2009年全国高考理科数学试题及答案-四川卷
2009年高考试题——数学理(四川卷)Word版

2009年普通高等学校招生全国统一考试(四川卷) 数 学(理工农医科) 第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径一、选择题: 设集合{}{}2|5,|4210,S x x T x x x =<=+-<则S T =A.{}|75x x -<<- B.{}|35x x <<C.{}|53x x -<< D.{}|75x x -<<2.已知函数22log (2)()24(22a x x f x x x x x +≥⎧⎪==⎨-<⎪-⎩当时在点处当时)连续,则常数a 的值是A.2 B.3 C.4 D.53.复数2(12)34i i +-的值是A.-1 B.1 C.-i D.i4.已知函数()sin()()2f x x x R π=-∈,下面结论错误的是A.函数()f x 的最小正周期为2πB.函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数C.函数()f x 的图像关于直线0x =对称D.函数()f x 是奇函数 5.如图,已知六棱锥P ABCDEF -的底面是正六边形,,2PA ABC PA AB ⊥=平面,则下列结论正确的是A.PB AD ⊥ B.平面PAB PBC ⊥平面C. 直线BC∥平面PAED.PD ABC︒直线与平面所成的角为456.已知,,,a b c d为实数,且c d>。
则“a b>”是“a c b d->-”的A. 充分而不必要条件B. 必要而不充分条件C.充要条件 D. 既不充分也不必要条件7.已知双曲线2221(0)2x ybb-=>的左右焦点分别为12,F F,其一条渐近线方程为y x=,点0)P y在该双曲线上,则12PF PF∙=A. 12- B. 2- C .0 D. 48.如图,在半径为3的球面上有,,A B C三点,90,ABC BA BC︒∠==,球心O到平面ABCB C、两点的球面距离是A.3πB.πC.43πD.2π9.已知直线1:4360l x y-+=和直线2:1l x=-,抛物线24y x=上一动点P到直线1l和直线2l的距离之和的最小值是A.2B.3C.115 D.371610.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)

2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.257.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选:A.【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x |<0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选:D.【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA1∥CD1,知∠A1BE是异面直线BE与CD1所形成角,由此能求出异面直线BE与CD1所形成角的余弦值.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,∴BA1∥CD1,∴∠A1BE是异面直线BE与CD1所形成角,设AA1=2AB=2,则A1E=1,BE==,A1B==,∴cos∠A1BE===.∴异面直线BE与CD1所形成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.25【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选:C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.7.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx +)的图象重合,比较系数,求出ω=6k +(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx +),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan(ωx +)∴﹣ω+kπ=∴ω=k +(k∈Z),又∵ω>0∴ωmin =.故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA:双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB 的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选:A.【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于8π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A +C)得cos (A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG ,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n+1=4a n+2,①则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n+1=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),又b n=a n+1﹣2a n,所以b n=2b n﹣1(b n≠0),所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ01 2 3P故Eξ==.【点评】本题较常规,比08年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l 的距离为则,解得c=1又,∴(II)由(I )知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P 在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I )令g(x)=2x2+2x+a ,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当时,h'(x)>0,∴h(x )在单调递增,故.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。
2009年高考四川数学(理科)试题及参考答案

一、单项选择题(共70题,每题1分,每题的备选项中,只有1个最符合题意)1、甲单位拟新建一电教中心,经设计招标,由乙设计院承担该项目设计任务。
下列目标中,不属于乙设计院项目管理目标的是()。
A.项目投资目标B.设计进度目标C.施工质量目标D.设计成本目标2、某建设工程项目施工总承包管理模式,其中的二次装饰装修工程由建设单位发包给乙单位。
在施工中,乙单位应该直接接受()的工作指令。
A.建设单位B.设计单位C.施工总承包管理企业D.施工承包企业3、采用项目结构图对建设工程项目进行分解时,项目结构的分解应与整个建设工程实施的部署相结合,并与将采用的()结合。
A.组织结构B.工程流程C.职能结构D.合同结构4、建设工程施工管理中的组织结构图反映的是()。
A.一个项目管理班子中各组成部门之间的组织关系B.一个项目中各组成部分之间的组织关系C.一个项目管理班子中各组成部门之间的组织关系D.一个项目中各组成部分之间的逻辑关系5、根据《建设工程工程量清单计价规范》(GB50500-2008),投标人所填报的分部分项工程的综合单价中不包括()。
A.规费B.利润C.管理费D.直接工程费6、编制施工管理任务分工表,涉及到的事项有:①确定工作部门或个人的工作任务;②项目管理任务分解;③编制任务分工表。
正确的编制程序是()。
A.①②③B.②①③C.③②①D.②③①7、关于工作流程与工作流程图的说法,正确的是()A.业主方与项目各参与广播工作流程任务是一致的。
B.工作流程组织的任务就是编制组织结构图C.工作流程图可以用来描述工作流程组织D.工作流程图中用双向箭线表示工作间的逻辑关系8、根据《建筑安装工程费用项目组成》(建标【2003】206号),下列建筑安装工程费用项目中,不属于直接工程是()A.人工费B.材料费C.临时设施费D.施工机械使用费9、根据《建筑安装工程费用项目组成》(建标【2003】206号),施工现场垂直运输机械操作司机的工资属于建筑安装工程费用的()。
2009年普通高等学校招生全国统一考试(四川卷) 数学(理工农医类)

数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟. 考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写,在试题卷上作答无效..........4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B ++= 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅⋅= 球的体积公式 如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径C ()(1),(0,1,2,…,)k k n kn n P k pp k n -=-= 第Ⅰ卷本试卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题:(1) 设集合S ={x ||x |<5},T ={x |x 2+4x -21<0},则S ∩T =(2) 已知函数log 22(当≥2时)()-4(当<2时)-2a x x f x x x x ⎧+⎪⎨⎪⎩=在点x =2处连续,则常数a 的值是(A )2 (B )3(C )4 (D )5(3) 复数i i2(12)3-4+的值是(A )-1 (B )1(C )-i (D )i(4) 已知函数sin ()(-)()2f x x x ∈πR =,下面结论错误..的是 (A )函数f (x )的最小正周期为2π(A ){x |-7<x <-5} (B ){x |3<x <5} (C ){x |-5<x <3}(D ){x |-7<x <5}2(C)函数f(x)的图象关于x=0对称(D)函数f(x)是奇函数(5)如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论正确的是(A)PB⊥AD(B)平面P AB⊥平面PBC(C)直线BC∥平面P AE(D)直线PD与平面ABC所成的角为45°(6)已知a,b,c,d为实数,且c>d.则“a>b”是“a-c>b-d”的(7)已知双曲线222-(1>0)2x ybb=的左、右焦点分别为F1、F2,其一条渐近线方程为y=x,点P y0)在该双曲线上,则12PF PF=(A)-12(B)-2(C)0(D)4(8)如图,在半径为3的球面上有A、B、C三点,∠ABC=90 °,BA=BC,球心O到平面ABC的距离是2,则B、C两点的球面距离是(9)已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是(A)2(B)3(C)115(D)3716(10)某企业生产甲、乙两种商品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是(A)12万元(B)20万元(C)25万元(D)27万元(11)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是(A)360(B)288(C)216(D)96(12)已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(f(52))的值是(A)0(B)12(C)1(D)52(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(A)3π(B)π(C)43π(D)2πPFP BCE D本试卷共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)612-2x x ⎛⎫ ⎪⎝⎭的展开式的常数项是 .(用数字作答)(14)若⊙O 1:x 2+y 2=5与⊙O 2:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 . (15)如图,已知正三棱锥ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是 . (16)设V 是已知平面M 上所有向量的集合.对于映射f :V →V ,a ∈V ,计a 的象为f (a ).若映射f :V →V 满足:对所有a 、b ∈V 及任意实数λ、μ都有f (λa +μb )=λf (a )+μf (b ),则f 称为平面M 上的线形变换.现有下列命题: ①设f 是平面M 上的线形变换,则f (0)=0;②对a ∈V ,设f (a )=2a ,则f 是平面M 上的线形变换;③若e 是平面M 上的单位向量,对a ∈V ,设f (a )=a -e ,则f 是平面M 上的线形变换; ④设f 是平面M 上的线形变换,a 、b ∈V ,若a 、b 共线,则f (a )、f (b )也共线.其中的真命题是 .(写出所有真命题的编号) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B .(Ⅰ)求A +B 的值;(Ⅱ)若a -b -1,求a 、b 、c 的值.(18)(本小题满分12分)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;(Ⅱ)再该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望E ξ.AA 1B 1C 1 BCM如图,正方形ABCD 所在平面与平行四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,F A =FE ,∠AEF =45°.(Ⅰ)求证:EF ⊥平面BCE ; (Ⅱ)设线段CD 的中点为P ,在直线AE 上是否存在一点M ,使得PM ∥平面BCE ?若存在,请指出点M的位置,并证明你的结论;若不存在,请所明理由.(Ⅲ)求二面角F -BD -A 的大小. (20)(本小题满分12分) 已知椭圆2222(1>>0)x ya b a b+=的左、右焦点分别为F 1、F 2,离心率e =2,右准线方程为x =2. (Ⅰ)求椭圆的标准方程;(Ⅱ)过点F 1的直线l 与该椭圆相交于M 、N 两点,且||223F M F N + =,求直线l的解析式. (21)(本小题满分12分)已知a >0且a ≠1,函数f (x )=log a (1-a x ).(Ⅰ)求函数f (x )的定义域,并判断f (x )的单调性;(Ⅱ)若n ∈N *,求lim ()∞f n nn aa a→+;(Ⅲ)当a =e (e 为自然对数的底数)时,设h (x )=(1-e f (x ))(x 2-m +1).若函数h (x )的极值存在,求实数m 的取值范围以及函数h (x )的极值. (22)(本小题满分14分)设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,记41-n nnab a+=(n ∈N *).(Ⅰ)求数列{b n }的通项公式; (Ⅱ)记c n =b 2n -b 2n -1(n ∈N *).设数列{c n }的前n 项和为T n ,求证:对任意正整数n ,都有T n <32;(Ⅲ)设数列{b n }的前n 项和为R n ,已知正实数λ满足:对任意正整数n ,R n ≤λn 恒成立,求λ的最小值.F ADCP· B E。
2009年全国高考理科数学试题(含答案)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u A B I中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,A B = ,{4,7,9}()U A B C AB =∴= 故选A 。
也可用摩根律:()()(U U UC A B C A C B=(2)已知1iZ+=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 解:验x=-1即可。
(精校版)四川省理数文档版(含答案)-2009年普通高等学校招生统一考试

2009年普通高等学校招生全国统一考试(四川卷)数学(理工农医科)第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件互斥,那么球的表面积公式其中表示球的半径如果事件相互独立,那么球的体积公式其中表示球的半径一、选择题:1.设集合则A.B.C.D.2.已知函数连续,则常数的值是A.2B.3C.4D.53.复数的值是A.-1B.1C.-D.4.已知函数,下面结论错误..的是A.函数的最小正周期为B.函数在区间上是增函数C.函数的图像关于直线对称D.函数是奇函数5.如图,已知六棱锥的底面是正六边形,,则下列结论正确的是A.B.平面C. 直线∥平面D.6.已知为实数,且。
则“”是“”的A.充分而不必要条件B. 必要而不充分条件C.充要条件D. 既不充分也不必要条件7.已知双曲线的左右焦点分别为,其一条渐近线方程为,点在该双曲线上,则=A. B. C .0 D. 48.如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是A. B. C. D.9.已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是A.2B.3C.D.10.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是A. 12万元B. 20万元C. 25万元D. 27万元11.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360B. 228C. 216D. 9612.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是A.0B.C.1D.2009年普通高等学校招生全国统一考试(四川卷)数学(理科)第Ⅱ卷考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效.......................二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.的展开式的常数项是(用数字作答)14.若⊙与⊙相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是15.如图,已知正三棱柱的各条棱长都相等,是侧棱的中点,则异面直线所成的角的大小是。
2009年四川高考数学(理科卷)
左极 限和 右 极 限都存 在 且 相 等 ” 建 .
立 方 程1l )l fx _() 解 即 i r =i ()f 求 m -
—
( ) 函数厂 ) I求 ( 的定义域 , 并判 断 ) 的单调性.
( 若n∈ , l Ⅱ) N 求 i m .
‘ 数与 不等式
第2 题 已 知 函 数 I )= 厂(
f+o z, a lgx ≥2 ,
( ≠0 且 ≠一 ) 有 ± : 1都
+l
f )0 贝厂 ) < ,l 单调递减. J (
.
( 高 中数 学 中 求极 限的 问题 Ⅱ)
一
{2 .2 点= 连 ,常 x 在 处 续则 2 < - 4 2 【x -
1
g
的化 简不 到位 . 同学们 最容 易失分 是
)
B.3 C.4 D.5
Jl) 后根l)偶 - 1 然 ,据 g . 厂是 (
的原 因. 于 函数厂 ) ≠ 。的极 限 对 ( ) 问题 , 般 通  ̄l fx=i ( ) 一 i () l m mf x =
o
—
l i
— —
) 可确定. 即
’ :
( ) 们 要 掌握 利 用导 函 数 求 Ⅲ 我
的充要 条件 .
函数极值 的方 法 : 第一步 求导 数厂 ) . 第二 步 求方 rf () 0 根.第 三 步 { : 的 _ E
应 对 策略 : 据 函数y 根
20年 1 1 0 9  ̄) 高考理科 数学试卷 的设置 , 1 既注重 考查 中学 数学 的基 础知识 、 基本方法 , 又注 重 考查重 要的数 学思想和 同学们进 入高校 继续学 习的潜能 。 下面笔 者针 对试卷 中 的几个 重 点、 热点 问题 的考查情况 , 在解 题过程 中的失分原 因及解题对 策作简要分析 .
2009年全国高考理科数学试题及答案-四川卷
2009年普通高等学校招生全国统一考试(四川卷)数 学(理工农医科)第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径如果事件A B ,相互独立,那么 球的体积公式 34π3V R =()()()P A B P A P B =其中R 表示球的半径一、选择题:1. 设集合{}{}2|5,|4210,S x x T x x x =<=+-<则ST =A.{}|75x x -<<- B.{}|35x x << C.{}|53x x -<< D.{}|75x x -<<2.已知函数22log (2)()4(22a x x f x x x x +≥⎧⎪=⎨-<⎪-⎩当时当时)在点2x =处连续,则常数a 的值是A.2 B.3 C.4 D.53.复数2(12)34i i+-的值是A.-1 B.1 C.-i D.i 4.已知函数()sin()()2f x x x R π=-∈,下面结论错误..的是 A.函数()f x 的最小正周期为2πB.函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数C.函数()f x 的图像关于直线0x =对称D.函数()f x 是奇函数5.如图,已知六棱锥P ABCDEF -的底面是正六边形,,2PA ABC PA AB ⊥=平面,则下列结论正确的是A. PB AD ⊥B. 平面PAB PBC ⊥平面C. 直线BC ∥平面PAED. 直线PD 与平面ABC 所称的角为︒456.已知,,,a b c d 为实数,且c d >。
则“a b >”是“a c b d ->-”的A. 充分而不必要条件B. 必要而不充分条件 C .充要条件 D. 既不充分也不必要条件7. 已知双曲线2221(0)2x y b b-=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF ∙=A. -12B. -2C. 0D. 48. 如图,在半径为3的球面上有,,A B C 三点,90,ABC BA BC ︒∠==,球心O 到平面ABC 的距离是2,则B C 、两点的球面距离是 A.3π B.π C.43π D.2π9. 已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 A.2 B.3 C.115 D.371610. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。
2009年高考四川数学(理科)试题及参考答案
人教版八年级语文下册古诗文默写专题复习古诗文默写(满分140分)1、黔娄之妻有言:___________________,_______________________。
《五柳先生传》2、_____________________,松柏有本性。
3、长风万里送秋雁,_____________________4、沉舟侧畔千帆过,_____________________5、《过零丁洋》中脍炙人口的句子是________________,_______________.6、《水调歌头》中对一切经受着离别之苦的人表示美好祝愿的句子是:_____________________________________________________________.7、《宣州谢朓楼饯别校书叔云》中表达作者怀才不遇、极度忧愁的诗句是________________________、_______________________。
8、诗中表达奉献的句子:______________________,_____________________。
《已亥杂诗》______________________,_____________________。
《无题》(李商隐)9、诗中表达积极乐观的诗句:____________________________________________。
(陆游《游山西村》)10、______________________,自缘身在最高层。
《登飞来蜂》11、诗中表达离愁的诗句:______________________,______________________。
《已亥杂诗》__________,________,_________,___________________。
(〈相见欢〉(李煜)12、_________________,天涯若比邻。
(王勃《送杜少府之任蜀州》)写出诗中还能表达朋友间深情厚意的送别诗句__________________,_________________13、所学的诗中反映作者同情劳动人民疾苦的诗句有:____________________________________________________。
2009年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解
D. −
12 13
cos A = −
1 1 + tan 2 A
=−
1 5 1 + (− ) 2 12
w.w.w.k.s.5.u. c. o.m
=−
12 13
故选 D.
4.曲线 y =
x 在点 (1,1) 处的 线方程 2x −1
B. x + y − 2 = 0
A. x − y − 2 = 0
C. x + 4 y − 5 = 0
A
1 6
B.
1 4
π
C.
1 3
D.
1 2
解
π 向右 移 6 个单 π π π y = tan ω x + → y = tan[ω ( x − ) + ] = tan ω x + 6 4 6 4
π
4 −
∴
π
6
ω + kπ =
又Q ω > 0 ∴ ωmin 9.
4 V = π R3 3 中 R 表示球的半径
k k Pn ( k ) = Cn P (1 − p )
( k = 0,1, 2...n )
共 60 在 小题给出的四个选项中 只有一个选项是
本卷共 12 小题 符合题目要求的 一选择题 1.
小题 5
10i = 2-i A. -2+4i
B. -2-4i
C. 2+4i
2 2
r
r r
r
r
故选 C
7. 设 a = log 3 π , b = log 2 A. a > b > c 解 Q log 3
3, c = log3 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年普通高等学校招生全国统一考试(四川卷)数 学(理工农医科)第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么 球的体积公式 34π3V R = ()()()P A B P A P B =其中R 表示球的半径一、选择题: 1. 设集合{}{}2|5,|4210,S x x T x x x =<=+-<则ST =A.{}|75x x -<<- B.{}|35x x <<C.{}|53x x -<< D.{}|75x x -<< 2.已知函数22log (2)()4(22a x x f x x x x +≥⎧⎪=⎨-<⎪-⎩当时当时)在点2x =处连续,则常数a 的值是 A.2 B.3 C.4 D.53.复数2(12)34i i+-的值是 A.-1 B.1 C.-i D.i4.已知函数()sin()()2f x x x R π=-∈,下面结论错误..的是 A.函数()f x 的最小正周期为2πB.函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数C.函数()f x 的图像关于直线0x =对称D.函数()f x 是奇函数5.如图,已知六棱锥P ABCDEF -的底面是正六边形,,2PA ABC PA AB ⊥=平面,则下列结论正确的是A. PB AD ⊥B. 平面PAB PBC ⊥平面C. 直线BC ∥平面PAED. 直线PD 与平面ABC 所称的角为︒456.已知,,,a b c d 为实数,且c d >。
则“a b >”是“a c b d ->-”的A. 充分而不必要条件B. 必要而不充分条件C .充要条件 D. 既不充分也不必要条件 7. 已知双曲线2221(0)2x y b b -=>的左右焦点分别为12,F F ,其一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF ∙=A. -12B. -2C. 0D. 48. 如图,在半径为3的球面上有,,A B C 三点,90,ABC BA BC ︒∠==,球心O 到平面ABC 的距离是2,则B C 、两点的球面距离是 A.3π B.π C.43π D.2π 9. 已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 A.2 B.3 C.115 D.371610. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。
销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业可获得最大利润是A. 12万元B. 20万元C. 25万元D. 27万元11. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360B. 228C. 216D. 9612. 已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A.0 B.12 C.1 D.52第Ⅱ卷考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效.......................二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.61(2)2x x-的展开式的常数项是 (用数字作答) 14.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是15. 如图,已知正三棱柱111ABC A B C -的各条棱长都相等,M 是侧棱1CC 的中点,则异面直线1AB BM 和所成的角的大小是 。
16.设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a 。
若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换。
现有下列命题:①设f 是平面M 上的线性变换,则(0)0f =②对,()2a V f a a ∈=设,则f 是平面M 上的线性变换;③若e 是平面M 上的单位向量,对a V ∈,设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则(),()f a f b 也共线。
其中真命题是 (写出所有真命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分12分)在ABC 中,,A B 为锐角,角,,A B C 所对应的边分别为,,a b c ,且3c o s 2,s i 5A B == (I )求A B +的值;(II )若1a b -=,求,,a b c 的值。
18. (本小题满分12分)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。
某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客。
在省外游客中有13持金卡,在省内游客中有23持银卡。
(I )在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率; (II )在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列及数学期望E ξ。
19(本小题满分12分)如图,正方形ABCD 所在平面与平面四边形ABEF所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ︒==∠=(I )求证:EF BCE ⊥平面;(II )设线段CD 的中点为P ,在直线AE 上是否存在一点M ,使得//PM BCE 平面?若存在,请指出点M 的位置,并证明你的结论;若不存在,请说明理由;(III )求二面角F BD A --的大小。
20(本小题满分12分)已知椭圆2221(0)x y a b a b+=>>的左右焦点分别为12,F F ,离心率2e =,右准线方程为2x =。
(I )求椭圆的标准方程;(II )过点1F 的直线l 与该椭圆交于,M N 两点,且222F M F N +=,求直线l 的方程。
21. (本小题满分12分)已知0,1a a >≠且函数()log (1)x a f x a =-。
(I )求函数()f x 的定义域,并判断()f x 的单调性;(II )若()*,lim ;f n n n a n N a a →+∞∈+求 (III )当a e =(e 为自然对数的底数)时,设()2()(1)(1)f x h x e x m =--+,若函数()h x 的极值存在,求实数m 的取值范围以及函数()h x 的极值。
22. (本小题满分14分)设数列{}n a 的前n 项和为n S ,对任意的正整数n ,都有51n n a S =+成立,记*4()1n n na b n N a +=∈-。
(I )求数列{}n b 的通项公式;(II )记*221()n n n c b b n N -=-∈,设数列{}n c 的前n 项和为n T ,求证:对任意正整数n ,都有32n T <; (III )设数列{}n b 的前n 项和为n R 。
已知正实数λ满足:对任意正整数,n n R n λ≤恒成立,求λ的最小值。
数学(理工农医类)参考答案一、 选择题:本体考察基本概念和基本运算。
每小题5分,满分60分。
(1) C (2) B (3) A (4) D (5) D (6) B(7) C (8) B (9) A (10)D (11) B (12) A二、填空题:本题考查基础知识和基本运算。
每小题4分,满分16分。
(13) -20 (14)4 (15)90 (16)①②④三、解答题(17)本小题主要考查同角三角函数间的关系,两角和差的三角函数、二倍角公式、正弦定理等基础知识及基本运算能力。
解:(Ⅰ)A 、B 为锐角,sin 10B =,cos 10B ∴== 又23cos 212sin 5A A =-=,sin 5A ∴=,cos 5A ==,cos()cos cos sin sin 5105102A B A B A B ∴+=-=-= 0A B π<+<4A B π∴+=…………………………………………6分(Ⅱ)由(Ⅰ)知34C π=,sin 2C ∴=. 由正弦定理sin sin sin a b c A B C==得==,即a =,c =1a b -=Q ,1b -=,1b ∴=a ∴== ……………………………………12分(18)本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。
解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。
设事件B 为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,事件1A 为“采访该团3人中,1人持金卡,0人持银卡”,事件2A 为“采访该团3人中,1人持金卡,1人持银卡”。
12()()()P B P A P A =+121119219621333636C C C C C C C =+ 92734170=+ 3685= 所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是3685。
…………………………………………………………6分(Ⅱ)ξ的可能取值为0,1,2,333391(0)84C P C ξ===, 1263393(1)14C C P C ξ=== 21633915(2)28C C P C ξ===,363915(3)21C P C ξ===, 所以ξ的分布列为所以0123284142821E ξ=⨯+⨯+⨯+⨯=, ……………………12分 (19)本小题主要考察平面与平面垂直、直线与平面垂直、直线与平面平行、二面角等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。