动场景重型机械中的摩擦部件高温环境下磨损场景航空航天发动机㊁导弹燃油泵等摩擦部件强辐射环境下摩擦场景核电站㊁卫星等设备上的裸露活动部件强腐蚀性介质中摩擦场景化学反应器轴承,压缩机螺丝等部件摩擦接触表面导电场景电刷㊁受电弓滑板等灰尘或碎片环境中工作场景矿山机械和织机机械中的摩擦部件需要保证清洁的摩擦场景食品机械㊁纺织机械等摩擦部件微颤环境下的摩擦场景汽车和飞机上的摩擦部件1㊀无机层状固体润滑剂1.1㊀石墨石墨价格低廉,在潮湿环境中由于水的氢离第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展399㊀子和氢氧根离子的饱和导致层间范德华键减弱,从而促进了层间分裂,在金属表面形成一层具有减摩作用的润滑膜[6],使得其可在潮湿环境提供有效润滑㊂目前,石墨作为金属基自润滑复合材料固体润滑剂的研究主要集中在改善不同钢种在不同工业应用中的摩擦磨损性能上,而制备时石墨与部分金属基体(Cu㊁Al等)润湿性较差,导致两者界面结合变差,影响复合材料的力学性能以及摩擦学性能,另外使用过程中产生的高温会导致石墨氧化和烧蚀,严重影响润滑效果[6-8]㊂对石墨进行金属化改性,如采用金属(Ni㊁Cu等)包覆石墨的办法,能有效改善石墨与基体的界面结合,同时防止石墨氧化和腐蚀,改善石墨高温润滑效果,从而提高复合材料摩擦学性能,扩大使用范围㊂张鑫等[9]采用Cu包覆石墨制备了Cu基粉末冶金摩擦材料,其材料表面形成的摩擦膜主要为氧化膜,而采用普通石墨时,由于材料表面较多的石墨会抑制氧化反应,会形成石墨膜,其对材料表面的保护效果不及氧化膜㊂但相对于原基体,两种材料摩擦性能均有明显提高㊂Zhao等[10]证明了石墨与青铜无法充分润湿,而加入Ni或Cu包覆石墨的复合材料可以明显提高石墨与基体的结合性,Ni包覆石墨青铜基材料具有更稳定的摩擦系数㊁更低的磨损率㊁更高的维氏硬度,包覆石墨的Ni也可以提高复合材料的耐蚀性㊂牛志鹏等[11]发现加入镀Ni石墨可以降低石墨与Al的润湿角,提高基体的力学性能,降低复合材料的摩擦系数和磨损率,使金相组织变得更加致密㊂但石墨表面光滑且亲水性差,难以实现完全包覆㊂罗虞霞等[12]发现,采用机械化整形处理石墨表面,可以获得更为完整的Ni包覆层㊂冀国娟等[13]发现,在石墨表面进行微氧化以及在化学包覆反应溶液中加入醇类表面活性剂,均可提高包覆率㊂综上,采用金属包覆石墨作为固体润滑剂可显著提高其高温润滑特性㊂然而,石墨表面包覆金属层的完整性是决定其润滑性能的关键因素㊂故进一步提高石墨表面包覆金属层的完整性以及连续性将继续成为研究的重点㊂1.2㊀BNBN导电性能强㊁热稳定性高,在大气环境中适用温度为500~800ħ,是高温自润滑材料的优良润滑剂㊂其润滑机理为[14-15]:高于500ħ时,BN 会在摩擦过程中剥落而转移到摩擦表面形成润滑膜,起减摩作用㊂蒋冰玉等[16]以Ni-Cr合金为基体材料,BN为固体润滑剂,制备出燃气轮机中减摩耐磨用的高温自润滑复合材料㊂目前,尽管BN 是一种人们熟知的高温固体润滑剂,但由于其存在有效性差㊁不可润湿等问题,使得人们对于BN 单独应用在金属基自润滑复合材料上的报道较少,其常与其他固体润滑剂协同润滑[17]㊂2㊀金属及其化合物2.1㊀金属常见的金属固体润滑剂有Pb㊁Al㊁Ag㊁Au㊁Sn㊁Bi㊁In等,其具有纯度高㊁原料易得㊁低温环境不会丧失润滑性能等优点㊂金属固体润滑剂在强辐射㊁真空㊁低温等极端工作条件非常适合作为金属基自润滑复合材料的固体润滑剂使用,常与Cu㊁Al㊁TiAl等金属基体组成复合材料㊂其润滑机理为:在摩擦热的作用下,由于热膨胀系数不同,金属逐渐从基体内扩散到摩擦表面形成润滑膜,起减摩作用,但其适用环境受温度限制严重㊂Yao等[18]发现,在200ħ时,Ag在剪切应力作用下扩散到摩擦表面,起减摩耐磨作用㊂但在600ħ时Ag完全失去润滑作用(图1)㊂Dong 等[19]发现,Cu-24Pb-x Sn合金的自润滑性能和力学性能随Sn含量的增加而增加,Pb含量的增加有效地削弱了以摩擦系数变化为特征的粘滑现象㊂李聪敏等[20]以Al-Cu-Mg合金为基体,添加低熔点组元Bi后合金抗咬合能力明显提升,发现带状富Bi 相涂覆在磨损表面,起到减摩自润滑作用㊂金属在强辐射㊁真空㊁低温等极端环境仍具有润滑特性,但是也存在着一些缺点,如:Pb本身有毒,对人体和环境都有危害,Ag㊁Au㊁In等金属作为固体润滑剂时成本太高;金属在空气中暴露的时间过长时,易发生氧化反应,影响润滑效果㊂2.2㊀金属氧化物常见的金属氧化物固体润滑剂有PbO㊁CuO㊁MoO3㊁SnO㊁ZnO等㊂金属氧化物是最早应用的高温固体润滑剂,常与Fe㊁Ni㊁NiAl等金属基体组成复合材料㊂由于金属氧化物具有较低的剪切强度,可有效避免摩400㊀燕山大学学报2023擦过程中的咬合现象㊂Peterson 等[21]考察了大量氧化物的高温摩擦学特性,发现PbO 等少数氧化物可实现较宽温度范围内的有效润滑㊂但是,由于PbO 危害环境,国外已限制其应用㊂Zhu 等[22]通过PM 制备了添加氧化物(ZnO /CuO)的NiAl-C-Mo 自润滑材料,发现氧化物在低温时几乎不起减摩作用㊂但当温度达到600ħ时,磨损表面形成了ZnO㊁CuO 和MoO 3层,表现出了良好的减摩耐磨效果㊂结果表明,金属氧化物在高温时润滑效果显著㊂但是,目前关于二组元氧化物的润滑机理还未得到统一㊂图1㊀TiAl 基自润滑复合材料磨损表面的微观结构演变示意图Fig.1㊀Schematic diagram of microstructure evolution of wear surface of TiAl based self-lubricating composite2.3㊀金属氟化物常见的金属氟化物固体润滑剂有CaF 2㊁BaF 2㊁LaF 3等㊂金属氟化物热稳定性良好,从500ħ到1000ħ的温度范围都能起到良好的减摩耐磨作用,其原因主要为金属氟化物在500ħ时经历了由脆性到塑性的转变㊂Longson [23]发现,CaF 2和BaF 2具有良好润滑性的原因是其在摩擦过程中由脆性向塑性转变以及氟元素与金属表面发生化学反应的共同作用㊂尽管对CaF 2和BaF 2润滑机理进行了大量研究,但是对于其转移润滑机理的全面认识还有赖于进一步研究㊂综上,由于金属氟化物特殊的润滑机制导致其在低温时不提供润滑,故单独采用金属氟化物作为金属基自润滑复合材料固体润滑剂的报道很少,其多与石墨㊁Ag 等固体润滑剂复合使用,达到宽温度范围有效润滑的目的㊂2.4㊀金属硫化物常见的金属硫化物固体润滑剂有MoS 2㊁WS 2㊁FeS㊁CrS 等㊂MoS 2属于六方晶系,具有层状结构,常与Fe㊁Al㊁Ag 等金属基体组成复合材料㊂MoS 2在大气环境中适用温度可达350ħ,润滑机理与石墨相似,由于具有低摩擦㊁低接触电阻等优点,广泛用作航空㊁航天机构中的滑动电接触材料[24]㊂WS 2因其良好的热稳定性和抗氧化性而广泛应用于高温环境㊂研究表明[25-27],在大气环境中通过在金属基体中掺入MoS 2或WS 2颗粒可显著提高Ni [25]㊁Al [26]㊁Fe [27]等金属基复合材料的摩擦学性能,使其满足使用要求㊂但是,MoS 2和WS 2会因大气湿度高㊁氧气的存在以及高温而导致润滑性能降低㊂通过掺杂金属或无定形碳可以保护MoS 2边缘位置免受氧化,从而提高MoS 2和WS 2在潮湿或较高温度条件下的摩擦学性能㊂Rigato 等[28]发现在MoS 2层状结构中掺杂Ti 增加了MoS 2层间距离,从而改善了其摩擦学性能㊂此外,研究发现,在MoS 2层状结构中掺杂Ni [29]㊁Cu [30]等金属可提高复合材料在潮湿环境和真空条件下的摩擦磨损性能㊂FeS 与MoS 2相比,具有优异的耐高温特性,因其较疏松的鳞片状结构能储存润滑油,可进一步提升润滑性能㊂尹延国等[31]发现FeS /Cu 基复合材料在在干摩擦过程中,FeS 颗粒聚集在摩擦表面形成一层硫化物固体润滑膜,具有较好的减摩㊁抗粘着作用,在油润滑条件下,润滑油膜和FeS 固体润滑膜可以起协同润滑作用㊂Lu 等[32]采用NiCr /Cr 3C 2和WS 2粉末在Ti 6Al 4V 基体上激光熔覆制备了Ti 2SC /CrS 自润滑耐磨复合涂层,由于原位合第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展401㊀成的自润滑Ti2SC和CrS的存在,自润滑抗磨复合涂层显示出比不添加WS2粉末的抗磨复合涂层更好的摩擦学性能㊂综上,MoS2和WS2在高温真空条件下具有优良的润滑特性,被认为高温真空条件下的首选固体润滑剂㊂在大气环境中,温度低于350ħ时,金属基-MoS2自润滑材料表现出优异的摩擦学性能㊂但是,MoS2在大气环境中高温时容易发生氧化[29-30],限制了其应用环境㊂故如何进一步提高MoS2在潮湿和较高温度条件下的摩擦学性能将继续成为研究的重点㊂2.5㊀金属硒化物常见的金属硒化物固体润滑剂有NbSe2㊂NbSe2导电性能优异,相对摩擦系数低,常与Ag㊁Cu[33-34]等金属基体组成复合材料,广泛应用于电接触领域㊂早在20世纪80年代,美国NASA便采用Ag-NbSe2自润滑材料来制作卫星上的电刷,并取得良好效果㊂Ag-NbSe2自润滑材料具有良好润滑性能的原因[33]为在摩擦热和变形挤压的共同作用下,部分NbSe2转移到摩擦表面,形成了NbSe2润滑膜,起减摩作用㊂孙建荣等[34]发现,高负载㊁真空条件下,添加纤维状NbSe2的Cu-石墨复合材料摩擦系数远低于原复合材料㊂因此, NbSe2常作为真空条件下的固体润滑剂使用㊂3㊀MAX金属陶瓷MAX金属陶瓷因为其原子结构和独特的化学键特性,使MAX金属陶瓷兼具金属和陶瓷的优点,如高硬度㊁高弹性模量,具有良好的抗氧化性㊁耐腐蚀性㊁导电导热性㊁辐照性能㊁高温机械和摩擦学性能等[35]㊂理论计算约有600余种能稳定存在的三元MAX金属陶瓷,如今可以通过实验合成80多种[36],如Ti3SiC2㊁Ti3AlC2㊁Ti2AlC㊁Ti2AlN㊁Ta2AlC等㊂目前,除Ti3SiC2和Ti3AlC2外,对于其他MAX金属陶瓷应用于金属基自润滑复合材料的研究鲜有报道㊂在材料基体中添加一定量的Ti3SiC2/Ti3AlC2颗粒润滑相能够显著提升金属基体的摩擦学性能㊂研究表明[37-39]不同温度下的微观结构以及反应产物对Ti3SiC2㊁Ti3AlC2的润滑性能有重要的影响㊂Zou等[38]用放电等离子烧结制备Ti3SiC2增强TiAl基复合材料,Ti3SiC2均匀分布在TiAl基质中,部分分解形成Ti5Si3和TiC,室温摩擦时复合材料表面形成Ti3SiC2润滑膜,550ħ摩擦时形成Fe-Ti-Al-Si-氧化物润滑膜,起润滑作用㊂朱咸勇等[39]发现,当试验温度低于400ħ在轻载条件下难以形成稳定氧化物润滑膜,其润滑特性主要依赖于特殊的层状形貌,而试验温度超过500ħ会促使材料表面形成氧化物润滑膜,起到减摩耐磨的作用㊂同时,MAX金属陶瓷添加量对复合材料摩擦学性能影响较为显著㊂陈海吉[40]使用放电等离子烧结制备Ti3AlC2/Cu复合材料,研究表明,随着Ti3AlC2添加量增加,复合材料摩擦磨损性能得到提高㊂研究发现当含量过高时会导致其致密度降低,影响摩擦学性能㊂烧结温度对MAX金属陶瓷自润滑复合材料性能也有重要影响㊂Zhou等人[41]发现烧结温度在900ħ以上时,在Cu和Ti3SiC2界面会形成Cu㊁TiC x㊁Ti3SiC2和Cu x Si y混合区从而提高系统的润湿性和耐磨性㊂综上,MAX金属陶瓷应用在摩擦材料的大多数情况下,由于摩擦过程中形成的氧化物润滑膜具有特殊的层状结构,使复合材料润滑效果更好㊂另外,表面改性以及较高的烧结温度可进一步提高其润滑效果㊂4㊀有机固体润滑剂除上述固体润滑剂外,还有一类性能优越㊁可用于极端环境(真空㊁强辐射)条件下的单一固体润滑剂-有机固体润滑剂㊂有机固体润滑剂种类很多,如聚四氟乙烯(PTFE)㊁三聚氰胺氰尿酸盐(MCA)等,但较低的适用温度(-270~275ħ)限制了其在金属基复合材料中的应用㊂PTFE是所有聚合物中摩擦系数最低的[42]㊂其抗剪切强度较低,受剪切力时聚合物链脱开,可提供润滑作用㊂同时,由于含F外壳的存在,其抗咬合性优异,常采用电沉积法与Ni[43]㊁Fe[44]等金属基体组成复合材料㊂MCA润滑特性与MoS2相似,滑动面间极易受力断裂,提供润滑作用㊂Tang 等[43]发现,由于润滑转移层的存在,Ni-Co-PTFE 复合材料显示出良好的摩擦学性能(摩擦系数0.08)㊂Xiang等[44]则指出PTFE的低摩擦系数以及40Cr钢的高强度是40Cr钢-PTFE复合材料具有良好摩擦学性能的重要原因㊂但是PTFE的力402㊀燕山大学学报2023学性能较差,线膨胀系数大,故将PTFE用作固体润滑材料时通常要添加填充物对其进行改性或对金属基体进行阳极氧化处理[45]㊂魏羟等[46]用Pb 粉㊁石墨㊁玻璃纤维填充PTFE制成Cu基镶嵌型关节轴承材料,显示出较好的摩擦磨损性能㊂但李同生等[47]发现,与含铅PTFE镶嵌轴承相比,无铅PTFE镶嵌轴承在工作时所形成的润滑膜最为完整㊁均匀,耐磨性更好㊂同时,对金属基体进行阳极氧化处理改性可进一步提高PTFE与基体金属基体的附着性[45]㊂综上,添加填充物对PTFE进行改性或对金属基体进行阳极氧化处理可大大提高复合材料的机械和摩擦学性能㊂5㊀碳纳米材料固体润滑剂近年来,纳米技术的快速发展推动了金属基自润滑复合材料的开发,出现了新型碳纳米材料固体润滑剂,例如碳纳米管(CNTs)㊁石墨烯(GPLs)等㊂由于其尺寸小,容易进入摩擦接触区域,形成保护摩擦膜,产生自润滑效应㊂同时,界面以下的新型碳纳米材料还可以防止应力集中而引发的严重磨损㊂5.1㊀碳纳米管CNTs具有良好的润滑特性,被认为是金属基自润滑复合材料中石墨的替代品㊂在这方面,有相关报道称已经成功开发了用于汽车工业的CNTs-金属基自润滑复合材料[48]㊂Orowan环化机制以及CNTs与金属基体之间热膨胀失配所产生的位错在增强Al/Cu-CNTs复合材料中起着重要作用[49]㊂为达到预想的润滑效果,CNTs在基体中的均匀分布以及界面调控就显得尤为重要㊂对此,研究者们做了大量的工作㊂2004年,Noguchi等[50]开发了一种新方法制备复合材料,首先让CNTs均匀分布在弹性体基体内,然后用Al来置换弹性体基体,从而保证CNTs均匀分布在Al基体内㊂2019年,周川等[51]采用混酸处理㊁分子水平法结合行星球磨两步混合工艺成功制备出Cu-CNTs复合粉末㊂混酸处理将含O官能团成功引入CNTs表面,提高了CNTs与基体的界面结合㊂以上研究均表明,均匀分布的CNTs可显著提高材料的机械和摩擦学性能㊂5.2㊀石墨烯片GPLs是目前已知最薄㊁最硬㊁导电性能最好的材料,具有良好的润滑特性,同时,可以通过晶粒细化㊁位错强化和应力转移来提高复合材料强度[52]㊂在过去的十多年里,绝大多数报道均表明在基体中均匀分布且结合良好的GPLs能够明显改善金属基复合材料的摩擦学性能㊂但是,聚集状态的GPLs增强效果较差,与石墨薄片几乎无差别㊂研究表明[53-55],不同的因素(例如GPLs的类型㊁含量㊁基体材料㊁混料方法和球磨时间等)会显著影响GPLs在金属基体中的分散性㊂为了保证GPLs均匀地分散在基体中,部分研究者在粉体混合工艺中采用氧化石墨烯代替石墨烯,先得到均匀混合的氧化石墨烯/合金粉体,再通过氧化石墨烯的热还原性质得到高度均匀的还原石墨烯/合金粉体[56]㊂Bastwros等[53]则研究了球磨时间对GPLs增强Al基复合材料的影响㊂发现经过10 min球磨后的材料综合性能反而降低,而60min 球磨后GPLs均匀分散在到Al基体内,在摩擦学性能上,GPLs显示出了良好的增强效果㊂另一方面,化学镀和电化学沉积法制备金属包覆型碳纳米材料,也可以确保GPLs均匀地分散在基体中㊂李远军[55]通过化学镀将纳米铜颗粒负载于还原氧化石墨烯表面的方法来确保其在Cu基体上均匀分布㊂但研究表明,化学镀和电化学沉积法一般仅适用于Cu㊁Ni㊁Ag等电负性较低的金属基体㊂综上,碳纳米材料可显著提高材料摩擦学和机械性能㊂但是,CNTs严重团聚以及与基体结合不牢固会减弱增强效果,甚至导致材料失效㊁降低使用寿命,从而进一步增加制造成本,限制其在金属基自润滑复合材料上的广泛应用㊂这就对制造方法㊁材料尺寸大小以及空间分布提出来更为苛刻的要求,但是,由于弱的层间相互作用,碳纳米管㊁石墨烯在实现超滑方面有很大的潜力[57]㊂因此,目前研究者们对于碳纳米材料固体润滑增强金属基自润滑复合材料的研究也主要集中在这四方面:1)提高碳纳米材料在金属基复合材料中分散的均匀性;2)对碳纳米材料与金属形成的界面组织进行调控;3)掺杂其他固体润滑剂,进一步提高金属的减摩耐磨性能;4)微观尺度上,研第5期邹㊀芹等㊀金属基自润滑复合材料固体润滑剂研究进展403㊀究石墨烯对材料性能的作用机理㊂综上,单一固体润滑剂对使用环境具有选择性,无法实现宽温度范围(25~800ħ)以及多种环境下的有效润滑㊂常见单一固体润滑剂的性能及优缺点见表2[1-57]㊂表2㊀单一固体润滑剂性能及优缺点Tab.2㊀Performance and relative merits of single solid lubricant固体润滑剂适用温度/ħ摩擦系数μ优点存在的问题最新解决方法石墨-270~5500.05~0.3(大气中)廉价㊁减震性良好㊁可在潮湿环境提供有效润滑强度较低,仅在大气环境提供有效润滑对石墨粉末进行表面改性,如镍包覆石墨MoS2-270~3500.006~0.25(大气中)0.001~0.2(真空中)高温真空条件下稳定性优异大气环境易氧化失效掺杂金属或无定形碳BN500~8000.15~0.25(大气中)良好的高温固体润滑剂成本较高,低温润滑性差与低温固体润滑剂协同润滑Ag㊁Au-270~4000.08~0.2(大气中).0.08~0.15(真空中)导电性能优异在酸碱条件下无效,成本高与其他固体润滑剂协同润滑PbO200~6500.1~0.3(大气中)可实现宽温度范围有效润滑有毒物质,摩擦系数较高㊁且形成润滑膜易脱落已被其他固体润滑剂替代CaF2㊁BaF2㊁LaF3500~9000.2~0.4(大气中)可实现高温有效润滑低温润滑性差与低温固体润滑剂协同润滑MAX金属陶瓷400~8000.005(大气中)高温机械和摩擦学性能优异,导电性能良好与Fe等基体复合时,界面结合差,易脱落1)添加增强相;2)对Ti3SiC2㊁Ti3AlC2进行表面改性,如镀铜PTFE-270~2750.04~0.2(大气中)0.04~0.15(真空中)真空润滑性能优异,抗咬合性好300ħ以上失效,不耐高温㊁力学性能较差,线膨胀系数大1)添加填充物对PTFE进行改性;2)对金属基体进行阳极氧化处理碳纳米材料-270~5000.05~0.2(大气中)轻质,可显著提高复合材料机械学㊁摩擦学性能团聚以及界面结合严重影响润滑效果,生产成本高昂1)氧化石墨烯代替石墨烯;2)混酸处理;3)金属包覆碳纳米材料;4)掺杂其他固体润滑剂6㊀多元复合固体润滑剂早在20世纪60年代初,人们就已经发现,两种或者多种固体润滑剂混合使用时,由于不同固体润滑剂之间的协同作用,使得其润滑效果好于其中任何一种固体润滑剂单独作用㊂6.1㊀Ni基自润滑材料的多元复合固体润滑剂在过去的20年中,已经成功开发了一系列Ni 基的高温自润滑复合材料[58-62]㊂该类由Ni基体与固体润滑剂(Ag-BaF2/CaF2/LaF3-金属氧化物/无机盐)组成的自润滑复合材料,在很宽的温度范围(25~800ħ)和高强度(800ħ,500MPa的抗压强度)并存的情况下表现出优异的润滑性能(图2[59])㊂其良好的润滑特性(摩擦系数(0.23~ 0.34)和低磨损率(10-6~10-5mm3N-1m-1)解释为Ag㊁氟化物㊁无机盐的协同作用㊂当高于500ħ时,氟化物中的低共熔物从基体中逸出,发生由脆性到塑性的转变,可进一步提升润滑效果[60]㊂Zhen等[61]指出由于Ag膜的存在,真空环境中该类复合材料摩擦系数和磨损率均低于大气环境中的摩擦系数和磨损率,是一种很有潜力的航空㊁航天材料㊂此外Zhen等[62]的另一份研究表明,在Ag-BaF2-CaF2固体润滑剂的基础上再添质量分数为0.5%~1%的石墨可以使Ni基复合材料获得稳定的摩擦性能(摩擦系数(0.19~0.29)和磨损率(5.3ˑ10-6~2.3ˑ10-5mm3N-1m-1)㊂404㊀燕山大学学报2023图2㊀Ni 基自润滑复合材料的摩擦学性能Fig.2㊀Tribological properties of Ni basedself-lubricating composites6.2㊀Ni 3Al 基自润滑材料的多元复合固体润滑剂进一步研究表明[63-65],该类由Ni 3Al 基体与固体润滑剂(Ag-CaF 2-BaF 2)和增强材料(Cr,Mo 等金属元素)组成的自润滑复合材料,在从室温到1000ħ的宽温度范围内表现出低摩擦系数(μ<0.4)和低磨损率(10-6~10-4mm 3N -1m -1),且具有令人满意的机械性能(硬度>300HV,抗压强度>1000MP)㊂Zhu 等[65]采用热压烧结法制备的Ni 3Al-6.2BaF 2-3.8CaF 2-12.5Ag-20Cr 复合材料实现了室温到1000ħ的有效润滑(摩擦系数(0.24~0.37)和低磨损率(5.2ˑ10-5~2.3ˑ10-4mm 3N -1m -1))㊂Ni 3Al 基体良好的高温机械性能,Ag㊁氟化物㊁无机盐的协同润滑以及Cr 元素对基体的增强作用使得其可以实现更宽温度范围的有效润滑㊂与Ni 基自润滑复合材料相比,Ni 3Al 基自润滑复合材料则可实现更宽温度范围内的有效润滑,其润滑机理见图3[66]㊂6.3㊀TiAl 基自润滑材料的多元复合固体润滑剂近年来,由于航空㊁航天工业的需要,科研人员制备了一系列基于TiAl 基的高温自润滑复合材料[67-69]㊂该类由TiAl 基体与固体润滑剂(Ag-Ti 3SiC 2-BaF 2/CaF 2)组成的自润滑复合材料,具有硬度高(>500HV)㊁轻质(ρ<3.9g /cm 3)等优点㊂结果表明[66-68],Ag-Ti 3SiC 2-BaF 2-CaF 2润滑体系在宽温度范围内下具有良好的协同效应:低温时,银扩散到金属基体的摩擦表面形成了一层富Ag 的摩擦膜,高温时,由于BaF 2㊁CaF 2的挤压和Ti 的氧化,在摩擦表面形成了一层含氟化物和氧化物的摩擦膜㊂但是,从室温到800ħ的宽温度范围内其摩擦系数(μ>0.3)和磨损率(10-4mm 3N -1m -1)较高,摩擦学性能有待进一步提高㊂图3㊀宽温度范围内Ni 3Al 基自润滑复合材料的润滑机理Fig.3㊀Lubrication mechanism of Ni 3Al based self-lubricating composites in a wide temperature range㊀㊀综上,可得出:1)多元复合固体润滑剂的协同作用在宽温度范围内对改善复合材料的摩擦学性能起重要作用;2)选择高温机械性能优异的金属基体以及适当添加Cr㊁Mo 等金属元素可实现更宽温度范围的有效润滑;3)Ag 与氟化物/无机盐/MAX 金属陶瓷材料等高温固体润滑剂的组合具有极佳的协同润滑作用㊂6.4㊀Fe /Cu /Ag 等金属基自润滑材料的多元复合固体润滑剂㊀㊀人们对多元复合固体润滑剂对Fe [70-71]㊁Cu [72]㊁Ag [73]等金属基体性能影响也进行了大量研究㊂Li 等[71]发现以LaF 3和MoS 2作为润滑组元的Fe 基复合材料可显示出超低的摩擦系数(0.09),。

金属陶瓷润湿性的研究现状

金属陶瓷润湿性的研究现状
金属陶瓷润湿性的研究现状
基本内容
基本内容
摘要: 金属陶瓷是一种具有优异性能的材料,其润湿性是影响材料性能和应用的重 要因素。本次演示综述了近年来金属陶瓷润湿性的研究现状,包括润湿性的定义 和物理本质、研究方法和技术、影响因素及其作用机理以及在工程实践中的应用, 并展望了未来的研究方向。
基本内容
2、动态附着系数测量
2、动态附着系数测量
动态附着系数测量是一种直接测量固体表面与液体之间作用力的方法,通过 测量液滴在固体表面上的受力情况来评估润湿性。该方法具有较高精度和灵敏度, 但设备成本较高,操作复杂。
1、液滴平衡理论
1、液滴平衡理论
液滴平衡理论是基于Young-Laplace方程的一种理论模型,通过计算液滴在 固体表面上的平衡态来预测润湿性。该理论模型具有简单、直观等优点,但难以 准确描述液滴在固体表面上的动态行为。
4、金属陶瓷润湿性在工程实践中的应用
结论: 本次演示综述了金属陶瓷润湿性的研究现状。目前,研究者们已经从多个角 度对金属陶瓷的润湿性进行了深入研究,包括定义和物理本质、研究方法和技术、 影响因素及其作用机理以及在工程实践中的应用。然而,现有的研究仍存在一定 的不足之处,例如对润湿过程中微观机制的研究不够深入,
2、分子动力学模拟
2、分子动力学模拟
分子动力学模拟是一种基于分子作用力模拟的方法,通过模拟液滴与固体表 面之间的分子相互作用来预测润湿性。该方法具有较高精度和可靠性,但计算成 本较高,需要借助高性能计算机进行运算。
2、分子动力学模拟
结论 本次演示介绍了金属陶瓷润湿性的实验表征和理论预测研究进展。实验表征 方面,接触角测量和动态附着系数测量是最常用的方法,但各方法均有优缺点。 理论预测方面,液滴平衡理论和分子动力学模拟是两种主要的研究方法,其中分 子动力学模拟具有较高的精度和可靠性,但计算成本较高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属/陶瓷复合材料润湿性的研究
摘要:研究金属对陶瓷的润湿性对开发新型金属/陶瓷体系,探寻和发展材料的制备技术有重大的意义。

制备高性能金属/陶瓷复合材料有着重要的现实意义。

本文从陶瓷/金属的润湿现象、机理及其分类出发,介绍了润湿性研究的实验研究方法,并探讨改善润湿性的途径。

关键词:金属/陶瓷复合材料;润湿性;接触角;粘附功
一.润湿现象
润湿是固体表面的气体被液体取代的过程。

在复合材料的制备过程中,只要涉及液相与固相的相互作用,必然就有液相与固相的润湿问题。

在制备金属基复合材料时,液态金属对增强材料的润湿性如何直接影响到界面黏结强度。

润湿性表示液体在固体表面上的铺展程度。

优良的润湿性意味着液体在固体表面上铺展开来覆盖整个增强材料的表面。

按热力学的条件,只有体系自由能减少时,液体才能铺展开来,即
因此,铺展系数SC[1]被定义为
当铺展系数SC>0时,才会润湿,根据力学平衡,可得:
式中,θ为接触角。

由θ可以知道润湿程度。

θ=0°时,金属熔液会在基体上完全的铺展开;θ=180°时,熔滴呈圆球状,只与基体表面形成点接触,称其为完全不润湿;0°90°时则称为不润湿,液相对固体的粘着性较差。

对于一个特定的系统,接触角θ会随温度、保温时间、吸附气体等而变化。

润湿过程可按顺序分为沾湿、浸湿、铺展三个阶段。

对于一个固定的系统,沾湿过程的铺展力最大,最容易进行,属于最低层次的润湿;铺展过程的铺展力最小,属于最高层次的润湿。

润湿性好的液体将尽力覆盖更多的固-气界面,直至完全平铺固体表面,润湿性差的液体的润湿过程将终止于较大的平衡接触角。

金属/陶瓷的润湿性对金属基复合材料的生产有重要的意义。

图1.1润湿性示意图
二.润湿性分类
根据金属/陶瓷的结合情况,液态金属对陶瓷的润湿过程可分为非反应润湿和反应润湿[2-5]。

对于非反应润湿体系,界面润湿过程不发生化学反应,润湿过程仅仅依靠扩散力和范德华力来完成,润湿性一般比较差,通常非反应润湿过程是一个很迅速的过程,在很短时间内就能达到各项平衡状态,与温度没有太大关系,但与陶瓷的金属性和位向及合金元素的加入有很大的关系。

液态金属能否在固相陶瓷表面润湿取决于液态金属的表面张力。

相比较而言,反应润湿过程伴随着不同程度的界面化学反应,润湿作用主要通过界面反应形成界面产物来实现。

界面产物的生成使润湿过程在一层具有良好的润湿性能的中间层上进行,从而很大程度上改善了润湿效果。

由于润湿过程中伴随着界面化学反应,反应润湿一般需要一个较长的时间过程,同时随着时间的持续接触角会逐渐的减小。

另外,反应润湿随着活性元素的加入以及润湿温度的提高而粘结功增大,润湿性提高。

三.润湿性的实验方法
润湿性对于金属/陶瓷复合材料的生产是十分重要的,但评定润湿性好坏十分困难,尤其对反应性润湿。

所以目前已发展了许多技术进行润湿性的测定。

1.座滴法
传统测量金属/陶瓷润湿性的方法是座滴法。

它将所需检测的金属块放置在陶瓷基体上,通过高温加热使金属块熔化,冷却后测量接触角θ和金属液滴的形状从而测出金属与陶瓷基体间的润湿性。

2.微滴法
由于座滴法对易氧化的金属及存在界面反应的体系, 测量精度不高。

它是通过在陶瓷基体表面上蒸发或喷溅一层金属沉积层,在高温、高真空条件下促使金属层熔化,在陶瓷基体表面形成金属液滴,在测量接触角。

这种方法可以很好的反映出润湿过程中界面反应,在液滴形成和凝固收缩后,如果润湿过程中发生了界面反应,就可以通过陶瓷基体表面上留下的反应产物分析界面反应。

3.浸入法
侵入法可以更精确地反映出润湿的动力学特性。

它是将陶瓷制成的圆盘或圆柱浸入到熔融的金属熔液中,通过称量陶瓷的质量,记录近似于陶瓷边缘的弯曲形状,测量σLV和接触角θ,从而得出陶瓷与金属液之间的润湿性。

4.毛细压力法
毛细压力法是通过金属液体在固体( 陶瓷) 中的渗透来测定金属/ 陶瓷的润湿性。

但是毛细压力法存在以下缺陷:
(1)Sf的测量是比较困难的;
(2)不同颗粒的表面各不一样,从而金属/陶瓷的润湿是一个渐近的过程,使得压力的测定比较困难。

这些缺陷的存在,很大程度上限制了毛细压力法的广泛应用。

四.金属-陶瓷润湿性改善的主要方法
随着对金属/陶瓷的润湿性的深入研究,目前已有许多技术可以提高金属/陶瓷的润湿性,进而提高复合材料的综合性能。

1. 增强体表面预处理
未预处理的增强体表面吸附有气体和杂质,阻止了金属液与增强体的润湿。

对增强体通过适当的高温烘焙来改变表面状态,从而提高润湿行为的作用。

2. 提高润湿过程中的温度
通过升高润湿过程中的温度降低界面的接触角。

在一定温度范围内,温度的升高可以有效的改善金属与陶瓷的润湿性,主要是由于温度的升高使金属溶液的表面能快速的降低,同时温度的升高会破坏金属表面的氧化膜,从而润湿性显著地提高。

3. 添加合金元素
合金元素的加入可以降低液态金属表面张力和固-液界面能;同时合金元素会引起界面反应,形成新的界面产物,从而可以很大程度上改善金属与陶瓷间的润湿性,是目前作为改善金属/陶瓷润湿性方面研究和应用的最广泛地技术之一。

4. 增加表面涂层技术
陶瓷表面的金属涂层或经表面处理后可以提高固体的表面能, 用新形成的金属/ 陶瓷界面代替原来结合性不好的界面, 从而提高了润湿性。

Ni和Cu是最常用的金属涂层材料。

结束语
随着科学技术的不断发展,对材料的性能提出更高的要求。

研究金属对陶瓷
的润湿性对开发新型金属/陶瓷体系,探寻和发展材料的制备技术有重大的意义。

制备高性能金属/陶瓷复合材料有着重要的现实意义。

参考文献:
[1] 陶杰,赵玉涛,潘蕾等.金属基复合材料制备新技术导论[M].北京:化学工业出版,2007:220-225.
[2] 李菊,宫本奎,孙全胜.金属/陶瓷的润湿性[J].山东冶金,2007,29 (6):6-9.
[3] 陈康华,包崇玺,刘红卫.金属/陶瓷润湿性研究的综述[J].材料导报,1997,11(2):1-5.
[4] 张一兵,杨家军.金属/陶瓷的选材及其润湿性[J].煤矿机械,2005,3:20-21.
[5] 陈名海,刘宁,刘育东.金属/陶瓷润湿性的研究现状[J].硬质合金,2002,19(4):199-205.
作者:韩璐(1988—),女(汉),陕西省宝鸡市,长安大学材料科学与工程学院,硕士研究生,研究方向:材料学.。

相关文档
最新文档