辽宁省抚顺市2014届九年级数学第一次模拟考试试题及答案

合集下载

抚顺市九年级数学中考一模试卷

抚顺市九年级数学中考一模试卷

抚顺市九年级数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)﹣的相反数是()A .B . 2C . ﹣2D . ﹣2. (2分)下列运算正确的是()A .B .C .D .3. (2分)(2020·遵义) ﹣3的绝对值是()A . 3B . ﹣3C .D . ±34. (2分)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是().A . 2.25B . 2.5C . 2.95D . 35. (2分) (2020七下·嘉兴期中) 估算的值在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间6. (2分) (2017七下·平定期中) 如图,桌面上有木条b、c固定,木条a在桌面上绕点O旋转n°(0<n <90)后与b平行,则n=()A . 20B . 30C . 70D . 807. (2分)如图,直线a,b被直线c所截,如果a∥b,那么()A . ∠1>∠2B . ∠1=∠2C . ∠1<∠2D . ∠1+∠2=180°8. (2分) (2019八下·锦江期中) 将点A(2,1)向左平移2个单位长度得到点,则点的坐标是()A . (0,1)B . (2,-1)C . (4,1)D . (2,3)9. (2分)如图,是边长为1的正方形网格,则图中四边形的面积为()A . 25B . 12.5C . 9D . 8.510. (2分)如图图形是不同大小的三角形按一定的规律所组成的,其中第①个图形中一共有5个三角形,第②个图形中一共有17个三角形,第③个图形中一共有53,…,按此规律排列下去,第④图形中三角形个数为()A . 121B . 131C . 151D . 16111. (2分)(2020·中牟模拟) 如图,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°. 按以下步骤作图:①以C为圆心,以适当长为半径做弧,交CB,CD于M、N两点;②分别以M、N为圆心,以大于 MN的长为半径作弧,两弧相交于点E,作射线CE交BD于点O,交AD边于点F;则BO的长度为()A .B .C .D .12. (2分) (2019八下·埇桥期末) 不等式组有个整数解.A . 2B . 3C . 4D . 5二、填空题 (共6题;共7分)13. (1分)据有关部分统计,截止到2016年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为________.14. (1分)(2018·怀化) 因式分解:ab+ac=________.15. (1分) (2019八下·南昌期末) 如图,在平行四边形ABCD中,已知AB=2,BC=3,∠B=45°,点P 在BC边上,若以A、B、P为顶点的三角形是等腰三角形,则BP的长是________.16. (1分)为了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如表,则这15名同学每天睡眠时间的众数是________ 小时,中位数是________ 小时.每天睡眠时间(单位:小时)77.588.59人数2453117. (1分) (2019九上·闵行期末) 某超市自动扶梯的坡比为1︰2.4.一位顾客从地面沿扶梯上行了5.2米,那么这位顾客此时离地面的高度为________米.18. (2分) (2020九下·北碚月考) 已知A、B、C三地顺次在同一直线上,A、C两地相距1400千米,甲乙两车均从A地出发,向B地方向匀速前进,甲车出发5小时后,乙车出发,经过一段时间后两车在B地相遇,甲车到达B地后便在B地卸货,卸完货后从B地按原车速的返回A地,而乙车到B地后立刻继续以原速前往C地,到达C地后按原车速的原路返回A地,结果甲乙两车同时返回A地,若两车间的距离y(千米)与甲车出发时间x(小时)之间的关系如图所示,则甲车在B地卸货用了________小时.三、解答题 (共8题;共65分)19. (2分) (2020八下·扶风期末) 如图,在□ABCD中,AE平分∠BAD,BE平分∠ABC,且AE、BE 相交于CD上的一点E.求证:AE⊥BE.20. (2分)某市有A,B,C,D,E五个景点,该市旅游局对某月进入景点的人数的情况进行调查统计,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)求该月进入上述五个景点的总人数;(2)求m的值;(3)求出扇形统计图中进入景点C的人数所对的扇形的圆心角的度数.21. (10分)先化简,再求值:[(xy+2)(xy-2)-2(x2y2-2)]÷(xy),其中x=10,y=-.22. (10分)(2020·拱墅模拟) 如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠PAC =∠B.(1)求证:PA是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12,求AC的长.23. (10分) (2019七下·新华期末) 小明有1元和5角的硬币共13枚,这些硬币的总币值小于8.5元.(1)根据题意,甲、乙两名同学分别列出尚不完整的不等式如下:甲:x+________<8.5 乙:0.5x+________<8.5根据甲、乙两名同学所列的不等式,请你分别指出未知数x表示的意义,然后在横线上补全甲、乙两名同学所列的不等式:甲:x表示________;乙:x表示________.(2)求小明可能有几枚5角的硬币.(写出完整的解答过程)24. (10分)(2018·苍南模拟) 如图,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.25. (6分) (2017九上·江津期中) 我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q 是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)= .例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.26. (15分)(2019·重庆) 在平面直角坐标系中,抛物线y= 与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC 于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+ KG的最小值及点H的坐标.(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D/ , N 为直线DQ上一点,连接点D/ , C,N,△D/CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共65分)19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。

2014年九年级数学第一次中考模拟考试试卷及答案

2014年九年级数学第一次中考模拟考试试卷及答案

2014年中考第一次模拟考试数学试题本试题分选择题,36分;非选择题,84分;全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.∣-4∣的平方根是A.2 B.±2 C.-2 D.不存在2.下列图形中既是中心对称图形,又是轴对称图形的是A.B.C.D.3. 2013年德州市参加学业水平考试的学生人数为43259人,那么数据43259用科学记数法并保留到百位可以表示为A.5⨯D.44.33104.32610⨯⨯B.4⨯C.40.432104.32104.下列说法正确的是A.某工厂质检员检测某批灯泡的使用寿命采用普查法B . 一组数据1,a ,4,4,9的平均数是4,则这组数据的方差是7.6C . 12名同学中有两人的出生月份相同是必然事件D . 一组数据:5,4,3,6,4中,中位数是35.已知点M (1-2m ,1-m )在第一象限,则m 的取值范围在数轴上表示正确的是6. 若反比例函数xky =(k <0)的图象上有两点1P (2,1y )和2P (3,2y ),那么 A .021<<y y B .021>>y y C .012<<y y D .012>>y y 7. 下列命题中,正确的是A .平分弦的直径垂直于弦B .对角线相等的平行四边形是正方形C .对角线互相垂直的四边形是菱形D .三角形的一条中线能将三角形分成面积相等的两部分 8.直线y =2x 经过平移可以得到直线y =2x -2的是A .向左平移1个单位B .向左平移2个单位C .向右平移1个单位D .向上平移2个单位9.如图a 是长方形纸带,∠DEF =25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠DHF 的度数是A .35°B .50°C .65°D .75°10.有一个质地均匀的骰子,6个面上分别写有1,1,2,2,3,3这6个数字.连续投掷两次,第一次向上一面的数字作为十位数字,第二次向上一面的数字作为个位数字,这个两位数是奇数的概率为A .12 B .13 C .23 D .5911.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为x =1,点A 坐标为(-1,0).则下面的四个结论:①2a +b =0;②4a +2b +c >0 ③B 点坐标为(4,0);④当x <-1时,y >0.其中正确的是10 0.510 0.510.5 10 0.5A . B . C . D .A BCD 图aEA .①②B .③④C .①④D .②③12.如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ;把正方形1111A B C D 边长按原法延长一倍得到正方形2222A B C D ;以此进行下去…,则正方形n n n n A B C D 的面积为A.n B .5n C .15n - D .15n +非选择题 (共84分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13°的值为 .14.设x 1,x 2是方程2x 2+4x -3=0的两个根,则x 12+x 22= .15.新定义:[a ,b ,c ]为函数y =2ax bx c ++ (a ,b ,c 为实数)的“关联数”.若“关联数”为 [m -2,m ,1]的函数为一次函数,则m 的值为 .16.如图,在□ABCD 中,AD =4,AB =8,∠A =30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 .(结果保留π)17.如图,在等腰直角△ACB 中,∠ACB =90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE =90°,DE 交OC 于点P .有下列结论: ①∠DEO =45°;②△AOD ≌△COE ; ③S 四边形CDOE =12S △ABC ;④2OD OP OC =⋅. ACD 第16题图第17题图A x =1xyBO 第11题图 CB 1B C D AA 1C 1D 1A 2B 2C 2D 2第12题图其中正确的结论序号为.(把你认为正确的都写上)三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)化简求值:22221211x x x xx x x x+÷--++-,其中1x=.19.(本题满分8分)如图,已知矩形OABC的A点在x轴上,C点在y轴上,6=OC,10OA=.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.20.(本题满分8分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据PM2.5检测网的空气质量新标准,从德州市2013年全年每天的PM2.5日均值标准值(单位:微克/立方米)监测数据中随机地抽取25天的数据作为样本,并根据检测数据制作了尚不完整的频数分布表和条形图:空气质量PM2.5日均频频等级 值标准值 数 率 优 0~35 1 0.04 良 35~75 m 0.2 轻度污染 75~150 11 0.44 中度污染 150~200 5 0.2 重度污染 200~300 n a 严重污染大于30010.04(1)求出表中m ,n ,a 的值,并将条形图补充完整;(2)以这25天的PM2.5日均值来估计该年的空气质量情况,估计该年(365天)大约有多少天的空气质量达到优或良;(3)请你结合图表评价一下我市的空气质量情况.21.(本题满分10分)如图,△ABC 中,AB =AC ,作以AB 为直径的⊙O 与边BC 交于点D ,过点D 作⊙O 的切线,分别交AC 、AB 的延长线于点E 、F . (1)求证:EF ⊥AC ;(2)若BF =2,CE =1.2,求⊙O 的半径.第21题图22.(本题满分10分)某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?23.(本题满分10分)如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.(2)引申:如果∠C 90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____度时,图中阴影部分的面积和有最大值是________.24. (本题满分12分)如图,已知抛物线y =x 2+bx +c 经过A (-1, 0)、B (4, 5)两点,过点B 作BC ⊥x 轴,垂足为C . (1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果以M 、N 、B 、C 为顶点的四边形是平行四边形,求出点M 的横坐标.图3A BC DEFG图1GAB C DEF图2第23题图 ABO xyC第24题图数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDDBAADCDCCB二、填空题:(本大题共5小题,每小题4分,共20分) 13.14.7 15.2 16.12﹣34π 17.①②③④ 三、解答题:(本大题共7小题, 共64分) 18. (本题满分6分)解:原式= 222(1)1(1)1x x x x x x x +⋅--+- =22(1)(1)(1)(1)1x x x x x x x x +⋅-+-+- ………………………2分 = 2111x x x ---= 211x x --= (1)(1)1x x x +---= 1x --, ………………………4分当1x =时,原式= ………………………6分19.(本题满分8分)解:(1)保留痕迹,作图正确.…………3分 (2)过点E 做EF ⊥OA ,垂足为F . ∵矩形OABC 中6=OC ,10OA =, ∴B 点坐标为(10,6). ∴EF =6.…………5分 又∵OE =OA ,∴OF.…………7分 ∴点E 的坐标为(8,6).…………8分 20.(本题满分8分)解:(1)观察频数分布表可知,空气质量为良的频数m =25×0.2=5(天),重度污染的频数n =25-1-5-11-5-1=2(天), 所以重度污染的频率a =2÷25=0.08.…………3分 条形图补充如下:…………5分(2)这25天中空气质量达到优或良的频率为:0.04+0.2=0.24,以此估计该年(365天)空气质量达到优或良的天数为:365×0.24=87.6≈88(天);……7分 (3)结合图表可知我市的空气质量情况主要是轻度污染及其他程度的污染(占76%),空气质量较差. …………8分 21.(本题满分10分)(1)证明:连接OD ,AD .…………1分 ∵EF 是⊙O 的切线, ∴OD ⊥EF .…………2分 又∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC .…………3分 又∵AB =AC , ∴BD =DC .∴OD ∥AC . …………4分 ∴AC ⊥EF . …………5分 (2)解:设⊙O 的半径为x . ∵OD ∥AE ,∴△ODF ∽△AEF .…………7分 ∴OD OF AE AF =,即22 1.222x xx x+=-+. 解得:x =3.∴⊙O 的半径为3. …………10分22.(本题满分10分) 解:(1)由题意得:y =30﹣10x,且0<x ≤90,且x 为10的正整数倍.…………2分 (2)w=(120﹣20+x )(30﹣10x), …………4分整理,得w =﹣110x 2+20x +3000.…………5分(3)w=﹣110x 2+20x +3000=﹣110(x ﹣100)2+4000.…………7分∵110a =-,∴抛物线的开口向下,当x <100时,w 随x 的增大而增大,又0<x ≤90,因而当x =90时,利润最大,此时一天订住的房间数是:30﹣9010=21间,最大利润是:3990元.…………10分答:一天订住21个房间时,宾馆每天利润最大,最大利润为3990元. 23.(本题满分10分)解:(1)证明:在△ABC 与△DFC 中, ∵AC =DC ,∠ACB =∠DCF =90°,BC =FC , ∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等.…………………2分 (2)成立.…………………3分证明:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .∴∠APC =∠DQC =90°.…………………4分 ∵四边形ACDE ,BCFG 均为正方形, ∴AC =CD ,BC =CF ,∠ACP +∠PCD =90°, ∠DCQ +∠PCD =90°. ∴∠ACP =∠DCQ .∴△APC ≌△DQC .(AAS )…………………5分 ∴AP =DQ . 又∵S △ABC =12BC •AP ,S △DFC =12FC •DQ , ∴S △ABC =S △DQC . …………………7分ABC D EFGQPGA B C DEF11(3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍, 若图中阴影部分的面积和的最大值,则三角形ABC 的面积最大,∴当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.…………9分 ∴S 阴影部分面积和=3S △ABC =3×12×3×4=18.………………10分 24.(本题满分12分)解:(1)将A (-1, 0)、B (4, 5)分别代入y =x 2+bx +c ,得10164 5.b c b c -+=⎧⎨++=⎩,解得b =-2,c =-3.∴抛物线的解析式:y =x 2-2x -3.…… 2分 (2)在Rt △BOC 中,OC =4,BC =5. 在Rt △ACB 中,AC =AO +OC =1+4=5, ∴AC =BC .………………4分 ∴ ∠BAC =45°,AB =25552222=+=+BC AC .………………5分如图1,过点O 作OH ⊥AB ,垂足为H . 在Rt △AOH 中,OA =1, ∴AH =OH =OA ×sin45°=1×22=22, ∴BH =AB -AH =52-22=229 在Rt △BOH 中,tan ∠ABO =BH OH =22×292=91.…………7分 (3)直线AB 的解析式为:y =x +1.………8分设点M 的坐标为(x ,x 2-2x -3), 点N 的坐标为(x ,x +1),① 如图2,当点M 在点N 的上方时, 则四边形MNCB 是平行四边形,MN =BC23题图123题图212=5.由MN =(x 2-2x -3)-(x +1)=x 2-2x -3-x -1=x 2-3x -4, 解方程x 2-3x -4=5, 得x =2533+或x =2533-. ……………………10分②如图3,当点M 在点N 的下方时,则四边形NMCB 是平行四边形,NM =BC =5. 由MN =(x +1)-(x 2-2x -3) =x +1-x 2+2x +3=-x 2+3x +4, 解方程-x 2+3x +4=5, 得x =253+或x =253-. 所以符合题意的点M 有4个,其横坐标分别为:2533+,2533-,253+,253-.……………12分MN N23题图3。

2014年辽宁省抚顺市中考数学试卷(含解析版).doc

2014年辽宁省抚顺市中考数学试卷(含解析版).doc

2014年辽宁省抚顺市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2014•抚顺)的倒数是()A.﹣2 B.2C.D.2.(3分)(2014•抚顺)若一粒米的质量约是0.000012kg,将数据0.000012用科学记数法表示为()A.21×10﹣4B.2.1×10﹣6C.2.1×10﹣5D.2.1×10﹣43.(3分)(2014•抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD 的度数是()A.45°B.40°C.35°D.30°4.(3分)(2014•抚顺)如图放置的几何体的左视图是()A.B.C.D.5.(3分)(2014•抚顺)下列事件是必然事件的是()A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.半径分别为3和5的两圆相外切,则两圆的圆心距为8D.三角形的内角和是360°6.(3分)(2014•抚顺)函数y=x﹣1的图象是()A.B.C.D.7.(3分)(2014•抚顺)下列运算正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.(﹣2a)2=﹣2a2C.(2a+b)2=4a2+b2D.3x2﹣2x2=x2 8.(3分)(2014•抚顺)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A.+=2来源学科网B.﹣=2 C.+= D.﹣= 9.(3分)(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=x3(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小10.(3分)(2014•抚顺)如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•抚顺)函数y=中,自变量x的取值范围是.12.(3分)(2014•抚顺)一组数据3,5,7,8,4,7的中位数是.13.(3分)(2014•抚顺)把标号分别为a,b,c的三个小球(除标号外,其余均相同)放在一个不透明的口袋中,充分混合后,随机地摸出一个小球,记下标号后放回,充分混合后,再随机地摸出一个小球,两次摸出的小球的标号相同的概率是.14.(3分)(2014•抚顺)将抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为.15.(3分)(2014•抚顺)如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是.16.(3分)(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.17.(3分)(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 度.18.(3分)(2014•抚顺)如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作OE2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,O n和点E4,E5,…,E n.则O n E n= AC.(用含n的代数式表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)(2014•抚顺)先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.20.(12分)(2014•抚顺)居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.四、解答题(第21题12分,第22题12分,共24分)21.(12分)(2014•抚顺)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.22.(12分)(2014•抚顺)近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?五、解答题(满分12分)23.(12分)(2014•抚顺)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、A D长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果AB=10,BC=5,求图中阴影部分的面积.六、解答题(满分12分)24.(12分)(2014•抚顺)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?七、解答题(满分12分)25.(12分)(2014•抚顺)已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.26.(14分)(2014•抚顺)如图,抛物线y=ax2+x+c与x轴交于点A(4,0)、B(﹣1,0),与y轴交于点C,连接AC,点M是线段OA上的一个动点(不与点O、A重合),过点M作MN∥AC,交OC于点N,将△OMN沿直线MN折叠,点O的对应点O′落在第一象限内,设OM=t,△O′MN与梯形AMNC重合部分面积为S.(1)求抛物线的解析式;(2)①当点O′落在AC上时,请直接写出此时t的值;②求S与t的函数关系式;(3)在点M运动的过程中,请直接写出以O、B、C、O′为顶点的四边形分别是等腰梯形和平行四边形时所对应的t值.2014年辽宁省抚顺市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2014•抚顺)的倒数是()A.﹣2 B.2C.D.考点:倒数.专题:常规题型.分析:根据倒数的定义求解.解答:解:﹣的倒数是﹣2.故选:A.点评:本题主要考查了倒数的定义,解题的关键是熟记定义.来源学§科§网2.(3分)(2014•抚顺)若一粒米的质量约是0.000012kg,将数据0.000012用科学记数法表示为()A.21×10﹣4B.2.1×10﹣6C.2.1×10﹣5D.2.1×10﹣4考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000012=1.2×10﹣5;故选:C.点评:题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2014•抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD 的度数是()A.45°B.40°C.35°D.30°考点:平行线的性质..分析:根据平行线的性质求出∠DCA,根据角平分线定义求出∠DCE即可.解答:解:∵AB∥CD,∠A=120°,∴∠DCA=180°﹣∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选:D.点评:本题考查了平行线的性质,角平分线定义的应用,注意:两直线平行,同旁内角互补.4.(3分)(2014•抚顺)如图放置的几何体的左视图是()A.B.C.D.考点:简单组合体的三视图..分析:根据从左边看得到的图形是左视图,可得答案.解答:解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示,.故选:C.点评:本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意中间看不到的线用虚线表示.A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.半径分别为3和5的两圆相外切,则两圆的圆心距为8D.三角形的内角和是360°考点:随机事件..分析:必然事件就是一定发生的事件,即发生的概率是1的事件.解答:解:A、如果|a|=|b|,那么a=b或a=﹣b,故A选项错误;B、平分弦的直径垂直于弦,并且平分弦所对的两条弧,此时被平分的弦不是直径,故B选项错误;C、半径分别为3和5的两圆相外切,则两圆的圆心距为8,故C选项正确;D、三角形的内角和是180°,故D选项错误,故选:C.点评:考查了随机事件,解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2014•抚顺)函数y=x﹣1的图象是()A.B.C.D.考点:一次函数的图象..分析:根据函数解析式求得该函数图象与坐标轴的交点,然后再作出选择.解答:解:∵一次函数解析式为y=x﹣1,∴令x=0,y=﹣1.令y=0,x=1,即该直线经过点(0,﹣1)和(1,0).故选:D.点评:本题考查了一次函数图象.此题也可以根据一次函数图象与系数的关系进行解答.7.(3分)(2014•抚顺)下列运算正确的是()A.﹣2(a﹣1)=﹣2a﹣1 B.(﹣2a)2=﹣2a2C.(2a+b)2=4a2+b2D.3x2﹣2x2=x2考点:完全平方公式;合并同类项;去括号与添括号;幂的乘方与积的乘方..分析:A、原式利用去括号法则计算得到结果,即可做出判断;B、原式利用积的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式合并得到结果,即可做出判断.解答:解:A、﹣2(a﹣1)=﹣2a+2,故A选项错误;B、(﹣2a)2=4a2,故B选项错误;C、(2a+b)2=4a2+4ab+b2,故C选项错误;D、3x2﹣2x2=x2,故D选项正确.故选:D.点评:此题考查了完全平方公式,熟练掌握公式及法则是解本题的关键.8.(3分)(2014•抚顺)甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来x/A.+=2来源学科网B.﹣=2C.+=D.﹣=考点:由实际问题抽象出分式方程..分析:设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.解答:解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.(3分)(2014•抚顺)如图,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点P 是双曲线y=x3(x >0)上的一个动点,PB ⊥y 轴于点B ,当点P 的横坐标逐渐增大时,四边形OAPB 的面积将会( )A . 逐渐增大B . 不变C . 逐渐减小D . 先增大后减小考点: 反比例函数系数k 的几何意义..分析:由双曲线y=x3(x >0)设出点P 的坐标,运用坐标表示出四边形OAPB 的面积函数关系式即可判定. 解答: 解:设点P 的坐标为(x ,),∵PB ⊥y 轴于点B ,点A 是x 轴正半轴上的一个定点, ∴四边形OAPB 是个直角梯形,∴四边形OAPB 的面积=21(PB+AO )•BO=21(x+AO )•x3=+=+•x3,来源学|科|网Z|X|X|K]∵AO 是定值,∴四边形OAPB 的面积是个减函数,即点P 的横坐标逐渐增大时四边形OAPB 的面积逐渐减小. 故选:C .点评: 本题主要考查了反比例函数系数k 的几何意义,解题的关键是运用点的坐标求出四边形OAPB 的面积的函数关系式. 10.(3分)(2014•抚顺)如图,将足够大的等腰直角三角板PCD 的锐角顶点P 放在另一个等腰直角三角板PAB 的直角顶点处,三角板PCD 绕点P 在平面内转动,且∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,设AB=2,AN=x ,BM=y ,则能反映y 与x 的函数关系的图象大致是( )A .B .C .D .考点: 动点问题的函数图象..分析: 作PH ⊥AB 于H ,根据等腰直角三角形的性质得∠A=∠B=45°,AH=BH=AB=1,则可判断△PAH 和△PBH 都是等腰直角三角形,得到PA=PB=AH=,∠HPB=45°,由于∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N ,而∠CPD=45°,所以1≤x≤2,再证明∠2=∠BPM ,这样可判断△ANP ∽△BPM ,利用相似比得=,则y=x2,所以得到y 与x 的函数关系的图象为反比例函数图象,且自变量为1≤x≤2. 解答: 解:作PH ⊥AB 于H ,如图, ∵△PAB 为等腰直角三角形, ∴∠A=∠B=45°,AH=BH=AB=1,∴△PAH 和△PBH 都是等腰直角三角形, ∴PA=PB=AH=,∠HPB=45°,∵∠CPD 的两边始终与斜边AB 相交,PC 交AB 于点M ,PD 交AB 于点N 来源:]而∠CPD=45°,∴1≤AN≤2,即1≤x≤2,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°, ∴∠2=∠BPM , 而∠A=∠B ,∴△ANP ∽△BPM ,∴=,即=,∴y=x2, ∴y 与x 的函数关系的图象为反比例函数图象,且自变量为1≤x≤2. 故选A .点评: 本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围. 二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•抚顺)函数y=中,自变量x 的取值范围是 x≠2 .考点: 函数自变量的取值范围;分式有意义的条件..专题: 计算题. 分析: 求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0. 解答: 解:要使分式有意义,即:x ﹣2≠0, 解得:x≠2. 故答案为:x≠2.点评: 本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0. 12.(3分)(2014•抚顺)一组数据3,5,7,8,4,7的中位数是 6 . 考点: 中位数.. 分析: 找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 解答: 解:先对这组数据按从小到大的顺序重新排序:3,4,5,7,7,8. 位于中间的两个数是5,7,所以这组数据的中位数是(5+7)÷2=6. 故答案为:6. 点评: 本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(3分)(2014•抚顺)把标号分别为a ,b ,c 的三个小球(除标号外,其余均相同)放在一个不透明的口袋中,充分混合后,随机地摸出一个小球,记下标号后放回,充分混合后,再随机地摸出一个小球,两次摸出的小球的标号相同的概率是 31.考点: 列表法与树状图法.. 专题: 计算题. 分析: 列表得出所有等可能的情况数,找出两次摸出的小球的标号相同的情况数,即可求出所求的概率. 解答: 解:列表如下:a bca (a ,a ) (b ,a ) (c ,a ) b (a ,b )(b ,b ) (c ,b ) c(a ,c )(b ,c ) (c ,c )所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种, 则P=93=31.1故答案为:3点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2014•抚顺)将抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为y═(x﹣2)2+3.考点:二次函数图象与几何变换..分析:根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.解答:解:抛物线y=(x﹣3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为y=(x﹣3+1)2+1+2=(x﹣2)2+3,即:y=(x﹣2)2+3.故答案为:y=(x﹣2)2+3.点评:此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.15.(3分)(2014•抚顺)如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是1.考点:切线的性质;正方形的性质;圆周角定理;锐角三角函数的定义..分析:连接HF,EG,FG,根据切线的性质和正方形的性质可知:FH⊥EG,再由圆周角定理可得:∠EPF=∠OGF,而∠OGF=45°,问题得解.解答:解:连接HF,EG,FG,∵⊙O与正方形ABCD的各边分别相切于点E、F、G、H,∴FH⊥EG,∵OG=OF,∴∠OGF=45°,∵∠EPF=∠OGF,∴tan∠EPF=tan45°=1,故答案为:1.点评:本题考查了正方形的性质、切线的性质、圆周角定理以及锐角三角函数的定义,题目的综合性较强,解题的关键是正确添加辅助线,构造直角三角形.16.(3分)(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.考点:解直角三角形的应用..分析:过点P作PE⊥AB于点E,先求出∠APE及∠BPE的度数,由锐角三角函数的定义即可得出结论.解答:解:过点P作PE⊥AB于点E,∵∠APC=75°,∠BPD=30°,∴∠APE=15°,∠BPE=60°,∴AE=PE•tan15°,BE=PE•tan60°,∴AB=AE+BE=PE•tan15°+PE•tan60°=300,即PE(tan15°+)=300,解得PE=(米).故答案为:.点评:本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.17.(3分)(2014•抚顺)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=70度.考点:三角形内角和定理;多边形内角与外角..分析:分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.解答:解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.点评:本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.18.(3分)(2014•抚顺)如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作OE2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,O n和点E4,E5,…,E n.则O n E n=AC.(用含n的代数式表示)考点:相似三角形的判定与性质;三角形中位线定理..专题:规律型.分析:由CO1是△ABC的中线,O1E1∥AC,可证得=,,以此类推得到答案.解答:解:∵O1E1∥AC,∴△BO1E1∽△BAC,∴,∵CO 1是△ABC 的中线, ∴=21, ∵O 1E 1∥AC ,∴△O 2O 1E 1∽△ACO 2, ∴,由O 2E 2∥AC , 可得:, …可得:O n E n =AC . 故答案为:.点评: 本题主要考查平行线分线段成比例定理,相似三角形的性质和判定的理解和掌握,能得出规律是解此题的关键.三、解答题(第19题10分,第20题12分,共22分) 19.(10分)(2014•抚顺)先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°. 考点: 分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.专题: 计算题. 分析: 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用零指数幂、负指数幂法则以及特殊角的三角函数值求出x 的值,代入计算即可求出值. 解答:解:原式=•=•=x+1,∵x=(+1)0+()﹣1•tan60°=1+2,∴当x=1+2时,原式=2+2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(12分)(2014•抚顺)居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.考点:条形统计图;用样本估计总体;扇形统计图..分析:(1)由A层次的人数除以所占的百分比求出调查的学生总数即可;(2)由D层次人数除以总人数求出D所占的百分比,再求出B所占的百分比,再乘以总人数可得B层次人数,用总人数乘以C层次所占的百分比可得C层次的人数不全图形即可;(3)用360°乘以C层次的人数所占的百分比即可得“C”层次所在扇形的圆心角的度数;(4)求出样本中A层次与B层次的百分比之和,乘以4000即可得到结果.解答:解:(1)90÷30%=300(人),答:本次被抽查的居民有300人;(2)D所占的百分比:30÷300=10%B所占的百分比:1﹣20%﹣30%﹣10%=40%,B对应的人数:300×40%=120(人),C对应的人数:300×20%=60(人),补全统计图,如图所示:(3)360°×20%=72°,答:“C”层次所在扇形的圆心角的度数为72°;(4)4000×(30%+40%)=2800(人),答:估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.四、解答题(第21题12分,第22题12分,共24分)21.(12分)(2014•抚顺)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.考点:作图-旋转变换;待定系数法求一次函数解析式;作图-平移变换..专题:作图题.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点D、E、F绕点O按顺时针方向旋转90°后的对应点D1、E1、F1的位置,然后顺次连接即可;(3)根据轴对称的性质确定出对称轴的位置,然后写出直线解析式即可.解答:解:(1)△A1B1C1如图所示;(2)△D1E1F1如图所示;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,对称轴为直线y=x.点评:本题考查了利用旋转变换作图,利用平移变换作图,轴对称的性质,熟练掌握网格结构准确找出对应点的位置.22.(12分)(2014•抚顺)近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?考点:一元一次不等式的应用;二元一次方程组的应用..分析:(1)根据题意结合“购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元”,得出等量关系求出即可;(2)利用(1)中所求得出不等关系求出即可.解答:解:(1)设每台A种、B种设备各x万元、y万元,根据题意得出:,解得:,答:每台A种、B种设备各0.5万元、1.5万元;(2)设购买A种设备z台,根据题意得出:0.5z+1.5(30﹣z)≤30,解得:z≥15,答:至少购买A种设备15台.点评:此题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.五、解答题(满分12分)23.(12分)(2014•抚顺)如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、A D长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果AB=10,BC=5,求图中阴影部分的面积.考点:矩形的性质;切线的判定与性质;扇形面积的计算..分析:(1)直线BE与⊙A的位置关系是相切,连接AE,过A作AH⊥BE,过E作EG⊥AB,再证明AH=AD即可;(2)连接AF,则图中阴影部分的面积=直角三角形ABF的面积﹣扇形MAF的面积.解答:解:(1)直线BE与⊙A的位置关系是相切,理由如下:连接AE,过A作AH⊥BE,过E作EG⊥AB,∵S△ABE=BE•AH=AB•EG,AB=BE,∴AH=EG,∵四边形ADEG是矩形,∴AD=EG,∴AH=AD,∴BE是圆的切线;(2)连接AF,∵BF是⊙A的切线,∴∠BFA=90°∵BC=5,∴AF=5,∵AB=10,∴∠ABF=30°,∴∠BAF=60°,∴BF=AF=5,∴图中阴影部分的面积=直角三角形ABF的面积﹣扇形MAF的面积=×5×5﹣=.点评:本题考查了矩形的性质、切线的判定和性质、三角形和扇形面积公式的运用以及特殊角的锐角三角函数值,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.六、解答题(满分12分)24.(12分)(2014•抚顺)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用..分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是192元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合。

辽宁省抚顺市中考数学一模试卷

辽宁省抚顺市中考数学一模试卷

辽宁省抚顺市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2011·湛江) ﹣5的相反数是()A . ﹣5B . 5C . ﹣D .2. (2分)(2019·恩施) 天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为()A .B .C .D .3. (2分)(2018·荆门) 如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A . (﹣2,3)B . (﹣3,2)C . (3,﹣2)D . (2,﹣3)4. (2分) (2016九上·瑞安期中) 如图,在3×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A .B .C .D .5. (2分)下面调查中,适合做全面调查的是()A . 某品牌的大米在市场上的占有率B . 今天班上有几名同学打扫教室C . 某款汽车每百公里的耗油量D . 春节晚会的收视率6. (2分)(2017·裕华模拟) 如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是()A . AC:BC=AD:BDB . AC:BC=AB:ADC . AB2=CD•BCD . AB2=BD•BC7. (2分) (2019七下·邢台期中) 已知方程组中的 x,y互为相反数,则m的值为()A . 2B . ﹣2C . 0D . 48. (2分)(2017·鄂州) 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A .B .C .D .9. (2分) (2017九上·相城期末) 对于一组数据﹣1、4、﹣1、2下列结论不正确的是()A . 平均数是1B . 众数是-1C . 中位数是0.5D . 方差是3.510. (2分)(2017·青海) 在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A . (﹣3,﹣2)B . (2,2)C . (﹣2,2)D . (2,﹣2)11. (2分)(2016·常德) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2﹣4ac>0,其中正确的个数是()A . 1B . 2C . 3D . 412. (2分)将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=()A . -2B . 2C . -D .二、填空题 (共6题;共7分)13. (1分)(2017·玉林) 如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是________.14. (1分)分解因式:﹣4x3+4x2y﹣xy2=________.15. (2分) (2017九上·沙河口期中) 若关于x的一元二次方程(m+3)x2+5x+m2+2m-3=0有一个根是0,则m=________,另一根为________。

辽宁省抚顺市中考数学一模考试试卷

辽宁省抚顺市中考数学一模考试试卷

辽宁省抚顺市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·北海模拟) 在0,﹣2,3,四个数中,最小的数是()A . 0B . ﹣2C . 3D .2. (2分)(2018·北区模拟) 由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A .B .C .D .3. (2分)下列运算正确的是()A . +=B . 3x2y﹣x2y=3C . =a+bD . (a2b)3=a6b34. (2分)(2018·襄阳) 如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为()A . 55°B . 50°C . 45°D . 40°5. (2分)(2018·安阳模拟) 小刚为了全家外出旅游方便,他统计了郑州市2018年春节期间一周7天的最低气温如下表:最低气温(°C)0﹣31﹣2天数1123则这组数据的中位数与众数分别是()A . 1,﹣2B . ﹣2,﹣2C . 1.5,1D . 1,﹣36. (2分)下列图形是中心对称图形的是()A .B .C .D .7. (2分) (2019九上·通州期末) 如图,PA,PB分别与相切于A,B两点,PO与AB相交于点C,,,则OC的长等于A .B . 3C .D .8. (2分)(2019·新乡模拟) 不等式组的解在数轴上表示为()A .B .C .D .9. (2分) (2018九上·大石桥期末) 已知二次函数(a是常数,),下列结论正确的是()A . 当a = 1时,函数图像经过点(一1,0)B . 当a = 一2时,函数图像与x轴没有交点C . 若,函数图像的顶点始终在x轴的下方D . 若,则当时,y随x 的增大而增大10. (2分)(2019·增城模拟) 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为()个.A . 1835B . 1836C . 1838D . 1842二、填空题 (共6题;共7分)11. (1分)(2018·灌南模拟) 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示为________元.12. (1分)因式分解:9bx2y﹣by3= ________13. (1分)若m的2倍与n的倍的和等于6,列为方程是________.14. (2分) (2018九上·江干期末) 如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠,使AB落在AD 边上,折痕为AE,再将△AEB以BE为折痕向右折叠,AE与DC交于点F,则的值是________.15. (1分) (2019九上·江阴期中) 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是__.16. (1分)写出一个当自变量x>0时,y随x的增大而增大的反比例函数表达式________.三、解答题 (共9题;共100分)17. (5分)(2017七下·揭西期中) 计算(1) x2-(x+2)(x-2)(2)(3)(6x3y)2 ·(-4xy3)÷(-12x2y)(4)运用乘法公式计算:18. (5分) (2016七上·乳山期末) 如图,∠ABC=90°,∠EBE′=90°,AB=BC,BE=BE′,若AE=1,BE=2,∠BE′C=135°,求EC的长.19. (10分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.20. (15分)(2017·诸城模拟) 2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有________人,并把条形统计图补充完整理________;(2)扇形统计图中,m=________,n=________;C等级对应扇形有圆心角为________度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A 等级的小明参加市朗诵比赛的概率.21. (15分)(2018·聊城模拟) 如图,一次函数y=k1x+b与反比例函数y= 的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y= 图象上的两点,且y1≥y2,求实数p的取值范围.22. (10分)(2017·柘城模拟) 春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.23. (10分)(2017·孝感模拟) 如图,Rt△ABC中,∠C=90°.(1)求作:△ABC的内切圆⊙O(不写作法,保留作图痕迹)(2)若⊙O的半径为2,tan∠A= ,求AB的长.24. (15分) (2019九上·杭州月考) 在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B ,与抛物线y=ax2+bx+a的对称轴交于点C(m , 2).(1)求m的值;(2)若二次函数图像刚好经过A(2,3),B(0,1),C(1,2),D(0,1)四个点中的两个点,求该二次函数的表达式;(3) N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,请结合函数的图象分析a的取值范围,并直接写出你的答案.25. (15分)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形(2)判断直线EG是否经过一个定点,并说明理由(3)求四边形EFGH面积的最小值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共100分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。

辽宁省抚顺市抚顺县中考数学一模试卷(含解析)-人教版初中九年级全册数学试题

辽宁省抚顺市抚顺县中考数学一模试卷(含解析)-人教版初中九年级全册数学试题

某某省某某市某某县2016年中考数学一模试卷一、选择题:每小题3分,共30分1.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=22.sin60°的值等于()A.B.C.D.3.下列图形中,是中心对称图形的是()A.B.C.D.4.抛物线y=﹣(x+1)2﹣2的顶点坐标是()A.(﹣1,﹣2) B.(﹣1,2)C.(1,﹣2)D.(1,2)5.在Rt△ABC中,∠C=90°,BC=6,AC=8,则cos∠BAC等于()A.B.C.D.6.已知如图在Rt△ABC中,∠C=90°.CD是斜边AB上的高,若得到CD2=BD•AD这个结论可证明()A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CBD D.无法判断7.一个反比例函数在第二象限的图象如图所示,点A是图象上任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,求这个反比例函数的解析式是()A.y=﹣B.y= C.y= D.y=﹣8.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为()A.6 B.8 C.10 D.129.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.4 B.6 C.3 D.310.如图,二次函数y=ax2+bx+c的图象如图所示,则下列说法①ac<0;②2a+b<0;③当x=1时,a+b+c>0;④当x=﹣1时,a﹣b+c>0;⑤关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.你认为其中正确的有()A.1个B.2个C.3个D.4个二、填空题:每小题3分,共24分11.反比例函数,在每个象限内,y随x的增大而增大,则m的取值X围是_________.12.计算:sin45°+cos45°﹣tan30°sin60°=_________.13.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA=_________.14.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为_________.15.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=_________.16.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=_________.17.如图,菱形ABCD的边长为2,∠ADC=120°,弧CD是以点B为圆心BC长为半径的弧.则图中阴影部分的面积为_________(结果保留π).18.观察下列图形规律:当n=_________时,图形“●”的个数和“△”的个数相等.三、解答题:19题10分,20题12分,共22分19.(10分)(2016•某某县一模)某课外小组有做气体实验时,获得压强P(帕)与体积V(立方厘米)之间有下列对应数据:P(帕)… 1 2 3 4 5 …V(立方厘米)… 6 3 2 …根据表某某息回答下列问题:(1)猜想P与V之间的关系,并写出函数解析式;(2)当气体的体积是12立方厘米时,压强是多少?20.(12分)(2014•某某)某数学兴趣小组在全校X围内随机抽取了50名同学进行“舌尖上的某某﹣我最喜爱的某某小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.四、每题12分,共24分21.(12分)(2016•某某县一模)如图,在矩形ABCD中,E为CD边上的点,将△BCE沿BE折叠,点C恰好落在AD边上的点F处.(1)求证:△ABF∽△DFE.(2)若AB=3,AF=4,求DE的长.22.(12分)(2016•某某县一模)如图,已知一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A、B两点,且点A的横坐标与点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)直接写出x取何值时,反比例函数的函数值大于一次函数的函数值.五、本题12分23.(12分)(2016•某某县一模)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为F,E 为BA延长线上的一点,连接CE、CA,∠ECA=∠ACD.(1)求证:CE为⊙O的切线;(2)若EA=2,tanE=,求⊙O的半径.六、本题12分24.(12分)(2016•某某县一模)放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).七、本题12分25.(12分)(2015•某某)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为_________.探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.八、本题12分26.(14分)(2016•某某县一模)如图,已知抛物线y=﹣x2+bx+c经过A(0,4),B(3,0)两点,与x轴负半轴交于点C,连接AC、AB.(1)求该抛物线的解析式;(2)D、E分别为AC、AB的中点,连接DE,P为DE上的动点,PQ⊥BC,垂足为Q,QN⊥AB,垂足为N,连接PN.①当△PQN与△ABC相似时,求点P的坐标;②是否存在点P,使得PQ=NQ,若存在,直接写出点P的坐标,若不存在,请说明理由.2016年某某省某某市某某县中考数学一模试卷参考答案与试题解析一、选择题:每小题3分,共30分1.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.2.sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:sin60°=.故选C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容,要注意积累.3.下列图形中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.4.抛物线y=﹣(x+1)2﹣2的顶点坐标是()A.(﹣1,﹣2) B.(﹣1,2)C.(1,﹣2)D.(1,2)【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=﹣(x+1)2﹣2,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2).故选A【点评】考查将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.5.在Rt△ABC中,∠C=90°,BC=6,AC=8,则cos∠BAC等于()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案.【解答】解:由勾股定理,得AB==10.由余弦等于邻边比斜边,得cos∠BAC==,故选:C.【点评】本题考查了锐角三角函数的定义,利用勾股定理得出AB的长是解题关键.6.已知如图在Rt△ABC中,∠C=90°.CD是斜边AB上的高,若得到CD2=BD•AD这个结论可证明()A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CBD D.无法判断【考点】相似三角形的判定与性质.【分析】根据三角形内角和定理和已知求出∠B=∠ACD,根据相似三角形的判定得出△ADC ∽△CDB,根据相似三角形的性质得出比例式,即可得出选项.【解答】解:△ADC∽△CBD,理由是:∵在Rt△ABC中,∠C=90°.CD是斜边AB上的高,∴∠ACB=∠CDB=∠CDA=90°,∴∠B+∠BCD=90°,∠BCD+∠ACD=90°,∴∠B=∠ACD,∵∠CDB=∠ADC=90°,∴△ADC∽△CDB,∴=,∴CD2=BD•AD,即只有选项C正确;选项A、B、D都错误;故选C.【点评】本题考查了相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.7.一个反比例函数在第二象限的图象如图所示,点A是图象上任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,求这个反比例函数的解析式是()A.y=﹣B.y= C.y= D.y=﹣【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.【解答】解:由题意得,k<0, =3,故可得:k=﹣6,即函数解析式为:y=﹣.故选D.【点评】本题考查了待定系数法求反比例函数解析式,反比例函数系数k的几何意义,注意掌握在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.8.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为()A.6 B.8 C.10 D.12【考点】反比例函数系数k的几何意义.【分析】根据反比例函数中k的几何意义分别求出△AOC的面积和△OBD的面积,根据坐标特征求出四边形MCOD的面积,结合图形计算即可.【解答】解:∵A、B两点在反比例函数y=的图象上,∴△AOC的面积为2,△OBD的面积为2,∵点M(﹣3,2),∴四边形MCOD的面积为6,∴四边形MAOB的面积为6+2+2=10,故选:C.【点评】本题考查的是反比例函数系数k的几何意义,反比例函数中k的几何意义:图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.9.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C 顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.4 B.6 C.3 D.3【考点】旋转的性质.【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=4,接着根据旋转的性质得A′B′=AB=4,B′C=BC=2,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判断△CAA′为等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=2,然后利用AA′=AB′+A′B′进行计算.【解答】解:∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×2=4,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=A B=4,B′C=BC=2,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A、B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°﹣30°=30°,∴B′A=B′C=2,∴AA′=AB′+A′B′=2+4=6.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.10.如图,二次函数y=ax2+bx+c的图象如图所示,则下列说法①ac<0;②2a+b<0;③当x=1时,a+b+c>0;④当x=﹣1时,a﹣b+c>0;⑤关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.你认为其中正确的有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得到a>0,由抛物线与y轴的交点在x轴上方得到c>0,则可对①进行判断;利用抛物线的对称轴方程可得到b=﹣2a,则可对②进行判断;利用x=1时,y<0可对③进行判断;利用x=﹣1时,y>0,可对④进行判断;根据抛物线与x轴有2个交点可对⑤进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac>0,所以①错误;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,所以②错误;∵x=1时,y<0,∴a+b+c<0,所以③错误;∵x=﹣1时,y>0,∴a﹣b+c>0,所以④正确;∵抛物线与x轴有2个交点,∴关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以⑤正确.故选B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数有△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每小题3分,共24分11.反比例函数,在每个象限内,y随x的增大而增大,则m的取值X围是m<1 .【考点】反比例函数的性质.【分析】由于反比例函数的图象在每个象限内y随x的增大而增大,则满足m﹣1<0即可.【解答】解:由题意得的图象在每个象限内y随x的增大而增大,则m﹣1<0,即m<1.故答案为:m<1.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.计算:sin45°+cos45°﹣tan30°sin60°=﹣.【考点】特殊角的三角函数值.【分析】把特殊角是三角函数值代入计算即可.【解答】解:原式=+﹣×=﹣.故答案为:﹣.【点评】本题考查的是特殊角是三角函数值的计算,熟记30°、45°、60°角的各种三角函数值是解题的关键.13.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA=.【考点】锐角三角函数的定义;勾股定理.【分析】根据勾股定理,可得AC的长,根据邻边比斜边,可得角的余弦值.【解答】解:如图,由勾股定理得AC=2,AD=4,cosA=,故答案为:.【点评】本题考查了锐角三角函数的定义,角的余弦是角邻边比斜边.14.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为 4 .【考点】由三视图判断几何体.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE= 2:3 .【考点】位似变换.【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质,即可得AB∥DE,即可求得△ABC的面积:△DEF面积=,得到AB:DE═2:3.【解答】解:∵△ABC与△DEF位似,位似中心为点O,∴△ABC∽△DEF,∴△ABC的面积:△DEF面积=()2=,∴AB:DE=2:3,故答案为:2:3.【点评】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.16.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2= 6 .【考点】反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故答案为6.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.17.如图,菱形ABCD的边长为2,∠ADC=120°,弧CD是以点B为圆心BC长为半径的弧.则图中阴影部分的面积为(结果保留π).【考点】扇形面积的计算;菱形的性质.【分析】根据菱形的对角线平分每一组对角,进而得出∠BDC=∠DBC=60°,即可得出△DBC 是等边三角形,进而利用扇形面积求出即可.【解答】解:∵菱形ABCD的边长为2,∠ADC=120°,∴∠BDC=∠DBC=60°,∴△DBC是等边三角形,∴BD=BC=2,∴图中阴影部分的面积为: =.故答案为:.【点评】此题主要考查了菱形的性质以及等边三角形判定和扇形的面积公式的应用,根据已知得出△DBC是等边三角形是解题关键.18.观察下列图形规律:当n= 5 时,图形“●”的个数和“△”的个数相等.【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题:19题10分,20题12分,共22分19.(10分)(2016•某某县一模)某课外小组有做气体实验时,获得压强P(帕)与体积V(立方厘米)之间有下列对应数据:P(帕)… 1 2 3 4 5 …V(立方厘米)… 6 3 2 …根据表某某息回答下列问题:(1)猜想P与V之间的关系,并写出函数解析式;(2)当气体的体积是12立方厘米时,压强是多少?【考点】反比例函数的应用.【分析】(1)先利用表中数据判断P与V成反比例,则可设P=,然后把P=1,V=6代入求出k即可得到P与V的关系式;(2)计算V=12所对应的函数值即可.【解答】解:(1)从表中数据得P与V的积为定值6,所以P与V成反比例,设P=,把P=1,V=6代入得k=1×6=6,所以P与V的关系式为y=;(2)当V=12时,P==0.5,即当气体的体积是12立方厘米时,压强是0.5帕.【点评】本题考查了反比例函数的运用:能把实际的问题转化为数学问题,建立反比例函数的数学模型.注意在自变量和函数值的取值上的实际意义.20.(12分)(2014•某某)某数学兴趣小组在全校X围内随机抽取了50名同学进行“舌尖上的某某﹣我最喜爱的某某小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.【考点】条形统计图;用样本估计总体;列表法与树状图法.【分析】(1)总人数以及条形统计图求出喜欢“唆螺”的人数,补全条形统计图即可;(2)求出喜欢“臭豆腐”的百分比,乘以2000即可得到结果;(3)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;(3)列表如下:A B C DA (A,A)(B,A)(C,A)(D,A)B (A,B)(B,B)(C,B)(D,B)C (A,C)(B,C)(C,C)(D,C)D (A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.【点评】此题考查了条形统计图,用样本估计总体,以及列表法与树状图法,弄清题意是解本题的关键.四、每题12分,共24分21.(12分)(2016•某某县一模)如图,在矩形ABCD中,E为CD边上的点,将△BCE沿BE折叠,点C恰好落在AD边上的点F处.(1)求证:△ABF∽△DFE.(2)若AB=3,AF=4,求DE的长.【考点】相似三角形的判定与性质;矩形的性质;翻折变换(折叠问题).【分析】(1)根据四边形ABCD是矩形,于是得到∠A=∠D=∠C=90°,求得∠BFE=∠C=90°,根据余角的性质得到∠ABF=∠DFE,根据相似三角形的判定定理即可得到结论;(2)由勾股定理得到BF==5,求得DF=AD﹣AF=1,根据相似三角形的性质列比例式即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣90°=90°,∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE;(2)解:∵BF==5,∴AD=BC=BF=5,∴DF=AD﹣AF=1,∵△ABF∽△DFE,∴,即,∴DE=.【点评】本题考查了相似三角形的判定和性质,矩形的性质,翻折变换﹣折叠的性质,熟练掌握相似三角形的判定和性质是解题的关键.22.(12分)(2016•某某县一模)如图,已知一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A、B两点,且点A的横坐标与点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)直接写出x取何值时,反比例函数的函数值大于一次函数的函数值.【考点】反比例函数与一次函数的交点问题.【分析】(1)先利用待定系数法求出点A、B坐标,再把A、B坐标代入y=kx+b,列出方程组解决问题即可.(2)根据S△AOB=S△AOC+S△BOC计算即可.(3)观察图象反比例函数图象在一次函数图象上面,由此即可写出自变量取值X围.【解答】解:(1)把x A=﹣2,y B═﹣2代入y=﹣,得到y A=4,x B=4,∴点A(﹣2,4),B(4,﹣2),把A(﹣2,4),B(4,﹣2)代入y=kx+b得到,解得,∴一次函数的解析式为y=﹣x+2.(2)∵y=﹣x+2与y轴的交点为C(0,2),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6.(3)由图象可知反比例函数的函数值大于一次函数的函数值﹣2<x<0或x>4.【点评】本题考查一次函数与反比例函数图象的交点、三角形面积等知识,解题的关键是灵活运用待定系数法确定函数解析式,学会利用分割法求三角形面积,属于中考常考题型.五、本题12分23.(12分)(2016•某某县一模)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为F,E 为BA延长线上的一点,连接CE、CA,∠ECA=∠ACD.(1)求证:CE为⊙O的切线;(2)若EA=2,tanE=,求⊙O的半径.【考点】切线的判定.【分析】(1)由AB为⊙O的直径,弦CD⊥AB,得到=,∠ACD=∠ABC,结合∠OCB+∠OCA=90°即可;(2)在Rt△ECO中,tan∠E=,设OC=R,得到CE=R,OE=R+2即可.【解答】(1)证明:连接BC,OC,∵AB为⊙O的直径,弦CD⊥AB,∴=,∴∠ACD=∠ABC,∵OB=OC,∴∠ABC=∠OCB,∴∠ACD=∠OCB,∵∠ECA=∠ACD.∴∠EAC=∠OCB,∵∠OCB+∠OCA=90°,∴∠ECA+∠OCA=90°,∴∠OCE=90°,∵点C在⊙O上,∴CE是⊙O的切线.(2)在Rt△ECO中,tan∠E=,设OC=R,∴CE=R,OE=R+2,∴(R)2+R2=(R+2)2,∴R=3或R=﹣(舍).【点评】此题是切线的判定,涉及到圆中的性质,弦切角,勾股定理,判断∠OCE=90°是解本题的关键,六、本题12分24.(12分)(2016•某某县一模)放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).【考点】解直角三角形的应用.【分析】作DH⊥BC于H,设DH=x米,根据三角函数表示出AH于BH的长,根据AH﹣BH=AB 得到一个关于x的方程,解方程求得x的值,进而求得AD﹣BD的长,即可解题.【解答】解:作DH⊥BC于H,设DH=x米.∵∠ACD=90°,∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°=x,在直角△BDH中,∠DBH=45°,BH=DH=x,BD=x,∵AH﹣BH=AB=10米,∴x﹣x=10,∴x=5(+1),∴小明此时所收回的风筝的长度为:AD﹣BD=2x﹣x=(2﹣)×5(+1)≈(2﹣1.414)×5×+1)≈8米.答:小明此时所收回的风筝线的长度约是8米.【点评】本题考查了直角三角形的运用,考查了30°角所对直角边是斜边一半的性质,本题中求得DH的长是解题的关键.七、本题12分25.(12分)(2015•某某)在矩形ABCD中,已知AD>AB.在边AD上取点E,使AE=AB,连结CE,过点E作EF⊥CE,与边AB或其延长线交于点F.猜想:如图①,当点F在边AB上时,线段AF与DE的大小关系为AF=DE .探究:如图②,当点F在边AB的延长线上时,EF与边BC交于点G.判断线段AF与DE的大小关系,并加以证明.应用:如图②,若AB=2,AD=5,利用探究得到的结论,求线段BG的长.【考点】四边形综合题.【分析】①根据题意证明△AEF≌△DCE即可;②证明方法与①相同可以证明结论;③根据平行线分线段成比例定理列出比例式,计算得到答案.【解答】解:①AF=DE;②AF=DE,证明:∵∠A=∠FEC=∠D=90°,∴∠AEF=∠DCE,在△AEF和△DCE中,,∴△AEF≌△DCE,∴AF=DE.③∵△AEF≌△DCE,∴AE=CD=AB=2,AF=DE=3,FB=FA﹣AB=1,∵BG∥AD,∴=,∴BG=.【点评】本题考查的是矩形的性质、全等三角形的判定和性质、相似三角形的性质和判定,灵活运用相关的定理和性质是解题的关键.八、本题12分26.(14分)(2016•某某县一模)如图,已知抛物线y=﹣x2+bx+c经过A(0,4),B(3,0)两点,与x轴负半轴交于点C,连接AC、AB.(1)求该抛物线的解析式;(2)D、E分别为AC、AB的中点,连接DE,P为DE上的动点,PQ⊥BC,垂足为Q,QN⊥AB,垂足为N,连接PN.①当△PQN与△ABC相似时,求点P的坐标;②是否存在点P,使得PQ=NQ,若存在,直接写出点P的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A(0,4),B(3,0)代入抛物线的解析式得到关于b、c的二元一次方程组,然后解得b、c的值,从而得到抛物线的解析式;(2)①先求得BC=4,AB的长,接下来依据平行线分线段成比例定理得到PQ=DO=2,然后证明∠PQN=∠QBN,由相似三角形的判定定理可知当或时,△PQN与△ABC相似,从而可求得BQ的长,从而得到点P的坐标;②由题意可知QN=2,然后再求得sin∠ABO=,最后在△QBN中,依据锐角三角函数的定义可求得QB的长,从而得到点P的坐标.【解答】解:(1)将A(0,4),B(3,0)代入抛物线的解析式得:,解得;b=,c=4.∴抛物线的解析式为y=﹣+x+4.(2)①如图1所示:∵令y=0,解得x1=﹣1,x2=3,∴C(﹣1,0).∴BC=4,AB==5.∵D、E分别为AC、AB的中点,∴DE∥BC.∴=1.∴PQ=DO=2.∵PQ⊥BC,QN⊥AB,∴∠PQN+∠NQB=90°,∠NQB+∠QBN=90°.∴∠PQN=∠QBN.∴当或时,△PQN与△ABC相似.∵当时,,解得;QN=.∵=,∴QB=QN=×=2.∴OQ=3﹣2=1.。

数学理卷·2014届辽宁省抚顺市(抚顺一中)高三第一次模拟考试(2014.03)WORD版

→ →
19. (本小题满分 12 分) 市教育局组织全市中小学的“特色社团”评比活动.某高中从本校的三个校级优秀社团中选出 9 人组成代表队参加全市的比赛,代表队成员的构成情况如下表: 社团名称 人数 心灵花语社 4 豆蔻文 学社 2 科技创 新设 3
(Ⅰ) 学校领导为了检查这 9 名同学的准备情况, 从中随机选出 2 名同学让其介绍其所在社 团的主要特色,求这 2 名同学来自不同社团的概率; (Ⅱ)在这次全市中小学的“特色社团”评比活动中,该高中代表队获得了团队优秀成绩, 并且有 2 名同学获得了 “社团之星” 荣誉称号, 设代表队中心灵花语社成员获得 “社团之星”
24. (本小题满分 10 分)选修 4-5:不等式选讲 已知函数 f ( x) = x − a ( a > 0), 且不等式 f ( x) ≥ x + 1 的解集为 {x | x ≤ (Ⅰ)求 a 的值; (Ⅱ)设函数 g ( x) = f ( x) + 2 x + 1 ,若不等式 2m + n + m − n ≥ m ⋅ g ( x) 对任意 m, n∈R 且 m≠0 恒成立,求 x 的取值范围.
请考生在第 (22) , (23) , (24) 三题中任选一题作答, 如果多做, 则按所做的第一题记分. 作 答时用 2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22. (本小题满分 10 分)选修 4-1:几何证明选讲 如图,已知 AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,连接 AC, 过点 A 作 AD⊥ CD 于点 D,交⊙O 于点 E. (Ⅰ)证明:∠AOC=2∠ACD; (Ⅱ)证明:AB·CD=AC·CE.
y≥0 y-1 7. 若实数 x, y 满足x-2y≥0 ,则实数 m= 的取值范围是 x+1 x-y-2≥0

抚顺市中考数学一模考试试卷

抚顺市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九下·舞钢月考) 下列四个实数中最大的是()A . ﹣5B . 0C . πD . 32. (2分)(2019·天津) 2sin60°的值等于()A . 1B .C .D . 23. (2分)sin60°的相反数是()。

A .B .C .D .4. (2分)下列运算结果正确的是()A . 3a3•2a2=6a6B . (﹣2a)2=﹣4a2C . tan45°=D . cos30°=5. (2分)(2019·本溪模拟) 某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为()A . 6,5B . 6,6C . 5,5D . 5,66. (2分)(2019·本溪模拟) 下列事件为必然事件的是()A . 掷一枚普通的正方体骰子,掷得的点数不小于1B . 任意购买一张电影票,座位号是奇数C . 抛一枚普通的硬币,正面朝上D . 一年有367天7. (2分)(2019·本溪模拟) 若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是()A . 1<m<B . 1≤m<C . 1<m≤D . 1≤m≤8. (2分)(2019·本溪模拟) 体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()进球数012345人数15x y32A .B .C .D .9. (2分)(2019·本溪模拟) 如图,过反比例函数y= (x<0)图象上的一点A作AB⊥x轴于点B ,连接AO ,若S△AOB=2,则k的值是()A . 2B . ﹣2C . 4D . ﹣410. (2分)(2019·本溪模拟) 如图1,在菱形ABCD中,∠BAD=120°,点Q是BC边的中点,点P为AB边上的一个动点,设AP=x ,图1中线段PQ的长为y ,若表示y与x的函数关系的图象如图2所示,则菱形ABCD 的面积为()A . 4B . 2C . 8D . 12二、填空题 (共7题;共7分)11. (1分) (2019七下·即墨期末) 计算: ________.12. (1分)(2018·黄冈模拟) 分解因式:3x2﹣6x2y+3xy2=________.13. (1分) (2019·本溪模拟) 如图,把一张长方形纸片沿AB折叠后,若∠1=48°,则∠2的大小为________度.14. (1分) (2019九下·象山月考) 在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=________.15. (1分)(2019·本溪模拟) 不等式组的解集为________.16. (1分)(2019·本溪模拟) 已知:如图,O为坐标原点,四边形OABC为矩形,A(20,0),C(0,8),点D是OA的中点,点P在边BC上运动,当△ODP是腰长为10的等腰三角形时,则P点的坐标为________.17. (1分)(2019·本溪模拟) 如图,平面直角坐标系中,已知P(1,1),C为y轴正半轴上一点,D为第一象限内一点,且PC=PD ,∠CPD=90°,过点D作直线AB⊥x轴于B ,直线AB与直线y=x交于点A ,且BD=3AD ,连接CD ,直线CD与直线y=x交于点Q ,则点Q的坐标为________.三、解答题 (共9题;共87分)18. (5分)如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖多少块,白色瓷砖有多少块;(2)某新学校教室要装修,每间教室面积为68m2 ,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?19. (5分)(2019·本溪模拟) 先化简,再求值:,其中 .20. (12分)(2019·本溪模拟) 济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是________(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数________ .(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21. (10分)(2019·本溪模拟) 如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面积.22. (5分)(2019·本溪模拟) 如图:007渔船在南海海面上沿正东方向匀速航行,在A点观测到渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若007渔船航向不变,航行半小时后到达B点,观测到渔船C在东北方向上.问:007渔船再按原航向航行多长时间,离渔船C的距离最近?23. (10分)(2019·本溪模拟) 某商店以15元/件的价格购进一批纪念品销售,经过市场调查发现:若每件卖20元,则每天可以售出50件,且售价每提高1元,每天的销量会减少2件,于是该商店决定提价销售,设售价x元件,每天获利y元.(1)求每件售价为多少元时,每天获得的利润最大?最大利润是多少?(2)若该商店雇用人员销售,在营销之前,对支付给销售人员的工资有如下两种方案:方案一:每天支付销售工资100元,无提成;方案二:每销售一件提成2元,不再支付销售工资.综合以上所有信息,请你帮着该商店老板算一算,应该采用哪种支付方案,才能使该商店每天销售该纪念品的利润最大?最大利润是多少?24. (10分)(2019·本溪模拟) 已知△ABC内接于以AB为直径的⊙O ,过点C作⊙O的切线交BA的延长线于点D ,且DA∶AB=1∶2.(1)求∠CDB的度数;(2)在切线DC上截取CE=CD ,连接EB ,判断直线EB与⊙O的位置关系,并证明.25. (15分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC________∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.26. (15分)(2019·本溪模拟) 如图1,抛物线y=mx2﹣4mx+3m(m>0)与x轴交于A , B两点(点B在点A右侧).与y轴交点C ,与直线l:y=x+1交于D、E两点,(1)当m=1时,连接BC ,求∠OBC的度数;(2)在(1)的条件下,连接DB、EB ,是否存在抛物线在第四象限上一点P ,使得S△DBE=S△DPE?若存在,求出此时P点坐标及PB的长度;若不存在,请说明理由;(3)若以DE为直径的圆恰好与x轴相切,求此时m的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共87分)18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

2024-2025学年辽宁省抚顺市新抚区九年级(上)期初数学试卷(含答案)

2024-2025学年辽宁省抚顺市新抚区九年级(上)期初数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列式子中,属于最简二次根式的是( )C. 0.3D. 7A. 12B. 232.下列各组数不能作为直角三角形三边长的是( )A. 3,4,5B. 3,4,5C. 0.3,0.4,0.5D. 30,40,503.一元二次方程x2−2x+1=0的根的情况是( )A. 无实数根B. 有两个实数根C. 有两个不相等的实数根D. 无法确定4.下列说法中不正确的是( )A. 对角线垂直的平行四边形是菱形B. 对角线相等的平行四边形是矩形C. 菱形的面积等于对角线乘积的一半D. 对角线互相垂直平分的四边形是正方形5.把抛物线y=−4x2向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式为( )A. y=−4(x+2)2−3B. y=−4(x−2)2−3C. y=−4(x−3)2+2D. y=−4(x−3)2−26.已知二次函数y=−x2+1的图象上有三点(−3,y1),(−1,y2),(2,y3),则y1,y2,y3的大小关系是( )A. y1<y2<y3B. y1<y3<y2C. y3<y1<y2D. y3<y2<y17.某同学对数据26,36,36,46,5■,52进行统计分析发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A. 平均数B. 中位数C. 方差D. 众数8.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( )A. B. C. D.9.如图,边长为2的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=( )A. 12B. 22C. 3−1D. 2−110.甲、乙两位同学周末相约骑自行车去游玩,沿同一路线从A地出发前往B地,甲、乙分别以不同的速度匀速骑行,甲比乙早出发5分钟.甲骑行20分钟后,乙以原速的1.5倍继续骑行,经过一段时间,乙先到达B地,甲一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:m)与甲骑行的时间x(单位:min)之间的关系如图所示,则下列说法中错误的是( )A. 甲的骑行速度是250m/minB. A,B两地的总路程为22.5kmC. 乙出发60min后追上甲D. 甲比乙晚5min到达B地二、填空题:本题共5小题,每小题3分,共15分。

2014大连中考数学一模(完美版含答案)

大连市2014年初中毕业升学考试试测(一)数学参考答案与评分标准一、选择题1.C ; 2.D ; 3.B ; 4.A ; 5.D ; 6.D ; 7.C ; 8.B .二、填空题9.x (x -y ); 10.23; 11.-2≤x <3; 12.40; 13.<; 14.10.4; 15.31; 16.50°±α或α-50°.三、解答题17.解:22)31(8)21(-+-+ =9222221+-++…………………………………………………………………………8分 =12…………………………………………………………………………………………………9分18.解:x (x -2)=2x +1,x2-2x =2x +1,……………………………………………………………………………………2分 x 2-4x+4=5,………………………………………………………………………………………4分 (x -2)2=5. …………………………………………………………………………………………6分 ∴52±=-x , ……………………………………………………………………………………8分 即52,5221-=+=x x . …………………………………………………………………………9分19. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB=DC . …………………………2分∴∠AEB =∠EBC .………………………………3分∵BE 平分∠ABC ,∴∠ABE =∠EBC .………………………………4分∴∠AEB =∠ABE .………………………………5分∴AB =AE .………………………………………6分同理DC =DF . …………………………………7分∴AE =DF .………………………………………8分∴AE -FE =DF -FE ,即AF =ED .…………………………………………………………………9分20.解:(1)75; (2)1; (3)63,15; ……………………………………………………8分(4)不正确.理由是: 5月家用电器销售额为:72×20%=14.4(万元)…………………………………………………9分 6月家用电器销售额为:60×22%=13.2(万元)<14.4(万元) ………………………………11分 所以该商场5月家用电器的销售额比6月的销售额多.原说法不正确.………………………12分四、解答题21.解:设甲、乙两人的速度分别为(3x )千米/时和(4x )千米/时. ……………………………………1分 则602036410=-x x .即31225=-x x .………………………………………………………………3分 ∴15-12=2x .……………………………………………………………………………………4分 ∴23=x .…………………………………………………………………………………………5分检验:当23=x 时,6x≠0.A D E 第19题 F∴原分式方程的解为23=x .……………………………………………………………………6分∴5.4293==x 4x =6.…………………………………………………………………………8分答:甲、乙的速度分别为 4.5千米/时、6千米/时.……………………………………………9分22.解:(1)20,4;……………………………………………………………………………………2分(2)如图①,当0≤x <20时,设y 1=k 1x ,则1000=20k 1,∴k 1=50,y 1=50x .…………………………………3分∴第12天苹果销售金额为50×12×6=3600.当20≤x ≤30时,设y 1=k 1′x+b 1,则⎪⎩⎪⎨⎧+=+=1'11'1201000300b k b k ,⎩⎨⎧=-=30001001'1b k ∴ y 1=-100x+3000. ………………………………4分∴第24天苹果销售量为-100×24+3000=600. …5分如图②,当22≤x ≤30时,设y 2=k 2x+b 2,则⎩⎨⎧+=+=2'222226304b k b k ,⎪⎪⎩⎪⎪⎨⎧=-=2234122b k ∴223412+-=x y .……………………………………6分 ∴第24天苹果销售价格为2112232441=+⨯-,销售金额为36003300211600<=⨯.……………8分∴第12天苹果销售金额高于第24天的销售金额.………………………………………………9分23.(1)猜想:BC ∥OP .………………………………………………………………………………1分证明:连接OC .∵P A 、PC 与⊙O 相切,∴O A ⊥PA ,O C ⊥P C .……………………………………………………………………………2分 又∵OA=OC ,OP=OP ,∴Rt △OAP ≌Rt △OCP . AOC OCB OBC ∠=∠=∠21.……………………………………………3分∴OCB OBC AOC COP AOP ∠=∠=∠=∠=∠21.∴BC ∥OP . ………………………………………………………………………………………4分(2)解:作OE ⊥BC ,垂足为E .则∠P AO =∠OEB =90°,BC BE 21=.………………………5分∵∠AOP=∠EBO ,∴△OAP ∽△BEO .…………………………………………6分∴OB BE OP OA = 即12121122BC =+,552=BC . …………7分 由(1)知BC ∥OP .∴△DCB ∽△DPO .…………………………………………8分∴BC BD OP OD =,即55251BD BD =+, (9)分 O x (天) y 1(千克) 第22题① 30 201000 O y 2(元/千克) 第22题② 5 6 4x (天)30 22 5 第23题A CD B O P E∴32=BD .………………………………………………………………………………………10分五、解答题24.(1)证明:如图①,∵BF ∥CE ,∴∠AFB =∠CEF .∵∠CEF 与∠AEC 互补,∠AEC =∠BAC ,∴∠CEF 与∠BAC 互补.∴∠AFB 与∠BAC 互补.……………………………………1分(2)存在,CE=AF . ………………………………………2分证明:如图①,在AF 上取一点G ,使AG =BF .∵∠AFB +∠BAC =180°=∠AFB+(∠BAF+∠CAF ),∠AFB+∠ABF+∠BAF =180°,∴∠ABF =∠CAF .……………………………………………3分又∵AB=AC ,∴△ABF ≌△CAG . …………………………………………4分∴AF=CG ,∠AFB =∠CGA .又∵∠AFB =∠CEF ,∴∠CGA =∠CEF . …………………………………………5分∴CE =CG .∴CE =AF . ……………………………………………………6分(3)解:如图②,作∠GBA =∠EAC ,点G 在DA 的延长线上.∵∠AEC =∠BAC ,∴∠GAB =∠ECA .……………………………………………7分 ∴△G B A ∽△E A C .………………………………………………………………………………8分 ∴k ACAB CE AG ==,∠B G A =∠A E C =∠B A C =α.…………………………………………………9分∵BF ∥CE ,∴∠BFG =180°-∠FEC=180°-α=∠BGF ,∴B G =B F .…………………………………………………………………………………………10分 作BH ⊥FG ,垂足为H ,则A F =A G +G F =A G +2F H = k C E +2B F c o s ∠B F G = k +6c o s (180°-α).……………………………11分 25.解:(1)如图①,∵AB =AC =2,∠BAC =90°,AE ⊥BC ,∴AE =EC =1,∠B =∠C =45°.…………………………………1分由旋转过程知EC′=EC =AE ,∠D′C′E =60°,∴△AEC′是等边三角形. ……………………………………2分∴∠AEC′=60°=90°-∠C′EC .∴∠C′EC =30°,即旋转角为30°.……………………………3分(2)当0<t ≤33时, ………………………………………4分如图2,设D′E′、C′E′与AB 、AC 分别相交于点M 、N ,D′E′与AE 相交于点P .作NN′⊥BC ,垂足为N′.设NN′=x ,则N′C=x . 由平移过程知∠N′E′C =30°,∴E′N′=3NN′=3x .由E′N′+N′C= E′C 知,3x+x=1-t ,即131+-=t x .………5分∵∠APM =∠E′PE =90°-∠PE′E =∠NE′N′,∠PAM =∠E′CN =45°,∴△AMP ∽△CNE′. …………………………………………6分A B E E ′ CC ′D ′第25题② M P N N ′ 第25题① A B C D ′E C ′ A B C D EFG 第24题① 第24题②A B C D E F H G∴=∆∆'CNE AMP S S =⎪⎭⎫ ⎝⎛2'C E AP 22'1311⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-t t C E PE .………7分∴S=S △AEC +S △AMP -S △PEE′-S △CNE′21131321131)1(211131*********++---=+--⨯⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--+⨯⨯-⨯⨯=t t t t t t t t . …………9分 当33<t <1时,如图3,设D′E′、C′E′与AC 分别相交于点M 、N .作MM′⊥BC ,垂足为M′.设MM′=y ,则M′E′=y 33.∵ME′+E′C=M′C=M′M ,即y t y =-+)1(33, ()3313--=t y .………………………10分 ∴S=S △ME′C -S △NE′C =()12)1(131)1(213313)1(2122+-=-=+------⨯t t t t t t t .即⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛<<+-⎪⎪⎭⎫ ⎝⎛≤<++---=.13312,3302113132122t t t t t t S …………………………………………………………12分26.(1)由题意可设点A 的坐标为(x A ,kx A ),则2A A ax kx =.∴a k x A = 或 x A =0(舍) ∴点A 的坐标为),(2a k a k .………………………………………………………………………… 2分(2)由题意可设点C 的坐标为(2,C C ax x ),作AA′⊥x 轴,CC′⊥x 轴,垂足分别为A′、C′. 则∠AA′O=∠CC′O =90°.∵四边形OABC 是矩形,∴∠AOA′=180°-∠AOC -∠COC′=180°-90°-∠COC′=∠OCC′.… 3分∴△AOA′∽△OCC′.…………………………………………………… 4分∴''''CC OC OA AA =即ak x ax x a ka k c c c 1,22-=-=. ∴点C 坐标为)1,1(2akak -.…………………………………………… 5分作 BB′⊥x 轴,AD ⊥BB ′,垂足分别为B ′、D .则⊥BAD =90°-⊥DAO ,⊥COC ′=90°-⊥AOB ′.∵⊥ADB ′=⊥OB′D =90°,⊥DA ⊥OB ′.⊥⊥DAO =⊥AOB ′.⊥⊥BAD =⊥COC ′. …………………………………………………………………………… 6分又⊥AB=OC ,⊥R t ⊥B D A ⊥R t ⊥C C ′O .…………………………………………………………………………7分∴D A =C ′O ,B D =C C ′,即⎪⎭⎫ ⎝⎛--=-ak x a k 10,221ak a k y =-.…………………………………8分 ∴⎪⎭⎫ ⎝⎛-=k k a x 11,()a ax x a a k k a k k a y 22121111222222+=+=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+=.………………9分(3)由a >0知,当x =0时,即01=-kk 时,y 有最小值,最小值为a 2,……………………10分解得,k 1=1, k 2=-1(舍).……………………………………………………………………11分 D ′C ′A B E E ′ C 第25题③ MN M ′ O x y 第26题 B A C A′ B′C′ D∴点A 、C 的坐标分别为)1,1(a a 、)1,1(aa -. ∴aOC OA 2==.又⊥四边形OABC 是矩形,∴四边形O A B C 是正方形.………………………………………………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档