特殊三角形中的动点问题
一次函数中(特殊三角形)的存在性问题优秀教学设计

辅助策略:借助几何画板,使学生直观形象地观察、操作。
2、教法
演示法:通过几何画板演示两圆一中垂线和外K全等,使学生直观、形象的感知因动点的移动,在何时会出现等腰三角形和等腰直角三角形,思考在没有几何画板的时候,我们自己该如何作图,快速确定动点的位置。
《一次函数中特殊三角形的存在性问题》教学设计
【教学目标】
1、知识与技能
(1)使学生体会定点与动点之间的关系,做到以静制动。
(2)通过数形结合,利用几何法和代数法求一次函数中特殊三角形的存在性问题。
2、过程与方法
(1)借助几何画板探究一次函数中特殊三角形的存在性问题,使学生初步形成正确、科学的分析解决问题的方法。
①设点:设点P(0,m)A(3,0),B(0,4)
②表示三条边:
③列方程:
三、小组讨论
已知A(2,0),B(0,4),在第一象限内是否存在一点P,使得△PAB是等腰直角三角形,若存在请求出点P的坐标;若不存在,请说明理由。
讨论目标:①这样的动点P可能有多少个?如何分类?
②你能不能画出等腰直角三角形?
等腰三角形可以是两条边相等或者两个角相等,在我们所学的知识中,是边好表示,还是角好表示呢?
探究一:用几何法确定动点的位置——两圆一中垂线
例1、已知,A(3,0),B(0,4),在y轴上是否存在一点P,使得△PAB是等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由
探究二:用代数法确定动点的位置——设点法
实验法:让学生自己动手、在探究过程中,自己发现动点的规律
等腰三角形的动点问题

等腰三角形的动点问题数学题就像一场找不到终点的旅行。
你从一个点出发,沿着复杂的路径走,最后不知道自己到底走到了哪里。
今天我们就来聊聊等腰三角形的动点问题。
这个题目听上去挺深奥的,实际上它的背后藏着不少有趣的小秘密,只要你敢跟我一起去探索,保准你能一笑而过,轻松搞定。
咱们得弄清楚什么叫“等腰三角形”。
说白了,就是两个边长一样的三角形,像什么呢?就像一把弯弯的弓,或者是你吃过的那种蘋果派,上下两侧都是对称的。
你看着它,觉得它仿佛能站得稳,能做个大跳跃,不管你怎么摆弄它,左右两边始终如一,这就叫做等腰。
是不是感觉有点像朋友之间的默契,心有灵犀一点通,彼此不言而喻?但如果把问题复杂化一点,假设这个等腰三角形的某个点可以自由移动,这个点能左右自如地跑,那么问题就来了。
动点的位置会随着它的运动而变化。
你是不是已经开始脑补自己在画图纸,手握圆规,试图画出那条完美的弧线?嘿,别急,咱们先来一步步搞清楚。
想象一下,你站在等腰三角形的底边上,而底边的两端分别叫做点A和点B。
你就在这条底边上找了个地方,选个地方蹲下来。
你的任务是让你蹲的地方能够移动,往左往右,一下子又到了点C。
那你猜猜,点C移动之后,会发生什么?是不是整个三角形看起来有点“变形”?对,就是这么神奇!你想,底边上某个点的每一次变动,都能影响这个等腰三角形的形状,像是给这个三角形施了魔法一样,它的对称性也会随之发生微妙的变化。
是不是觉得有点复杂了?别急,听我慢慢给你道来。
动点在底边上跑,大家最关心的应该是它的位置对三角形对称性的影响。
你看,如果点C在底边上偏左,那三角形的“腰”就会相应变得不对称;但如果它正好站在底边的正中间呢?哇塞,这时候你会发现,整个三角形变得更加对称了。
嗯,就像有些情侣,你知道他们总是能巧妙地让彼此的步伐同步,简直是天作之合。
再往下想,等腰三角形的动点究竟能跑到哪里?有没有什么规律?是不是动点的每一步都能让你摸到点窍门?嗯,真是的,这问题不简单啊!不过说实话,如果你仔细观察,就会发现它其实有点像一个自我约束的个体。
浅谈三角形中的动点问题

浅谈三角形中的动点问题动点问题是一类灵活、有难度的数学问题,也是近些年来各市中考中常出现的考点。
本文将以湘教版八年级全等三角形中一道习题为例,对变化出来的一系列动点问题从如下几个方面进行探讨和阐述。
一.本文选题背景1、知识背景:本题用到的知识点是:全等三角形;2、思维方法背景:转化思想;二.选择母题的目的:动点问题历来是中考的压轴考点;要让学生解决复杂的动点问题, 必须让学生在初二就形成动态问题的思考方式,遵循由易到难的原则,故选择这道题作为母题;三、原题已知:如图,△ABC 是等边三角形、点D 是直线BC 上一点(不与B 、C 重合),以AD 为边作△ADE ,△ADE 是等边三角形,连接CE ;求证:BD=CE题目分析:从数量上来看,BE 与CE 是应该相等的;证明边相等,可以考虑全等三角形的判定定理来证明△BAD ≌△EAC ,然后利用全等三角形的性质来说明边相等.证明:∵ △ABC 、△ADE 是等边三角形 ∴ AB=AC ,AD=AE ,∠BAC=∠DAE=60°;又∵∠DAC=∠DAC ∴∠BAC-∠DAC=∠DAE-∠DAC即∠BAD=∠EAC∴ △BAD ≌△EAC ∴ BD=CE四、拓展与变式变式1:“正三角形”改为等腰三角形,是否△BAD ≌△EAC 成立那么BD 与CE 的结论成立吗?探究BC=DC+CE 是否成立.题目:在△ABC 中,AB=AC,点D 是线段BC 上一点(不与B 、C 重合),AD 为一边作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE.求证:BD=CE ,并直接判断结论BC=DC+CE 是否成立;证明: ∵∠DAE=∠BAC∴DAE-DAC BAC-DAC ∠∠=∠∠ 即EAC BAD ∠=∠又∵AB=AC ,AD=AE∴△BAD ≌△EAC∴CE=BD ∵BC=DC+BD ∴BC=DC+CEC AB F DC B F D变式2:将变式1的条件“点D 是线段BC 上一点(不与B 、C 重合)”修改为“点D 在边CB 的延长线上或者在边BC 的延长线上”,是否△BAD ≌△EAC 成立?并探究“BC 、DC 、CE ”的数量关系。
等腰三角形动点最值问题解题技巧

等腰三角形动点最值问题解题技巧简介等腰三角形是数学中常见的一种三角形形状,其具有许多有趣的几何性质。
在这篇文档中,我们将讨论如何解决等腰三角形动点最值问题。
通过使用解题技巧和公式推导,我们可以轻松找到等腰三角形的各个动点的最值。
基本定义1.等腰三角形等腰三角形是一种具有两条边相等的三角形。
我们可以通过连接底边中点和顶点,形成一个高。
由于等腰三角形具有对称性,底边中点和顶点之间的连线与底边垂直相交,划分出两个等腰直角三角形。
2.动点在几何学中,动点是指在平面上移动的点。
通过改变动点的位置,我们可以观察到某些几何量的变化情况。
在等腰三角形中,我们可以考虑顶点和底边上的某个点作为动点。
动点最值问题解题步骤步骤一:建立坐标系为了简化问题的分析和计算,我们可以将等腰三角形放在坐标系中。
通过选取合适的坐标轴和原点,我们可以方便地描述动点的位置。
步骤二:确定动点位置根据问题描述,确定我们所关注的是等腰三角形的哪个动点。
例如,我们可以考虑探索顶点和底边上的某个点的变化。
步骤三:建立几何关系通过观察等腰三角形的几何性质,我们可以建立动点与其他几何元素之间的相互关系。
这可以通过直线、角度、距离等几何关系来描述。
步骤四:建立动点与几何量的关系式利用步骤三中建立的几何关系,我们可以将动点的位置表示为其他几何量的函数。
这个函数可以是一个方程、一个不等式或一个定义域。
步骤五:求解最值通过求解动点位置的函数,我们可以得到动点所在位置的最值。
这可能是一个最大值、最小值或其他特定值。
步骤六:验证解的合理性最后,我们需要验证我们得到的最值是否合理,并根据实际情况进行解释。
这可以通过对几何性质和约束条件的分析来完成。
例题分析例题:在等腰三角形A BC中,AB=A C=6c m,B C=8c m。
动点P在边B C 上,求B P+PC的最小值。
解题步骤:步骤一:建立坐标系。
选择顶点A为坐标原点,建立x轴和y轴。
步骤二:确定动点位置。
在边BC上选择点P作为动点。
三角形动点问题的解题技巧

三角形动点问题的解题技巧三角形动点问题是初中数学中一个比较常见的问题,也是学生在学习初中数学时需要重点掌握的一类问题。
本文将从解题技巧方面为大家详细讲解三角形动点问题的解题方法。
第一步:明确问题在学习数学时,我们首先需要明确问题,理解题目的含义。
对于三角形动点问题而言,我们需要明确以下几个方面:1、动点的定义。
动点是指在平面直角坐标系中,随着某个规律移动的点。
2、三角形的定义。
三角形是由三条线段组成,并将其首尾两端连接而成的一个几何图形。
3、三角形的性质。
在解题时,我们需要掌握并运用三角形的性质,如勾股定理、正弦定理、余弦定理等。
4、问题的要求。
在题目中,我们需要明确所给的问句,例如求三角形的面积、周长等等。
第二步:确定动点的运动轨迹对于三角形动点问题而言,我们需要确定动点的运动轨迹,以便后续运用三角形的性质进行求解。
通常情况下,动点的运动轨迹有以下几种类型:1、直线运动轨迹。
当动点在平面直角坐标系中做直线运动时,我们可以根据勾股定理求出两点之间的距离,进而运用相似三角形的性质求出三角形的各项参数。
2、圆形运动轨迹。
当动点在平面直角坐标系中做圆形运动时,我们可以根据相似三角形的性质求解三角形的各项参数。
此外,我们也可以将圆形运动看作是一种周期性运动,利用周期函数的性质快速求解出三角形各项参数。
3、抛物线运动轨迹。
当动点在平面直角坐标系中做抛物线运动时,我们可以根据抛物线的性质,例如焦距、顶点等,求解出三角形的各项参数。
第三步:利用三角形的性质求解在确定了动点的运动轨迹后,我们需要运用三角形的性质对问题进行求解。
例如,在求三角形的面积时,我们可以利用海伦公式或三角形的高乘以底的公式进行计算。
在求三角形的周长时,我们可以利用三角形的边长之和进行计算。
此外,在解决三角形动点问题的过程中,我们还需要注意以下几点:1、注意单位。
在计算三角形的各项参数时,我们需要注意单位的换算,尤其是在混用不同的国际单位和中文单位时更需要引起注意。
三角形中的动点问题

三角形中的动点问题在三角形中,我们考虑一个特殊的问题:如何确定一个动点在三角形内移动时与三角形的边界交点的轨迹?首先,我们需要了解一些三角形的基本知识。
三角形由三条边和三个顶点构成。
我们可以使用三边之间的关系来解决这个问题。
假设我们有一个三角形ABC,其中A、B、C分别为三个顶点,而a、b、c分别为对应的边长。
此外,我们有一个动点P在三角形内移动。
首先,让我们考虑动点P在边AB上移动时与三角形的边界交点的情况。
如果我们将边AB延长成为直线,那么动点P的轨迹将是这条直线上距离A点一定距离的所有点。
同样,如果动点P在边AC和BC上移动时,其轨迹也可以由类似的思路得到。
接下来,我们考虑动点P在三角形内部的情况。
假设我们将边AB、BC、CA延长成为直线,它们会相交于一个点,我们将其称为无穷远点O。
那么,动点P在三角形内部移动时,其轨迹可以被视为无穷远点O到动点P的连线所夹的角度组成的轨迹。
综上所述,当动点P在三角形内移动时,与三角形边界的交点的轨迹可以分为三条线段和一条角度。
这一结论在三角形的一般情况下成立。
通过解决三角形中的动点问题,我们可以深入了解三角形的性质和几何知识。
这个问题也可以拓展到更复杂的几何图形中,从而引发更多有趣的研究和探索。
总结起来,三角形中的动点问题是一个有趣且具有挑战性的几何问题。
通过分析三角形的边界和动点的位置关系,我们可以得出动点与三角形边界交点的轨迹,并进一步探索几何图形的性质。
这个问题不仅有助于加深我们对三角形的理解,还能培养我们的几何思维能力。
中考数学“特殊三角形的存在性问题”题型解析

中考数学“特殊三角形的存在性问题”题型解析二次函数与特殊三角形的存在性问题主要分为两类:一类是静态的特殊三角形的存在性问题;一类是动态的特殊三角形的存在性问题 .静态的特殊三角形的存在性问题难度相对较小,可根据抛物线的对称性以及三角形的特点为切入点来解决;动态的特殊三角形的存在性问题难度相对较大,解决此类问题的关键是根据题意分析出动点在动的过程一些不变的量以及不变的关系 .本节主要来讨论下关于动态的特殊三角形的存在性问题 .类型一:等腰三角形存在性问题【例题1】如图,已知抛物线y = -1/4 x^2 - 1/2 x + 2 与x 轴交于A , B 两点,与y 轴交于点C . (1)求点A , B , C 的坐标;(2)此抛物线的对称轴上是否存在点M,使得△ACM 是等腰三角形?若存在请求出点M 的坐标;若不存在,请说明理由 .【分析】(1)分别令y = 0 , x = 0 , 即可解决问题;(2)分A、C、M 为顶点三种情形讨论,分别求解即可 . 【解析】(1)令y = 0 , 得-1/4 x^2 - 1/2 x + 2 = 0 ,∴x^2 + 2x - 8 = 0 ,∴x = - 4(舍)或2 ,∴点A 坐标(2,0),点B 坐标(-4,0),令x = 0 , 得y = 2 ,∴点C 的坐标(0,2).(2)如图所示,①当C 为顶点时,CM1 = CA , CM2 = CA , 作M1N⊥OC 于N , 在Rt△CM1N 中,∴点M1 坐标(-1,2+√7),点M2 坐标(-1 , 2-√7).②点M3 为顶点时,∵直线AC 解析式为y = -x + 2 , 线段AC 的垂直平分线为y = x , ∴点M3 坐标为(-1,-1).③当点A 为顶点的等腰三角形不存在 .综上所述M 坐标为(-1,-1)或(-1,2+√7)或(-1 , 2-√7).类型二:直角三角形存在性问题【例题2】如图,△OAB 的一边OB 在x 轴的正半轴上,点A 的坐标为(6,8),OA = OB,点P 在线段OB 上,点Q 在y 轴的正半轴上,OP = 2OQ,过点Q 作x 轴的平行线分别交OA,AB 于点E , F .(1)求直线AB 的解析式;(2)是否存在点P,使△PEF 为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由 .【分析】(1)由点A 的坐标可确定出OA 的长,即为OB 的长,从而可确定出B 点坐标,利用待定系数法即可求出直线AB 的解析式;(2)分三种情况来考虑:若∠PEF = 90°;若∠PFE = 90°,若∠EPF = 90°,过点E , F 分别作x 轴垂线,垂足分别为G、H,分别求出t 的值,确定出满足题意P 坐标即可 .【解题策略】此类问题主要考查特殊三角形的存在性问题:首先运用特殊三角形的性质画出相应的图形,确定动点问题的位置;其次借助特殊三角形的性质找到动点与已知点的位置关系和数量关系;最后结合已知列出方程求解即可 .要注意分类讨论时考虑全面所有可能的情形 .。
中考数学--动点问题题型方法归纳

xA OQP By 动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1(20XX 年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
图(3)ABC OEFA B C O D 图(1) A BOE FC 图(2) 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论xyM CDP QOA B xyM CD PQOAB 3.如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊三角形中的动点问
题
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
动点问题
例。
如图,在△ABC中,AB=BC=5,AC=8.点D为AC边上的动点,点D从点C 出发,沿边CA往A运动,当运动到点A时停止,若设点D运动的时间为t秒,点D运动的速度为每秒1个单位长度.
(1)当△ABD是等腰三角形时,t
=;
(请直接写出答案)
(2)求当t为何值时,△ABD是直角三角形?并说明理由.
练习:1.已知:如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P 到达点B时,P、Q两点停止,当t=____________时,△PBQ是直角三角形.2..如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP 是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在
△ABC的哪条边上相遇?。