数字图像加权平均滤波与中值滤波计算
数字图像处理之快速中值滤波算法

数字图像处理之快速中值滤波算法快速中值滤波算法 : 在图像处理中,在进⾏如边缘检测这样的进⼀步处理之前,通常需要⾸先进⾏⼀定程度的降噪。
中值滤波是⼀种⾮线性数字滤波器技术,经常⽤于去除图像或者其它信号中的噪声。
这个设计思想就是检查输⼊信号中的采样并判断它是否代表了信号,使⽤奇数个采样组成的观察窗实现这项功能。
观察窗⼝中的数值进⾏排序,位于观察窗中间的中值作为输出。
然后,丢弃最早的值,取得新的采样,重复上⾯的计算过程。
中值滤波是图像处理中的⼀个常⽤步骤,它对于斑点噪声和椒盐噪声来说尤其有⽤。
保存边缘的特性使它在不希望出现边缘模糊的场合也很有⽤。
为了演⽰中值滤波器的⼯作过程,我们给下⾯的数组加上观察窗 3 ,重复边界的数值: x = [2 80 6 3] y[1] = Median[2 2 80] = 2 y[2] = Median[2 80 6] = Median[2 6 80] = 6 y[3] = Median[80 6 3] = Median[3 6 80] = 6 y[4] = Median[6 3 3] = Median[3 3 6] = 3 于是 y = [2 6 6 3] 其中 y 是 x 的中值滤波输出。
普通中值滤波算法伪代码: Input: image X of size m*n, kernel radius r. output: image Y as X. for i = r to m - r do for j = r to n - r do initialize list A[] for a = i-r to i+r for b = j-r to j+r add X(a, b) to A[] end end sort A[] then Y(i ,j) = A[A.size/2] end end 处理前: 处理后: 但是,上述算法在像素处理处的复杂度为O(r2). OpenCV实现代码:#include "cv.h"#include "highgui.h"#include <iostream>using namespace std;using namespace cv;int main(int argc, char* argv[]){Mat src = imread("beauty.jpg");Mat dst;//参数是按顺序写的//⾼斯滤波//src:输⼊图像//dst:输出图像//Size(5,5)模板⼤⼩,为奇数//x⽅向⽅差//Y⽅向⽅差GaussianBlur(src,dst,Size(5,5),0,0);imwrite("gauss.jpg",dst);//中值滤波//src:输⼊图像//dst::输出图像//模板宽度,为奇数medianBlur(src,dst,3);imwrite("med.jpg",dst);//均值滤波//src:输⼊图像//dst:输出图像//模板⼤⼩//Point(-1,-1):被平滑点位置,为负值取核中⼼blur(src,dst,Size(3,3),Point(-1,-1));imwrite("mean.jpg",dst);//双边滤波//src:输⼊图像//dst:输⼊图像//滤波模板半径//颜⾊空间标准差//坐标空间标准差bilateralFilter(src,dst,5,10.0,2.0);//这⾥滤波没什么效果,不明⽩imwrite("bil.jpg",dst);waitKey();return0;}View Code 快速中值滤波算法: O(r)复杂度的Huang算法:<> 这个代码的核⼼在于维护⼀个kernel直⽅图,可以实现快速的读取和删除扫描区域的像素值。
数字图像处理中常见的滤波算法研究

数字图像处理中常见的滤波算法研究在数字图像处理中,滤波是一种常用的技术,用于改善或修复图像的质量。
滤波算法可以通过降噪、增强边缘、图像平滑等方式来提高图像的视觉效果。
本文将介绍几种常见的滤波算法及其应用。
1. 均值滤波均值滤波是最简单的滤波算法之一。
它通过计算像素周围邻域的平均值来替换该像素的灰度值。
均值滤波可以有效地降低图像中的噪声,但也会导致图像失去细节信息。
因此,适用于对噪声敏感但对图像细节要求不高的应用场景。
2. 中值滤波与均值滤波相比,中值滤波可以更好地去除图像中的噪声同时保留更多的图像细节。
中值滤波算法使用像素邻域的中值来替换该像素的灰度值。
中值滤波对于椒盐噪声的去除效果尤为明显,因此常用于医学图像、科学图像等领域。
3. 高斯滤波高斯滤波是一种常用的线性平滑滤波算法,通过计算像素周围邻域的加权平均值来替换该像素的灰度值。
高斯滤波算法在滤波过程中,使用了一个以该像素为中心的二维高斯函数作为权重,使得距离该像素越近的邻域像素具有更大的权重。
高斯滤波可以有效平滑图像,同时保留边缘信息。
4. Roberts算子Roberts算子是一种边缘检测算法,可以用于提取图像中的边缘信息。
Roberts 算子分为水平和垂直两个方向,通过计算像素与其对角线相邻像素之间的差值来确定边缘的存在。
Roberts算子简单、快速,并且对噪声具有一定的鲁棒性。
5. Sobel算子Sobel算子是一种著名的梯度算子,用于边缘检测和图像增强。
Sobel算子不仅可以检测边缘,还可以确定边缘的方向。
Sobel算子通过计算像素和其周围邻域像素的加权差值来确定边缘的强度,进而提取图像中的边缘信息。
6. Laplacian算子Laplacian算子是一种常见的二阶微分算子,用于图像锐化和边缘检测。
Laplacian算子通过计算像素周围邻域像素的二阶导数来检测边缘。
Laplacian算子可以增强图像中的细节信息,但也容易受到噪声的影响。
均值滤波和中值滤波的比较分析

均值滤波和中值滤波的比较分析一、图像系统中的常见噪声一般在图像中常见的噪声有:1、按噪声幅度分布形状而分,成高斯分布的称为高斯噪声,主要由阻性元器件内部产生。
2、按噪声和信号之间的关系分为加性噪声和乘性噪声。
加性噪声与输入图像信号无关,含噪图像可表示为。
乘性噪声往往随图像信号的变化而变化其含噪图像可表示为3、椒盐(Salt and pepper)噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。
4、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。
本文为了分析不同去噪方法的应用范围,将原图像分别加入高斯噪声及椒盐噪声,运用Matalab编程实现两种不同滤波方法的去噪结果,并据此进行比较得出相应结论。
下面几幅图为本文所选用的经过灰度变换后得到的图像、添加椒盐噪声和高斯噪声后的图像:二.去噪的两种常用方法1.均值滤波均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。
其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点 ,作为处理后图像在该点上的灰度 ,即,其中,为模板,为该模板中包含当前像素在内的像素总个数。
如下即分别为用中值滤波对加有高斯噪声、椒盐噪声、的图像处理后的对比图:2.中值滤波中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术。
其实现原理如下:将某个像素邻域中的像素按灰度值进行排序,然后选择该序列的中间值作为输出的像素值,让周围像素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点。
其具体的操作是:首先确定一个以某个像素为中心点的领域,一般为方形领域(如 3 * 3、5 * 5的矩形领域),然后将领域中的各个像素的灰度值进行排序。
假设其排序为:,取排好序的序列的中间值作为中心点像素灰度的新值,这里的邻域通常被称为窗口。
利用digitalmicrograph进行滤波处理的方法_概述说明

利用digitalmicrograph进行滤波处理的方法概述说明1. 引言1.1 概述本文旨在介绍利用Digital Micrograph(以下简称DM)进行滤波处理的方法。
随着数字图像处理技术的发展,滤波处理在图像分析和增强中扮演着重要角色。
而DM作为一款强大的图像处理软件,具有丰富的功能和灵活的操作性,提供了几种滤波器算法的实现,可广泛应用于各个领域。
本文将对DM进行简介,并讨论其在滤波处理中的应用价值。
1.2 文章结构本文将按照以下结构展开讨论:第2部分:DigitalMicrograph简介- 介绍DM的基本概念与功能,并探讨其在不同领域中所具有的优势;- 探究DM在滤波处理领域中所能提供的功能和应用价值。
第3部分:滤波处理基础知识- 解释信号与噪声的概念,并探讨二者之间关系;- 介绍滤波器原理及其分类;- 总结数字图像滤波处理方法并进行概述。
第4部分:在DigitalMicrograph中实现滤波处理- 着重说明图像导入与数据准备阶段的操作;- 提供常用滤波器算法的具体实现方法示例;- 探讨滤波效果评估与参数调优的方法和技巧。
第5部分:结论- 总结基于DigitalMicrograph的滤波处理方法;- 讨论方法的应用限制以及未来发展方向。
1.3 目的本文的目标是为读者提供在DM中进行滤波处理时所需的基础知识、操作流程以及一些实用技巧。
通过学习本文,读者将能够了解DM软件工具的使用方式,并且能够根据自身需求从多个滤波器算法中选择合适的方法进行图像处理。
我们希望本文能够为使用DM进行滤波处理的研究人员和工程师提供一定的参考和指导。
2. DigitalMicrograph简介2.1 基本概念与功能介绍:DigitalMicrograph是一款专业的图像处理软件,主要用于对数字图像进行分析、处理和可视化。
它以强大的算法和丰富的功能而闻名。
该软件提供了一系列底层操作与高级处理工具,可适用于各种科学研究领域。
中值滤波和均值滤波

中值滤波和均值滤波中值滤波和均值滤波是数字图像处理中常用的两种滤波方法,它们在图像去噪和平滑处理中起着重要的作用。
本文将从原理、应用以及优缺点等方面介绍这两种滤波方法。
一、中值滤波中值滤波是一种非线性滤波方法,其基本原理是用像素点周围邻域内的中值来代替该像素点的灰度值。
中值滤波可以有效地去除图像中的椒盐噪声和脉冲噪声,同时能够保持图像的边缘信息。
其处理过程如下:1.选取一个模板,模板的大小根据噪声的程度来确定;2.将模板中的像素点按照灰度值大小进行排序,取其中位数作为中心像素点的灰度值;3.将中心像素点的灰度值替换为中值;4.重复以上步骤,对整个图像进行滤波。
中值滤波的优点是能够有效地去除椒盐噪声和脉冲噪声,同时保持图像的边缘信息。
然而,中值滤波也存在一些缺点,例如不能处理高斯噪声和均匀噪声,对图像细节信息的保护效果较差。
二、均值滤波均值滤波是一种线性平滑滤波方法,其基本原理是用像素点周围邻域内的平均值来代替该像素点的灰度值。
均值滤波可以有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。
其处理过程如下:1.选取一个模板,模板的大小根据滤波效果来确定;2.计算模板内所有像素点的灰度值的平均值;3.将中心像素点的灰度值替换为平均值;4.重复以上步骤,对整个图像进行滤波。
均值滤波的优点是能够有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。
然而,均值滤波也存在一些缺点,例如不能处理椒盐噪声和脉冲噪声,对图像细节信息的保护效果较差。
中值滤波和均值滤波在图像处理中各有优劣。
中值滤波适用于去除椒盐噪声和脉冲噪声,能够保持图像的边缘信息,但在处理高斯噪声和均匀噪声时效果较差。
而均值滤波适用于去除高斯噪声和均匀噪声,能够保持图像的整体平滑,但对于细节信息的保护效果较差。
在实际应用中,根据图像的特点和噪声的类型选择合适的滤波方法是很重要的。
如果图像受到椒盐噪声和脉冲噪声的影响,可以选择中值滤波进行去噪处理;如果图像受到高斯噪声和均匀噪声的影响,可以选择均值滤波进行平滑处理。
数字图像处理中的图像滤波研究

数字图像处理中的图像滤波研究一、引言图像滤波是数字图像处理中的重要技术之一,用于改善图像的质量和增强图像的特定特征。
图像滤波可以去除图像中的噪声和不必要的细节,从而提高图像的视觉效果和信息传输性能。
本文将深入探讨数字图像处理中的图像滤波研究。
二、图像滤波的基本原理图像滤波是通过对图像进行局部加权平均或差值运算,改变图像的灰度分布和空间响应,从而实现图像的模糊、锐化、增强等效果。
图像滤波主要包括线性滤波和非线性滤波两种方法。
2.1 线性滤波线性滤波是指通过卷积操作实现的滤波方法。
常见的线性滤波器包括均值滤波器、高斯滤波器和中值滤波器等。
均值滤波器通过对图像区域内像素值进行平均,从而实现图像的模糊效果;高斯滤波器则通过对图像区域内像素值进行加权平均,从而实现图像的模糊和去噪效果;中值滤波器则通过选取区域内像素值的中值,从而实现图像的去噪效果。
2.2 非线性滤波非线性滤波是指通过对图像像素值进行排序和比较,选择滤波器的操作方法。
常见的非线性滤波器包括基于排序统计的滤波器、自适应滤波器和边缘保留滤波器等。
基于排序统计的滤波器通过对图像像素值进行排序,并选择特定位置的像素值进行滤波,从而实现图像的锐化和边缘增强效果;自适应滤波器则通过根据图像局部统计特性改变滤波器参数,从而实现图像的自适应处理;边缘保留滤波器则通过保留图像边缘信息的方式进行滤波,从而实现图像的去噪效果。
三、图像滤波的应用图像滤波在各个领域都有广泛的应用。
3.1 图像去噪图像去噪是图像滤波的一大应用领域。
通过应用不同的滤波器和滤波方法,可以去除图像中的椒盐噪声、高斯噪声等不同类型的噪声,提高图像的质量和清晰度。
3.2 图像增强图像增强是通过滤波方法改善图像的对比度、边缘和细节,从而使图像更加鲜明和清晰。
常见的图像增强方法包括直方图均衡化、区域增强和多尺度增强等。
3.3 图像特征提取图像滤波还可以应用于图像特征提取。
通过选择合适的滤波器和滤波算法,可以有效地提取图像中的边缘、纹理和角点等特征,为后续图像处理和分析提供基础。
均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波均值滤波,高斯滤波和中值滤波是数字图像处理中常用的三种平滑滤波技术,用于降低图像噪声和去除图像中的不相关细节。
本文将对这三种滤波方法进行介绍、比较和分析。
一、均值滤波均值滤波是一种简单的平滑滤波方法,它的原理是用滤波窗口内像素的平均值来代替中心像素的值。
具体来说,对于滤波窗口内的每个像素,计算其邻域内所有像素的平均值,然后将结果作为中心像素的值。
这样可以有效地平滑图像并去除高频噪声。
然而,均值滤波的缺点是它不能很好地保留图像的边缘信息,使得图像看起来模糊且失去细节。
二、高斯滤波高斯滤波是一种基于高斯分布的平滑滤波方法,它认为像素点的邻域内的像素值与中心像素点的距离越近,其权重越大。
它的滤波过程是在滤波窗口内,对每个像素点进行加权平均。
加权的权重由高斯函数决定,距离中心像素点越近的像素点的权重越大,距离越远的像素点的权重越小。
通过这种加权平均的方式,可以更好地保留图像的细节和边缘信息,同时有效地去除噪声。
高斯滤波的唯一缺点是计算复杂度较高,特别是对于大型滤波窗口和高分辨率图像来说。
三、中值滤波中值滤波是一种统计滤波方法,它的原理是用滤波窗口内像素的中值来代替中心像素的值。
具体来说,对于滤波窗口内的每个像素,将其邻域内的像素按照大小进行排序,然后将排序后像素的中值作为中心像素的值。
中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,能够保持图像的边缘信息,避免了均值滤波和高斯滤波的模糊问题。
然而,中值滤波的缺点是不能去除高斯噪声和高频噪声,因为当滤波窗口内的像素含有这些噪声时,中值滤波会产生失真效果。
比较和分析:三种滤波方法各有优劣,应根据实际需求选择合适的滤波方法。
均值滤波是最简单、计算复杂度最低的方法,在去除高斯噪声和低频噪声方面效果较差,但对边缘信息的保留效果较差。
高斯滤波通过加权平均的方式更好地保留了图像的细节和边缘信息,适用于处理高斯噪声并且具有一定的平滑效果。
中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,并保持了图像的边缘信息,但对于高斯噪声和高频噪声则效果较差。
均值滤波与中值滤波的应用)

摘要通常,在自然界中大部分信号都存在噪声。
而在如今的数字信号处理中,有各种各样的数字信号滤波器,可以实现对噪声信号的滤波,恢复出原始信号的波形。
本课程设计是基于一维信号被噪声信号污染后,分别经过均值滤波和中值滤波处理后,提取出原始信号,并且观看不同M值时滤波后波形的比较。
均值滤波和中值滤波在数字信号处理中都是非常重要的滤波器,具有广泛的应用。
关键词均值滤波中值滤波数字信号处理目录摘要 (1)第1章均值滤波 (3)1.1 均值滤波的原理 (3)1.2 均值滤波的实现算法 (3)1.3 均值滤波的应用 (3)1.4 均值滤波器 (3)第2章中值滤波 (4)1.1 中值滤波的原理 (4)1.2 中值滤波的实现算法 (4)1.3 中值滤波的应用 (4)1.4 中值滤波器 (4)第3章均值滤波和中值滤波滤除噪声方法 (5)3.1 均值滤波和中值滤波对噪声信号滤波 (5)3.2 程序设计 (7)3.3 结果分析 (8)3.4 心得体会 (11)参考文献 (12)1.1均值滤波的原理均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。
再用模板中的全体像素的平均值来代替原来像素值。
均值滤波也称为线性滤波,其采用的主要方法为领域平均法。
线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度值u(x,y),即u(x,y)=1/m ∑f(x,y)①m为该模板中包含当前像素在内的像素总个数。
1.2均值滤波的实现算法均值滤波将每个像素点的灰度值设置为以该点为中心的邻域窗口内的所有像素灰度值的平均值,以实现像素的平滑,达到图像去噪的目的。
设输入图像信号为f(x,y),去噪处理后的输出图像为g(x,y),则有g(x,y)=| f(x,y)- u (x,y)| ②通过上式可以达到消除信号噪声的目的,但对于其中的每一个灰度值来说,都需要按照式①求取以该点中心的邻域窗口内所有像素的平均值,对长度为(2n+1)的信号来说,需要进行(2n+1)次加法、一次乘法、一次除法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加权平均滤波:
给出下面5x5的图像和一个滤波模版
右图给的是4领域加权平均滤波模版
加权均值滤波计算答案:
计算步骤:先选取左上角这个区域,计算加权均值替换中心点0的值。
原图像每个点对应值与滤波模版的值对应相乘求和取均值,依次往后 计算其它8个点。
计算方法:(0x0+4x1+2x0+1x1+0x1+1x1+2x0+0x1+4x0)x0.25=1.5 取2 注意: 1. 周围的像素值保持不变
2. 计算每个点的值时都应该按照原图像的灰度值计算
3. 计算结果四舍五入
0 4 2 3 4 1 2 2 2 3 2 3 2 2 2 4 3 4 3 3 0 5 6 7 3 042310112041440143230567301111141000
中值滤波:
1. 选取邻域
2. 计算中值替换中心点的像素值
例如对于下面的5x5图像,选取菱形邻域
求中值: 1 2 2 3 4 中值为2,替换原来的2 后面的依次计算剩下的8点 最后结果:
注意: 1. 周围的像素值保持不变
2. 计算每个点的值时都应该按照原图像的灰度值参与计算
0 4 2 3 4 1 2 2 2 3 2 3 2 2 2 4 3 4 3 3 0 5 6 7 3 0 4 2 3 4 1 2 2 2 3
2 2 2 2 2 4 4
3 3 3 0 5 6 7 3。