《相似三角形应用举例(1)》教学设计
相似三角形应用举例教案

27.2.3 相似三角形应用举例一、课标要求: 会利用图形的相似解决一些简单的实际问题.二、课标理解:识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题;通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.三、内容安排:【教学目标】知识与技能:1.能运用相似三角形的数学模型解决现实世界的测量问题;2.通过例题的分析与解决,让学生进一步感受相似三角形在实际生活中的应用.过程与方法:引导学生将实际问题转化为数学问题,建立相似三角形模型,再应用相似三角形知识求解,体会相似三角形的应用方法.情感、态度与价值观:开展学生的转化意识和自主探究、合作交流的习惯,体会相似三角形的实际应用价值,增加学生应用数学知识解决实际问题的经历和感受.【教学重难点】重点:运用相似三角形的知识解决生活中的一些测量问题.难点:如何把实际问题转化相似三角形这一数学模型.四、教学过程〔一〕孕育问题:〔1〕怎样判断两个三角形相似?〔2〕相似三角形的性质有哪些?引入:胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一〞.塔的 4 个斜面正对东南西北四个方向,塔基呈正方形,每边长约230 米.据考证,为建成胡夫金字塔,一共花了20 年时间,每年用工10 万人.该金字塔原高146.59 米,但由于经过几千年的风化吹蚀,高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!〞这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔高度的吗?引出课题:今天,我们就来研究利用三角形的相似,解决一些有关测量的问题.〔二〕萌发生长例1:据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图,木杆EF 长2m ,它的影长FD 为3m ,测得OA 为201m ,求金字塔的高度BO .追问:怎样测出OA 的长?金字塔的影子可以看成一个等腰三角形,那么OA 等于这个等腰三角形的高与金字塔的边长一半的和.解:太阳光是平行光线,因此∠BAO =∠EDF .又∠AOB =∠DFE =90°,∴△ABO ∽△DEF . BO OA EF FD ∴= 20121343OA EF BO FD ⋅⨯∴===〔m 〕 因此金字塔的高度为134 m.归纳:同一时间,同一地点,物高与影长成比例.【牛刀小试】1.在某一时刻,测得一根高为的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,这栋高楼的高度是多少?2.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R .已测得QS =45m ,ST =90m ,QR =60m ,请根据这些数据,计算河宽PQ .解:∵∠PQR =∠PST =90°,∠P =∠P ,∴△PQR∽△PST.PQ QRPS ST∴=即604590 PQ QR PQPQ QS ST PQ++==PQ×90=〔PQ+45〕×60.解得PQ=90〔m〕.因此,河宽大约为90m.归纳:构造两个共线的相似直角三角形.【随堂练习】1.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降时,长臂端点升高.AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗〔三〕收获硕果1.这节课我们学到了哪些知识?2.我们是利用什么方法获得这些知识的?3.通过这节课的学习,你有什么新的想法或发现?〔四〕拓展延伸,布置作业必做题:教材43页习题27.2第8、9题.选做题:教材44页习题27.2第14题.〔五〕学习评价1.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出()A.仰角B.树的影长C.标杆的影长D.都不需要2.如图,小芳和爸爸正在散步,爸爸身高1.8 m,某一时刻他在地面上的影长为2.1 m.假设小芳比爸爸矮0.3 m,那么她此时在地面上的影长为()A.1.3 mB.1.65 mC.1.75 mD.1.8 m3.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5 m的大视力表制作一个测试距离为3 m的小视力表.如图,如果大视力表中“E〞的高度是3.5 cm,那么小视力表中相应“E〞的高度是______________.4.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=80 m,那么河的宽度PQ为__________.5.有一张简易的活动小餐桌,如图,现测得OA=OB=30 cm,OC=OD=50 cm,桌面离地面的高度为40 cm,那么两条桌腿的交点离地面的高度为_____________.附:板书设计§ 27.2.2 相似三角形的性质一:相似三角形对应角相等,对应边成比例二:相似三角形的对应高线、对应中线、对应角平分线的比等于相似比例题板演学生板演三:相似三角形周长比等于相似比推广:相似三角形对应线段的比等于相似比四:相似三角形面积比等于相似的平方。
《相似三角形应用举例》教学设计

《相似三角形应用举例》教学设计活动二:实践探究交流新知1.探究测量高度的方法:分析活中一中的问题:如何将现实生活中的问题转化为数学问题是解题的难点,在问题中,寻找两个相似三角形是解题的突破口,根据太阳光平行的基本常识,得到AB∥ED,得到△DEF∽△ABO,最后解决问题.解:因为太阳光平行,所以∠BAO=∠EDF.因为∠AOB=∠DFE=90°,所以△ABO∽△DEF,所以BOEF=OAFD,即BO=201×2÷3=134(米).因此金字塔的高度BO为134米.师生总结:同一时刻物体的高度与影长成比例.2.探究测量河的宽度的方法:问题:如图27-2-205,为了估算河的宽度,在河对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直于PS的直线b的交点R,如果测得QS=45 m,ST=90 m,QR=60 m,求河的宽度PQ. 图27-2-205师生活动:教师提出问题,学生理解测量方法.分析问题:题目的前提是我们只能在河的一边测量河的宽度,所以想到用相似的知识来解决,因此寻找包括河的宽度的相似三角形.分析题目可知△PQR与△PST相似,所以知道QR,ST,QS的长度即可求出PQ的长度.问题:是否有其他的解题方法?试一试!师生活动:通过作图可以理解并进行解答.3.探究关于盲区问题的方法:问题:如图27-2-206,已知左、右并排的两棵大树的高分别是AB=8 m和CD=12 m,两树的根部的距离BD=5 m,一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶点C了?师生活动:教师引导学生进行分析,寻找解题方法.分析问题:教师介绍仰角和盲区:设观察者眼睛的位置为F,画出观察者的水平视线FG,分别交AB,CD于点H,K,射线F A与FG的夹角∠AFH是观测点A时的仰角,类似的,∠CFK是观察点C时的仰角,区域Ⅰ和区域Ⅱ都在观察者看不到的区域内.本题根据AB∥CD,得到图27-2-206△AFH∽△CFK,从而求解.1.在教师的引导和分析下,把实际问题转化为数学问题,这是解决问题的关键,让学生在解决问题的过程中学会建立数学模型,通过建模培养学生的归纳能力.2.数学建模就是把实际问题转化为数学问题,转化方法之一就是画数学示意图,在画图过程中,可以逐渐明确问题中的数量关系与位置关系,进而形成解题的思路.27-2-208【达标测评】1.如图27-2-209,为估算学校的旗杆的高度,身高1.6米的张良同学沿着旗杆在地面上的影子AB由点A向点B走去,当他走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2 m,BC=8 m,则旗杆的高度是(C)A.6.4 m B.7 m C.8 m D.9 m图27-2-209 图27-2-2102.如图27-2-210,小明在打网球时,使球恰好能打过网,而且落在离网4 m的位置上,则球拍击球的高度h为(B)A.1.6 m B.1.5 m C.2.4 m D.1.2 m3.阳光下,高为6米的旗杆在地面上的影长为4 m,在同一时刻,测得附近一座建筑物的影长为36米,则这座建筑物的高度为__54__米.。
初中数学相似三角形的应用教案设计

初中数学相似三角形的应用教案设计一、教案设计思路本次教学重点是相似三角形的应用,通过一些实际问题引导学生思考,加深他们对相似三角形的理解,提高他们的数学应用能力和解决问题的能力。
二、教学目标1.理解相似三角形的概念,掌握相似三角形的性质;2.了解相似三角形的判定方法,能够应用相似三角形的知识解决实际问题;3.认识到相似三角形在生活中的应用,培养学生的观察、分析、解决问题的能力。
三、教学重点和难点1.理解相似三角形的性质,掌握相似三角形的判定方法;2.学会利用相似三角形解决实际问题。
四、教学过程1.概念的引入采用具体例子引入:将一个三角形拉成另一个三角形,发现新的三角形跟原来的三角形形状相似但大小不同。
这时候将这个观察到的现象抽象化,引出相似的概念。
2.相似三角形的定义根据上述概念引入相似三角形的定义。
引导学生通过比较边长、角度、外形等方面来理解相似三角形的概念。
并提出相似三角形的两个关键点:一是三角形对应角相等,二是对应边成比例。
3.相似三角形的性质根据相似三角形的定义,引出相似三角形的性质:对应角相等,对应边成比例。
4.相似三角形的判定方法通过具体例子引入相似三角形的判定方法,即:-AAA判定法:若两个三角形中各对应角相等,则这两个三角形相似。
-AA判定法:若两个三角形中两个角分别相等,则这两个三角形相似。
-SAS判定法:若两个三角形中有两边成比例且这两边所夹的角相等,则这两个三角形相似。
5. 相似三角形的应用通过在工艺美术和建筑等实际问题中引入相似三角形的应用,让学生学会如何用相似三角形解决实际问题。
例如:-工艺美术:根据建筑模型求得与实际建筑相似的工艺品尺寸比例。
-建筑:利用相似三角形比例计算房屋测量图上门窗和墙的比例。
6. 课堂练习设计一些相似三角形的例题,巩固学生的掌握程度。
五、课后作业1.继续思考相似三角形在生活中的应用。
2.练习相似三角形的计算题,并思考这些计算题除了数学上的解决方法外,还有哪些其他思路可以找到答案。
27.2.3相似三角形应用举例(教案)

5.空间观念与数据分析:培养学生运用相似三角形知识分析问题,发展空间观念和数据分析能力,提高数学素养。
三、教学难点与重点
1.教学重点
-理解相似三角形的性质:重点强调相似三角形的对应角相等、对应边成比例的基本性质,以及如何利用这些性质解决实际问题。
3.解决实际问题:结合生活实例,让学生运用相似三角形的性质解决一些实际问题,提高学生的应用能力和解决问题的能力。
4.总结相似三角形在实际生活中的应用,强调数学知识与现实生活的紧密联系。
本节课将引导学生通过实际案例,掌握相似三角形在实际问题中的应用,培养学生的动手操作能力和解决问题的能力。
二、核心素养目标
五、教学反思
在今天的教学中,我发现同学们对相似三角形的应用举例产生了浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解数学知识在实际中的应用。让我感到高兴的是,大多数同学能够积极参与讨论,提出自己的观点,这充分说明了他们对这一知识点的投入。
然而,我也注意到在讲解相似三角形性质时,部分同学对识别相似三角形和确定对应关系存在一定的困难。这说明在这个环节,我需要更加耐心地引导和解释,或许可以通过更多的例子和直观的图示来帮助他们理解。
-应用相似三角形测量:掌握如何利用相似三角形进行高度和距离的测量,包括在实际问题中如何确定相似三角形和对应关系。
-生活实例的解析:通过具体实例,如测量建筑物高度、桥梁长度等,让学生掌握相似三角形在实际生活中的应用。
-数据处理与分析:学会在测量过程中处理数据,分析误差,提高测量的准确性。
举例:在测量建筑物高度时,重点讲解如何利用地面上的影子长度和已知的太阳高度角来确定建筑物的高度,强调相似三角形的实际应用。
相似三角形的判定定理教学设计(精选6篇)

相似三角形的判定定理教学设计相似三角形的判定定理教学设计(精选6篇)作为一位杰出的教职工,常常要根据教学需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
我们该怎么去写教学设计呢?下面是小编帮大家整理的相似三角形的判定定理教学设计,希望能够帮助到大家。
相似三角形的判定定理教学设计篇1一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。
2.掌握“两角对应相等,两个三角形相似”的判定方法。
3.能够运用三角形相似的条件解决简单的问题。
二、重点、难点1.重点:三角形相似的判定方法12.难点:三角形相似的判定方法1的运用。
三、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD 与△ABC相似吗?说说你的理由。
(3)△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题。
(4)教材P48的探究3。
四、例题讲解例1(教材P48例2)。
分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似。
由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似。
证明:略(见教材)。
例2(补充)已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长。
分析:要求的是线段DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长。
由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似。
相似三角形的应用举例教案

相似三角形的应用目的:利用相似三角形的性质解决实际问题. 中考基础知识通过证明三角形相似 线段成比例()()⎧⇒⎨⎩方程含有未知数的等式函数求最值等问题备考例题指导例1.如图,P 是△ABC 的BC 边上的一个动点,且四边形ADPE 是平行四边形. (1)求证:△DBP ∽△EPC ; (2)当P 点在什么位置时,S ADPE=12S △ABC ,说明理由. 分析:(1) 证明两个三角形相似,常用方法是证明两个角对应相等,题目中有ADPE ⇒平行线⇒角相等,命题得证.(2)设BP BC =x ,则CPBC=1-x ,ADPE ⇒DP ∥AC , EP ∥AB ,△BDP ∽△BAC △CPE ∽△CBA ∴FPC ABC S S ∆∆=(CP CB )2=(1-x )2,BDP BACS S ∆∆=(BP BC )2=x2 ∴BDP CPE ABCS S S ∆∆∆+=x 2+(1-x )2.∵S ADPE=12S △ABC ,即ADPE ABC SS ∆=12. ∴x 2+(1-x )2=12(转化为含x 的方程) x=12, ∴BP BC =12.即P 应为BC 之中点.例2.已知△ABC中,∠ACB=90°,过点C作CD⊥AB于D,且AD=m,BD=n,AC2:BC2=2:1,又关于x的方程14x2-2(n-1)x+m2-12=0的两个实数根的差的平方小于192,求m,n为整数时,•一次函数y=mx+n的解析式.分析:这是一个几何、代数综合题,由条件发现,建立关于m,n的方程或不等式,•求出m,n 再写出一次函数.抓条件:AC2:BC2=2:1做文章(转化到m,n上).双直角图形⇒有相似形⇒比例式(方程)∠ACB=90°,CD⊥AB Rt△BCD∽Rt△BACBC2=BD·BA,同理有AC2=AD·AB,∴22BCAC=BD BAAD AB⇒=m=2n ①抓条件:x1+x2=8(n-1),x1x2=4(m2-12).由(x1-x2)2<192 配方(x1+x2)2-4x1x2<192. 64(n-1)2-16(m2-12)<192,4n2-m2-8n+4<0.②①代入②⇒n>12.又由△≥0得4(n-1)2-4×14(m2-12)≥0,①代入上式得n≤2.③由n>12,n≤2得12<n≤2.∵n为整数,∴n=1,2.∴m=2,4∴y=2x+1,或y=4x+2.遇根与系数关系题目则用韦达定理,但必须考虑△≥0.备考巩固练习1.如图,在△ABC中,∠A、∠B、∠C的对边分别是a、b、c.关于x•的一元二次方程x2-2b(a+2 2 c b)x+(a+b)2=0的两根之和与两根之积相等,D为AB上一点,DE∥AC•交BC•于E,EF⊥AB,垂足是F.(1)求证:△ABC是直角三角形;(2)若BF=6,FD=4,CE=23CD,求CE的长.2.某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10m,20m的梯形空地上,种植花木如图1(1)他们在△AMD和△BMC地带上种植太阳花,单价为8元/m2,当△AMD•地带种满花后,共花了160元,请计算种满△BMC地带所需的费用.(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m2和10元/m2,应选择种哪种花木,刚好用完后筹集的资金?(3)若梯形ABCD为等腰梯形,面积不变(如图2),请你设计一个花坛图案,•即在梯形内找到一点P,使得△APD≌△BPC且S△APD=S△BPC,并说出你的理由.3.(1)如图1,在梯形ABCD中,AB∥CD,AB=b,CD=a,E为AD边上的任意一点,EF∥AB,且EF交于点F,某学生在研究这一问题时,发现如下事实:①当DEAE=1时,有EF=2a b+;②当DEAE=2时,有EF=23a b+;③当DEAE=3时,有EF=34a b+.当DEAE=k时,参照上述研究结论,•请你猜想用k表示DE的一般结论,并给出证明;(2)现有一块直角梯形田地ABCD(如图2所示),其中AB∥CD,AD⊥AB,AB=310m,• DC=120cm,AD=70m,若要将这块分割成两块,由两位农户来承包,要求这两块地均为直角梯形,且它们的面积相等,请你给出具体分割方案.(1) (2)答案:1.(1)由x 1+x 2=x 1x 2得2b (a+22c b)=(a+b )2 2ab+c 2=a 2+b 2+2ab∴△ABC 是直角三角形. ∴c 2=a 2+b 2(2)易证△EFD ∽△EDB ,∴EF 2=DF ·DB=40. 设CE=x ,则CD=32x , ∴DE=(32x )2-x 2=40⇒2.(1)∵四边形ABCD 是梯形(见图). ∴AD ∥BC ,∴∠MAD=∠MCB , ∠MDA=∠MBC , ∴△AMD ∽△CMB ,∴AMDBMCS S ∆∆=(AD BC )2=14.∵种植△AMD 地带花带160元. ∴16080=2(m 2) ∴S △OMB =80(m 2) ∴△BMC 地带的花费为80×8=640(元)(2)设△AMD 的高为h 1,△BMC 的高为h 2,梯形ABCD 的高为h ∵S △AMD =12×10h 2=20 ∴h 1=4 ∵12h h =12∴h 2=8 ∴S 梯形ABCD =12(AD+BC )·h=12×30×12=180∴S △AMB + S △DMC =180-20-80=80(m 2) ∴160+160+80×12=1760(元)又:160+640+80×10=1600(元) ∴应种值茉莉花刚好用完所筹集的资金. (3)点P 在AD 、BC 的中垂线上(如图), 此时,PA=PD ,PB=PC .∵AB=DC ∴△APB ≌△DPC .设△APD 的高为x ,则△BPC 高为(12-x ), ∴S △APD =12×10x=5x , S △BPC =12×20(12-x )=10(12-x ). 当S △APD =S △BPC 即5x=10(12-x )=8.∴当点P 在AD 、BC 的中垂线上且与AD 的距离为8cm 时,S △APD =S △BPC . 3.解:(1)猜想得:EF=1a kbk++ 证明:过点E 作BC 的平行线交AB 于G ,交CD 的延长线于H . ∵AB ∥CD , ∴△AGE ∽△DHE , ∴DH DEAG AE=. 又EF ∥AB ∥CD ,∴CH=EF=GB ,∴DH=EF-a ,AG=b-EF , ∴EF a b EF --=k ,可得EF=1a kbk++.(2)在AD 上取一点EF ∥AB 交BC 于点F ,设DE AB =k ,则EF=1703101k k ++,DE=701kk+, 若S 梯形DCFE =S 梯形ABFE ,则S 梯形ABCD =2S 梯形DCFE ∵梯形ABCD 、DCEF 为直角梯形∴1702102+×70=2×12(170+1703101k k ++)×701kk+, 化简得12k 2-7k-12=0,解得k 1=43,k 2=-34(舍去)∴DP=701kk=40,所以只需在AD上取点E,使DE=40m,作EF∥AB(或EF⊥DA),即可将梯形分成两个直角梯形,且它们的面积相等.。
相似三角形应用举例教学设计

相似三角形应用举例教学目标1.进一步巩固相似三角形的知识。
2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度。
教学重点进一步巩固相似三角形的知识。
教学难点能够运用三角形相似的知识,解决不能直接测量物体的长度和高度。
一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。
以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。
那么将一个三角形作相似变换后所得的像与原像称为相似三角形探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60 求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似三、练习:1.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O,准星A,目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到A’,若OA=0.2米,OB=40米,AA’=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为()A.3米B.0.3米C.0.03米 D.0.2米2.如图,测量小玻璃管口径的量具ABC , AB的长为12cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是()A.8cmB.10cmC.20cmD.60cm3.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为()A.2.4mB.24mC.0.6mD.6m4.如图所示的测量旗杆的方法,已知AB是标杆,BC表示AB在太阳光下的影子,叙述错误的是()A.可以利用在同一时刻,不同物体与其影长的比相等来计算旗杆的高B.只需测量出标杆和旗杆的影长就可计算出旗杆的高C.可以利用△ABC∽△EDB ,来计算旗杆的高D.需要测量出AB.BC和DB的长,才能计算出旗杆的高四、教学评价设计1. 本节课教学目的明确、具体,符合课程标准的要求,切合学习实际;能够结合具体实例,通过观察、操作、想象、推理、交流等活动发展空间观念;推理能力和有条理的表达能力,能够密切结合学科特点,注重情感目标的建立。
九年级数学上册《相似三角形的应用》教案、教学设计

4.引导学生了解相似变换的概念,掌握相似变换的矩阵表示。
5.通过示例和练习,让学生理解相似三角形在实际问题中的应用。
(三)学生小组讨论
1.将学生分成小组,讨论以下问题:
-相似三角形的判定方法有哪些?
-相似三角形具有哪些性质?如何运用这些性质解决问题?
2.通过讨论,引出相似图形的概念,强:“我们已经学过全等三角形,那么相似三角形与全等三角形有什么联系和区别?”引导学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.讲解相似三角形的定义,强调对应角相等、对应边成比例的特点。
2.介绍相似三角形的判定定理,如AA相似定理、SAS相似定理等,并通过实例进行解释。
(二)过程与方法
1.掌握几何直观和逻辑推理能力,培养学生运用几何知识解决实际问题的能力;
2.培养学生运用数学语言进行表达、交流与合作的能力,提高学生的团队协作意识;
3.引导学生运用类比、归纳等数学思想方法,发现和提出问题,培养创新意识;
4.培养学生自主探究、合作交流的学习方式,提高学生独立解决问题的能力。
-拓展题:运用相似变换解决较为复杂的几何问题。
2.学生完成后,教师进行点评,指出解题过程中的注意事项,纠正错误。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结相似三角形的定义、判定定理、性质及相似变换的应用。
2.强调相似三角形在实际问题中的重要作用,鼓励学生在生活中发现和运用相似三角形的原理。
(三)情感态度与价值观
1.培养学生热爱数学,认识到数学在现实生活中的重要作用,增强学生的数学应用意识;
2.培养学生勇于探索、克服困难的精神,增强学生面对挫折的勇气和信心;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似三角形应用举例(1)》教学设计
福报学校黄世辉
一、教学目标
1、进一步巩固相似三角形的判定方法和基本性质.
2、能够运用三角形相似的知识,解决不能直接测量物体的高度和宽度等实际问题.
3、通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.
二、教学重难点
重点:运用三角形相似计算不能直接测量物体的高度和宽度.难点:如何把实际问题抽象为数学问题.
三、教学过程
(一)知识回顾
1、回顾相似三角形的概念及判定方法.
2、复习“相似多边形对应角相等、对应边的比相等”性质.
(二)提出问题
利用三角形的相似,如何解决一些不能直接测量的物体的长度问题?(学生小组讨论)
师生归纳:“相似三角形对应边的比相等” 四条对应边中若已知三边则可求第四边.
(三)小试牛刀—测量物高
1、例题探究:(教材第48页例3)据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两
个相似三角形来测量金字塔的高
度.
如图1,如果木杆EF 长2 m ,
它的影长FD 为3 m ,测得OA 为201
m ,求金字塔的高度BO .(思考如何测出OA 的长?)
师生活动:学生小组讨论,师生共同交流,画出示意图,通过观察示意图,使学生建立起相似图形的几何直觉,并能明确表述求OA 的方法中蕴含的数学知识.
分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的性质,根据已知条件,求出金字塔的高度.
解:太阳光是平行光线,即B A ∥ED,
∴∠BAO =∠EDF.
又∠AOB =∠DFE=90°,
∴△ABO ∽△DEF. ∴BO OA EF FD
=, 20121343
OA EF BO FD •⨯===. 因此金字塔的高度为134m.
2、换式练习:(教材第50页练习1)在某一时刻,测得一根高
为1.8米的竹竿的影长为3米,同时测得一栋高楼的影长为90米,这栋高楼的高度是多少?
师生活动:由学生自行画出如图2简图解答,教师巡回观察,并请一个同学上黑板演示,教师点评
后强调两点:一是太阳光线平行要
同一时刻;二是竹竿放的地方不受
限制,包括上面例题亦如此.
解:(略)
(四)渐入佳境—测量河宽
1、例题探究:(教材第49页例4)如图3,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS = 45 m,ST = 90 m,QR = 60 m,求河的宽度PQ.师生活动:学生先小组讨论;教师
在这一活动中重点关注学生们探究的主
动性,特别应关注那些平时学习有一定
困难的学生,他们往往在解决实际问题
时,显示出创造的能力,这也是树立这
些学生自信心的一个契机,然后通过例4进一步完善学生们的想法,让学生体会用数学知识解决实际问题的成就感和快乐.
分析:设河宽PQ长为x m ,由于此种测量方法构造了三角形中
的平行截线,故可得到相似三角形,因此有PQ QR PS ST =,即604590x x =+.再解x 的方程可求出河宽.
解:(由学生自主完成)
∵∠PQR =∠PST=90°,∠P =∠P ,
∴△PQ R ∽△PST.
∴PQ QR PS ST
=, 即
PQ QR PQ QS ST =+,604590PQ PQ =+, P Q ×90=(PQ+45)×60.
解得 PQ=90.
因此河宽大约为90m.
2、变式练习:(教材第50页练习2)如图4,测得BD=120m ,DC=60m ,EC=50 m ,求河宽AB.
师生活动:学生自主探究;教师巡
回观察,因为学校没有多媒体,只能再
次请一个同学上黑板演示解题过程.
解:(由学生自主完成)
∵∠ABD =∠ECD=90°,∠ADB =∠EDC ,
∴△AB D ∽△ECD.
∴AB BD EC CD =,即1205060
AB =, 解得 AB=100.
因此河宽AB 大约为100m.
(五)备用练习(视时间而定)
小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?
(六)课堂小结
谈谈你本节课的收获:
1、利用三角形的相似,可以解决一些不能直接测量的物体的长度的问题.
2、本节课学习了两类测量物体长度的问题:测量物高和测量河宽。
测量河宽采用两种方法,测量物高还有其它方法吗?
3、本节课测量物体长度问题都利用了相似三角形的哪条性质?
(七)布置作业
教材第55~56页习题第9、10、11题.。