2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题5 圆锥曲线的定义、方程、几何性质

合集下载

2018年高考数学(浙江专用)总复习教师用书:第2章 第1讲 函数及其表示 Word版含解析

2018年高考数学(浙江专用)总复习教师用书:第2章 第1讲 函数及其表示 Word版含解析

第1讲 函数及其表示最新考纲 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).知 识 梳 理1.函数与映射的概念(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)函数y =1与y =x 0是同一个函数.( )(2)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (3)函数y =x 2+1-1的值域是{y |y ≥1}.( )(4)若两个函数的定义域与值域相同,则这两个函数相等.( )解析 (1)函数y =1的定义域为R ,而y =x 0的定义域为{x |x ≠0},其定义域不同,故不是同一函数.(3)由于x 2+1≥1,故y =x 2+1-1≥0,故函数y =x 2+1-1的值域是{y |y ≥0}. (4)若两个函数的定义域、对应法则均对应相同时,才是相等函数. 答案 (1)× (2)√ (3)× (4)×2.(必修1P25B2改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析 A 中函数定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2]. 答案 B3.(2017·舟山一模)函数y =1-x 22x 2-3x -2的定义域为( )A.(-∞,1]B.[-1,1]C.[1,2)∪(2,+∞)D.⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1 解析 由题意,得⎩⎨⎧1-x 2≥0,2x 2-3x -2≠0.解之得-1≤x ≤1且x ≠-12. 答案 D4.(2015·陕西卷)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))等于( )A.-1B.14C.12D.32解析 因为-2<0,所以f (-2)=2-2=14>0,所以f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C. 答案 C5.(2015·全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 解析 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2. 答案 -26.(2017·丽水调研)设函数f (x )=⎩⎨⎧-2x 2+1 (x ≥1),log 2(1-x ) (x <1),设函数f (f (4))=________.若f (a )=-1,则a =________.解析 ∵f (x )=⎩⎨⎧-2x 2+1 (x ≥1),log 2(1-x ) (x <1),∴f (4)=-2×42+1=-31,f (f (4))=f (-31)=log 232=5;当a ≥1时,由f (a )=-2a 2+1=-1,得a =1(a =-1舍去);当a <1时,由f (a )=log 2(1-a )=-1,得1-a =12,即a =12. 答案 5 1或12考点一 求函数的定义域【例1】 (1)(2017·杭州调研)函数f (x )=ln xx -1+x 12的定义域为( )A.(0,+∞)B.(1,+∞)C.(0,1)D.(0,1)∪(1,+∞)(2)若函数y =f (x )的定义域是[1,2 017],则函数g (x )=f (x +1)x -1的定义域是____________.解析 (1)要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧x x -1>0,x ≥0,解得x >1,故函数f (x )=ln x x -1+x 12的定义域为(1,+∞).(2)∵y =f (x )的定义域为[1,2 017], ∴g (x )有意义,应满足⎩⎨⎧1≤x +1≤2 017,x -1≠0.∴0≤x ≤2 016,且x ≠1.因此g (x )的定义域为{x |0≤x ≤2 016,且x ≠1}. 答案 (1)B (2){x |0≤x ≤2 016,且x ≠1} 规律方法 求函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出;若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 【训练1】 (1)(2015·湖北卷)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6](2)若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 解析(1)要使函数f (x )有意义,应满足⎩⎨⎧4-|x |≥0,x 2-5x +6x -3>0,∴⎩⎨⎧|x |≤4,x -2>0且x ≠3,则2<x ≤4,且x ≠3. 所以f (x )的定义域为(2,3)∪(3,4].(2)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,则x 2+2ax -a ≥0恒成立.因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案 (1)C (2)[-1,0] 考点二 求函数的解析式【例2】 (1)已知f⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=________;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.解析 (1)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(2)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1, 则2ax +a +b =x -1, ∴⎩⎨⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2. (3)在f (x )=2f⎝ ⎛⎭⎪⎫1x ·x -1中,将x 换成1x ,则1x 换成x , 得f⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,由⎩⎪⎨⎪⎧f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x -1,解得f (x )=23x +13. 答案 (1)lg2x -1(x >1) (2)12x 2-32x +2 (3)23x +13 规律方法 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.【训练2】 (1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________. 解析 (1)令x +1=t ,则x =(t -1)2(t ≥1),代入原式得 f (t )=(t -1)2+2(t -1)=t 2-1, 所以f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1). (3)当x ∈(-1,1)时, 有2f (x )-f (-x )=lg(x +1).① 将x 换成-x ,则-x 换成x , 得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1). 答案 (1)x 2-1(x ≥1) (2)-12x (x +1) (3)23lg(x +1)+13lg(1-x )(-1<x <1) 考点三 分段函数(多维探究) 命题角度一 求分段函数的函数值【例3-1】 (2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A.3B.6C.9D.12解析 根据分段函数的意义,f (-2)=1+log 2(2+2)=1+2=3.又log 212>1 ∴f (log 212)=2(log 212-1)=2log 26=6, 因此f (-2)+f (log 212)=3+6=9. 答案 C命题角度二 求参数的值或取值范围【例3-2】 (1)(2015·山东卷)设函数f (x )=⎩⎨⎧3x -b ,x <1,2x ,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( ) A.1B.78C.34D.12(2)(2014·全国Ⅰ卷)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析 (1)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32时,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫56=f ⎝ ⎛⎭⎪⎫52-b =3⎝ ⎛⎭⎪⎫52-b -b =4,解之得b =78,不合题意舍去.若52-b ≥1,即b ≤32,则252-b =4,解得b =12. (2)当x <1时,e x -1≤2,解得x ≤1+ln 2, 所以x <1.当x ≥1时,x 13≤2,解得x ≤8,所以1≤x ≤8. 综上可知x 的取值范围是(-∞,8]. 答案 (1)D (2)(-∞,8]规律方法 (1)根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒 当分段函数的自变量范围不确定时,应分类讨论.【训练3】 (1)(2015·全国Ⅰ卷)已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( ) A.-74B.-54C.-34D.-14(2)(2017南京、盐城模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是________. 解析 (1)当a ≤1时,f (a )=2a -1-2=-3, 即2a -1=-1,不成立,舍去; 当a >1时,f (a )=-log 2(a +1)=-3, 即log 2(a +1)=3, 解得a =7,此时f (6-a )=f (-1)=2-2-2=-74.故选A. (2)当x ≤0时,由题意得x2+1≥-1, 解之得-4≤x ≤0.当x >0时,由题意得-(x -1)2≥-1,解之得0<x ≤2, 综上f (x )≥-1的解集为{x |-4≤x ≤2}. 答案 (1)A (2){x |-4≤x ≤2}[思想方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.4.分段函数问题要用分类讨论思想分段求解.[易错防范]1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A到B的一个映射,A,B若不是数集,则这个映射便不是函数.3.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.基础巩固题组(建议用时:30分钟)一、选择题1.(2017·绍兴质检)函数f(x)=log2(x2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)解析使函数f(x)有意义需满足x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).答案 D2.(2017·衡水中学月考)设f,g都是由A到A的映射,其对应法则如下:映射f的对应法则则f[g(1)]的值为()A.1B.2C.3D.4解析 由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f [g (1)]=1. 答案 A3.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A.x +1 B.2x -1 C.-x +1D.x +1或-x -1解析 设f (x )=kx +b (k ≠0),又f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2. ∴k 2=1,且kb +b =2,解得k =b =1. 答案 A4.(2017·湖州一模)f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x (x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=() A.-2B.-3C.9D.-9解析 ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. 答案 C5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ) A.y =⎣⎢⎡⎦⎥⎤x 10B.y =⎣⎢⎡⎦⎥⎤x +310 C.y =⎣⎢⎡⎦⎥⎤x +410D.y =⎣⎢⎡⎦⎥⎤x +510 解析 取特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,选B. 答案 B6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A.y =xB.y =lg xC.y =2xD.y =1x解析 函数y =10lg x 的定义域、值域均为(0,+∞),而y =x ,y =2x 的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ,故选D.答案 D7.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是( ) A.12B.14C.-25D.18解析 由题意f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110, ∴-12+a =110,则a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.答案 C8.(2017·铜陵一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 20,则f (x )的解析式可以是( )A.f (x )=x -1xB.f (x )=e x -1C.f (x )=x +4xD.f (x )=tan x解析 对于A 项,当x =1,f (1)=0,此时02≥12不成立.对于B 项,取x =-1,f (-1)=1e -1,此时⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立.在D 项中,f ⎝ ⎛⎭⎪⎫54π=tan 54π=1,此时12≥⎝ ⎛⎭⎪⎫54π2不成立. ∴A ,B ,D 均不正确.选C.事实上,在C 项中,对∀x 0∈R ,y 20=⎝ ⎛⎭⎪⎫x 0+4x 02有y 20-x 20=16x 20+8>0,有y 20≥x 20成立. 答案 C 二、填空题9.(2016·江苏卷)函数y =3-2x -x 2的定义域是________.解析 要使函数有意义,则3-2x -x 2≥0,∴x 2+2x -3≤0,解之得-3≤x ≤1.答案 [-3,1]10.(2017·湖州调研)已知f (x )=⎩⎨⎧x -3,x ≥9,f (f (x +4)),x <9,则f (10)=________;f (7)=________.解析 f (10)=10-3=7;f (7)=f (f (7+4))=f (f (11))=f (11-3)=f (8)=f (f (8+4))=f (f (12))=f (12-3)=f (9)=9-3=6.答案 7 611.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________. 解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x =-log 2x . 答案 f (x )=-log 2x12.(2017·温州调研)已知函数f (x )=⎩⎨⎧log 2x (x >0),x 2+x (x ≤0),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=________,方程f (x )=2的解为________.解析 ∵f (x )=⎩⎨⎧log 2x (x >0),x 2+x (x ≤0),f ⎝ ⎛⎭⎪⎫12=log 212=-1,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (-1)=(-1)2+(-1)=0.当x >0时,由log 2x =2得x =4,当x ≤0时,由x 2+x =2得x =-2(x =+1舍去).答案 0 -2或413.已知函数f (x )=⎩⎨⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则实数a 的取值范围是________.解析 依题意可知⎩⎨⎧a ≥0,(-a )2+2(-a )+a 2-2a ≤0或⎩⎨⎧a <0,(-a )2-2(-a )+a 2+2a ≤0,解得a ∈[-2,2].答案 [-2,2]能力提升题组(建议用时:15分钟)14.(2015·湖北卷)设x ∈R ,定义符号函数sgn x =⎩⎨⎧1,x >0,0,x =0,-1,x <0.则( )A.|x |=x |sgn x |B.|x |=x sgn|x |C.|x |=|x |sgn xD.|x |=x sgn x解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ;当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ;当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x .答案 D15.设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是() A.⎣⎢⎡⎦⎥⎤23,1 B.[0,1]C.⎣⎢⎡⎭⎪⎫23,+∞ D.[1,+∞)解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案 C16.函数f (x )=ln ⎝ ⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析 要使函数f (x )有意义,则⎩⎪⎨⎪⎧1+1x >0,x ≠0,1-x 2≥0⇒⎩⎨⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1].答案 (0,1]17.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min=22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.答案 0 22-318.(2017·台州模拟)已知函数f (x )=⎩⎨⎧x 2-1,x ≤0,x -1,x >0,g (x )=2x -1,则f (g (2))=________,f [g (x )]的值域为________.解析 g (2)=22-1=3,∴f (g (2))=f (3)=2,g (x )的值域为(-1,+∞),∴若-1<g (x )≤0;f [g (x )]=[g (x )]2-1∈[-1,0);若g (x )>0;f [g (x )]=g (x )-1∈(-1,+∞),∴f [g (x )]的值域是[-1,+∞).答案 2 [-1,+∞)。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题4 突破点8 空间几何体表面积或体积的求解

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题4 突破点8 空间几何体表面积或体积的求解

专题四立体几何建知识网络明内在联系[高考点拨]立体几何专题是浙江新高考中当仁不让的热点之一,常以“两小一大”呈现,小题主要考查三视图与空间几何体的体积(特别是与球有关的体积)和空间位置关系及空间角,一大题常考空间位置关系的证明与空间角、距离的探求.本专题主要从“空间几何体表面积或体积的求解”“空间中的平行与垂直关系”“立体几何中的向量方法”三大角度进行典例剖析,引领考生明确考情并提升解题技能.突破点8 空间几何体表面积或体积的求解(对应学生用书第29页)[核心知识提炼]提炼1 求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.提炼2 球与几何体的外接与内切(1)正四面体与球:设正四面体的棱长为a,由正四面体本身的对称性,可知其内切球和外接球的球心相同,则内切球的半径r=612a,外接球的半径R=64a.(2)正方体与球:设正方体ABCD­A1B1C1D1的棱长为a,O为其对称中心,E,F,H,G分别为AD,BC,B1C1,A1D1的中点,J为HF的中点,如图8­1所示.图8­1①正方体的内切球:截面图为正方形EFHG的内切圆,故其内切球的半径为OJ=a 2;②正方体的棱切球:截面图为正方形EFHG的外接圆,故其棱切球的半径为OG=2a 2;③正方体的外接球:截面图为矩形ACC1A1的外接圆,故其外接球的半径为OA1=3a 2.[高考真题回访]回访1 空间几何体的结构及三视图1.(2015·浙江高考)如图8­2,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是( )图8­2A.直线B.抛物线C.椭圆D.双曲线的一支C[因为∠PAB=30°,所以点P的轨迹为以AB为轴线,PA为母线的圆锥面与平面α的交线,且平面α与圆锥的轴线斜交,故点P的轨迹为椭圆.]2.(2014·浙江高考)某几何体的三视图(单位:cm)如图8­3所示,则该几何体的体积是( )图8­3A .72 cm 3B .90 cm 3C .108 cm 3D .138 cm 3B [该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm 3).]3.(2013·浙江高考)已知某几何体的三视图(单位:cm)如图8­4所示,则该几何体的体积是( )图8­4A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 3B [此几何体为一个长方体ABCD ­A 1B 1C 1D 1被截去了一个三棱锥A ­DEF ,如图所示,其中这个长方体的长、宽、高分别为6、3、6,故其体积为6×3×6=108(cm 3).三棱锥的三条棱AE 、AF 、AD 的长分别为4、4、3,故其体积为13×⎝ ⎛⎭⎪⎫12×4×3×4=8(cm 3),所以所求几何体的体积为108-8=100(cm 3).]回访2 几何体的表面积或体积4.(2017·浙江高考)某几何体的三视图如图8­5所示(单位:cm),则该几何体的体积(单位:cm 3)是( )图8­5A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 A [由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体, ∴该几何体的体积V =13×12π×12×3+13×12×2×2×3=π2+1.故选A.]5.(2015·浙江高考)某几何体的三视图如图8­6所示(单位:cm),则该几何体的体积是( )图8­6A .8 cm 3B .12 cm 3C.323cm 3D.403cm 3C [由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).]6.(2014·浙江高考)某几何体的三视图(单位:cm)如图8­7所示,则此几何体的表面积是( )图8­7A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 2D [该几何体如图所示,长方体的长、宽、高分别为6 cm ,4 cm ,3 cm ,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm,5 cm ,所以表面积S =[2×(4×6+4×3)+3×6+3×3]+⎝ ⎛⎭⎪⎫5×3+4×3+2×12×4×3=99+39=138(cm 2).]7.(2016·浙江高考)某几何体的三视图如图8­8所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.图8­880 40 [由三视图还原几何体如图所示,下面长方体的长、宽都是4,高为2;上面正方体的棱长为 2.所以该几何体的表面积为(4×4+2×4+2×4)×2+2×2×4=80(cm 2);体积为4×4×2+23=40(cm 3).]8.(2013·浙江高考)若某几何体的三视图(单位:cm)如图8­9所示,则此几何体的体积等于________cm 3.图8­924 [由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示.三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V 1=12×3×4×5=30(cm 3),小三棱锥的底面与三棱柱的上底面相同,高为3,故其体积V 2=13×12×3×4×3=6(cm 3),所以所求几何体的体积为30-6=24(cm 3).](对应学生用书第31页)热点题型1 几何体的表面积或体积题型分析:解决此类题目,准确转化是前提,套用公式是关键,求解时先根据条件确定几何体的形状,再套用公式求解.【例1】 (1)如图8­10,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图8­10A .17πB .18πC .20πD .28π(2)如图8­11,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) 【导学号:68334098】图8­11A .18+36 5B .54+18 5C .90D .81(1)A (2)B [(1)由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R=2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.(2)由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.] [方法指津]1.求解几何体的表面积及体积的技巧(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.2.根据几何体的三视图求其表面积与体积的三个步骤 (1)根据给出的三视图判断该几何体的形状. (2)由三视图中的大小标示确定该几何体的各个度量. (3)套用相应的面积公式与体积公式计算求解.[变式训练1] (1)某几何体的三视图如图8­12所示,则该几何体的体积为( )图8­12A.133+π3B .5+π2C .5+π3D.133+π2(2)(2017·温州市普通高中4月高考模拟考试12)某几何体的三视图如图8­13所示,则此几何体的体积是________,表面积是________.【导学号:68334099】图8­13(1)D (2)83 6+22+25 [(1)由三视图知该几何体是由一个长方体,一个三棱锥和一个14圆柱组成,故该几何体的体积为V =2×1×2+13×12×1×1×2+14×π×12×2=133+π2.(2)由三视图知,该几何体为四棱锥,其底面是边长为2的正方形,高为2,所以该几何体的体积V =13×22×2=83,表面积S =2×2+12×2×2+12×2×22+2×12×2×5=6+22+2 5.]热点题型2 球与几何体的切、接问题题型分析:与球有关的表面积或体积求解,其核心本质是半径的求解,这也是此类问题求解的主线,考生要时刻谨记.先根据几何体的三视图确定其结构特征与数量特征,然后确定其外接球的球心,进而确定球的半径,最后代入公式求值即可;也可利用球的性质——球面上任意一点对直径所张的角为直角,然后根据几何体的结构特征构造射影定理求解.【例2】 (1)一个几何体的三视图如图8­14所示,其中正视图是正三角形,则该几何体的外接球的表面积为( )图8­14A.8π3B.16π3 C.48π3 D.64π3(2)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) 【导学号:68334100】 A .4π B.9π2 C .6πD.32π3(1)D (2)B [(1)法一 由三视图可知,该几何体是如图所示的三棱锥S ­ ABC ,其中HS 是三棱锥的高,由三视图可知HS =23,HA=HB =HC =2,故H 为△ABC 外接圆的圆心,该圆的半径为2. 由几何体的对称性可知三棱锥S ­ABC 外接球的球心O 在直线HS 上,连接OB .设球的半径为R ,则球心O 到△ABC 外接圆的距离为OH =|SH -OS |=|23-R |,由球的截面性质可得R =OB =OH 2+HB 2=|23-R |2+22,解得R =433,所以所求外接球的表面积为4πR 2=4π×163=64π3.故选D.法二 由三视图可知,该几何体是如图所示的三棱锥S ­ABC ,其中HS 是三棱锥的高,由侧视图可知HS =23,由正视图和侧视图可得HA =HB =HC =2.由几何体的对称性可知三棱锥外接球的球心O 在HS 上,延长SH 交球面于点P ,则SP 就是球的直径,由点A 在球面上可得SA ⊥AP . 又SH ⊥平面ABC ,所以SH ⊥AH . 在Rt △ASH 中,SA =SH 2+AH 2=32+22=4.设球的半径为R ,则SP =2R ,在Rt △SPA 中,由射影定理可得SA 2=SH ×SP ,即42=23×2R ,解得R =433,所以所求外接球的表面积为4πR 2=4π×163=64π3.故选D.(2)由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R .因为△ABC 的内切圆半径为6+8-102=2,所以R ≤2.又2R ≤3,所以R ≤32,所以V max =43π⎝ ⎛⎭⎪⎫323=92π.故选B.] [方法指津]解决球与几何体的切、接问题的关键在于确定球的半径与几何体的度量之间的关系,这就需要灵活利用球的截面性质以及组合体的截面特征来确定.对于旋转体与球的组合体,主要利用它们的轴截面性质建立相关数据之间的关系;而对于多面体,应抓住多面体的结构特征灵活选择过球心的截面,把多面体的相关数据和球的半径在截面图形中体现出来.[变式训练2] (1)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =1,∠BAC =60°,AA 1=2,则该三棱柱的外接球的体积为( )【导学号:68334101】A.40π3B.4030π27C.32030π27D .20π(2)(名师押题)一几何体的三视图如图8­15(网格中每个正方形的边长为1),若这个几何体的顶点都在球O 的表面上,则球O 的表面积是________.图8­15(1)B (2)20π [(1)设△A1B 1C 1的外心为O 1,△ABC 的外心为O 2,连接O 1O 2,O 2B ,OB ,如图所示.由题意可得外接球的球心O 为O 1O 2的中点.在△ABC 中,由余弦定理可得BC 2=AB 2+AC 2-2AB ×AC cos ∠BAC=32+12-2×3×1×cos 60°=7,所以BC =7.由正弦定理可得△ABC 外接圆的直径2r =2O 2B =BCsin 60°=273,所以r =73=213. 而球心O 到截面ABC 的距离d =OO 2=12AA 1=1, 设直三棱柱ABC ­A 1B 1C 1的外接球半径为R ,由球的截面性质可得R 2=d 2+r 2=12+⎝ ⎛⎭⎪⎫2132=103,故R =303,所以该三棱柱的外接球的体积为V =4π3R 3=4030π27.故选B.(2)由三视图知该几何体是一个四棱锥,如图所示,其底面ABCD是长、宽分别为4和2的矩形,高为2,且侧面SDC 与底面ABCD 垂直,且顶点S 在底面上的射影为该侧面上的底面边的中点.由该几何体的结构特征知球心在过底面中心O 且与底面垂直的直线上,同时在过侧面△SDC 的外接圆圆心且与侧面SDC 垂直的直线上.因为△SDC 为直角三角形,所以球心就为底面ABCD 的中心O ,所以外接球的半径为R =12AC =5,故外接球的表面积为4πR 2=20π.]。

2018年高考数学二轮复习教师用书(浙江) 名师寄语 第1点 归纳常考知识构建主干体系含答案

2018年高考数学二轮复习教师用书(浙江) 名师寄语 第1点 归纳常考知识构建主干体系含答案

一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过一轮复习,同学们大都掌握了基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题,而二轮复习承上启下,是知识系统化、条理化,促进灵活运用,提高数学素养的关键时期,为进一步突出重点,攻破难点,提高二轮复习的时效性,建议专题复习时,处理好以下3点:第1点 归纳常考知识,构建主干体系由于二轮复习时间较短,复习中不可能面面俱到,这就需要我们依据《考试大纲》和《考试说明》,结合浙江近几年的高考试题进行主干网络体系的构建,并紧紧抓住高考的“热点”,有针对性地训练.例如:“三角函数”在高考中的主要考点是什么?回顾近三年的高考试题,不难发现,三角函数一般会考两类题:一类题考查解三角形(正弦定理、余弦定理、面积公式),一类题考查三角变换(和(差)角公式、倍角公式、辅助角公式、三角函数的图象与性质).【例1】 (经典高考题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 【导学号:68334000】注:本书所有主观题附规范解答及评分细则[解] (1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C ,2分即2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .4分 可得cos C =12, 因为C 为△ABC 的内角,所以C =π3. 7分 (2)由已知得12ab sin C =332. 又C =π3,所以ab =6. 9分由已知及余弦定理得a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25.13分 所以△ABC 的周长为5+7. 14分【名师点评】 边角互化是利用正、余弦定理解题的有效途径,合理应用定理及其变形可化繁为简,提高运算效率,如本题也可以利用结论“a cos B +b cos A =c ”直接得出cos C =12. 【例2】 已知函数f (x )=(sin 2x +cos 2x )2-2sin 22x .(1)求f (x )的最小正周期;(2)若函数y =g (x )的图象是由y =f (x )的图象先向右平移π8个单位长度,再向上平移1个单位长度得到的,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,求y =g (x )的单调递增区间和最小值.[解题指导] f (x )―――――→三角恒等变换f (x )=A sin(ωx +φ)――→平移变换y =g (x )求g (x )的单调递增区间和最小值.[解] f (x )=(sin 2x +cos 2x )2-2sin 22x=2sin 2x cos 2x +cos 22x -sin 22x=sin 4x +cos 4x=2sin ⎝ ⎛⎭⎪⎫4x +π4. 4分(1)函数f (x )的最小正周期为T =2π4=π2. 6分(2)由题意,知g (x )=2sin ⎣⎢⎡⎦⎥⎤4⎝⎛⎭⎪⎫x -π8+π4+1=2sin ⎝ ⎛⎭⎪⎫4x -π4+1. 8分 令-π2+2k π≤4x -π4≤π2+2k π(k ∈Z ), 解得-π16+k 2π≤x ≤3π16+k 2π(k ∈Z ). 10分当k =0时,得-π16≤x ≤3π16. 故当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,3π16, 12分 显然g (x )的单调递减区间是⎝ ⎛⎦⎥⎤3π16,π4,易知g (x )min =g (0)=0. 14分 【名师点评】 利用和(差)角公式、倍角公式、辅助角公式将含有多个不同的三角函数式转化为y =A sin(ωx +φ)的形式,再利用三角函数的性质求其单调区间、最值等问题.通过上述两例,我们可以发现高考对“三角函数”考什么、如何考等问题,明确地构建出了本部分知识的主干知识体系.总之,对主干知识的确定有两种途径:第一,跟着老师去复习,一般来说,老师对主干知识的把握比较准确;第二,自己多看、多做近几年的高考题,从而感悟高考考什么,怎么考,进而能使自己把握主干知识,从而进行针对性地二轮复习.。

(教师用书)2018年浙江高考数学二轮复习技法强化训练及答案(4份)

(教师用书)2018年浙江高考数学二轮复习技法强化训练及答案(4份)

技法强化训练(一) 函数与方程思想(对应学生用书第159页)题组1 运用函数与方程思想解决数列、不等式等问题1.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 是其前n 项和,若a 1,a 2,a 5成等比数列,则S 8的值为( ) A .16 B .32 C .64D .62C [由题意可知a 22=a 1a 5,即(1+d )2=1³(1+4d ),解得d =2, ∴a n =1+(n -1)³2=2n -1.∴S 8= a 1+a 8 ³82=4³(1+15)=64.]2.若2x +5y ≤2-y +5-x,则有( ) A .x +y ≥0 B .x +y ≤0 C .x -y ≤0D .x -y ≥0B [原不等式可化为2x-5-x≤2-y-5y,构造函数y =2x-5-x,其为R 上的增函数,所以有x ≤-y ,即x +y ≤0.]3.若关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,则k 的取值范围是( ) 【导学号:68334007】A.⎝ ⎛⎭⎪⎫-34,0B.⎝ ⎛⎦⎥⎤-34,0C.⎝ ⎛⎭⎪⎫0,34 D.⎣⎢⎡⎭⎪⎫0,34 B [构造函数f (x )=x 2+2kx -1,因为关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,所以⎩⎪⎨⎪⎧f -1 ≥0,f 0 <0,f 2 >0,即⎩⎪⎨⎪⎧-2k ≥0,-1<0,4k +3>0,所以-34<k ≤0,所以k 的取值范围是⎝ ⎛⎦⎥⎤-34,0.]4.已知数列{a n }满足a 1=60,a n +1-a n =2n (n ∈N *),则a n n的最小值为________.292[由a n +1-a n =2n ,得 a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2(n -1)+2(n -2)+…+2+60 =n 2-n +60.∴a n n =n 2-n +60n =n +60n-1.令f (x )=x +60x-1,易知f (x )在(0,215)上单调递减,在(215,+∞)上单调递增.又n ∈N *,当n =7时,a 77=7+607-1=1027,当n =8时,a 88=8+608-1=292.又292<1027,故a n n 的最小值为292.] 5.已知函数f (x )=x ln x +a ,g (x )=12x 2+ax ,其中a ≥0.(1)若曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )也相切,求a 的值; (2)证明:x >1时,f (x )+12<g (x )恒成立.【导学号:68334008】[解] (1)由f (x )=x ln x +a ,得f (1)=a ,f ′(x )=ln x +1,所以f ′(1)=1. 1分所以曲线y =f (x )在点(1,f (1))处的切线为y =x +a -1.因为直线y =x +a -1与曲线y =g (x )也相切,所以两方程联立消元得12x 2+ax =a +x -1,即12x 2+(a -1)x +1-a =0,3分所以Δ=(a -1)2-4³12³(1-a )=0,得a 2=1.因为a ≥0,所以a =1.4分(2)证明:x >1时,f (x )+12<g (x )恒成立,等价于12x 2+ax -x ln x -a -12>0恒成立.令h (x )=12x 2+ax -x ln x -a -12,则h (1)=0且h ′(x )=x +a -ln x -1.6分令φ(x )=x -ln x -1,则φ(1)=0且φ′(x )=1-1x =x -1x,8分所以x >1时,φ′(x )>0,φ(x )单调递增, 所以φ(x )>φ(1)=0.又因为a ≥0,所以h ′(x )>0,h (x )单调递增,所以h (x )>h (1)=0,所以x >1时,12x 2+ax -x ln x -a -12>0恒成立,11分 即x >1时,f (x )+12<g (x )恒成立.12分题组2 利用函数与方程思想解决几何问题6.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16xC [由抛物线的定义可知MF =x M +3p 4=5,∴x M =5-3p 4,y 2M =15p -9p24,故以MF 为直径的圆的方程为(x -x M )(x -x F )+(y -y M )(y -y F )=0, 即⎝ ⎛⎭⎪⎫0-5+3p 4⎝ ⎛⎭⎪⎫0-3p 4+(2-y M )(2-0)=0.∴y M =2+15p 8-9p 232=2+y 2M 8⇒y M =4,p =43或163.∴C 的方程为y 2=4x 或y 2=16x .]7.(2017²宁波市镇海中学高三模拟考试)在直三棱柱A 1B 1C 1­ABC 中,∠BAC =π2,AB =AC =AA 1=1,已知G 和E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为( )【导学号:68334009】A.⎣⎢⎡⎭⎪⎫55,1 B.⎣⎢⎡⎦⎥⎤55,1 C.⎝⎛⎭⎪⎫255,1 D.⎣⎢⎡⎭⎪⎫255,1 A [建立如图所示的空间直角坐标系,则A (0,0,0),E ⎝ ⎛⎭⎪⎫0,1,12,G ⎝ ⎛⎭⎪⎫12,0,1,设F (x,0,0),D (0,y,0),则GD →=⎝ ⎛⎭⎪⎫-12,y ,-1,EF →=⎝ ⎛⎭⎪⎫x ,-1,-12,x ,y ∈(0,1).由于GD ⊥EF ,所以x +2y -1=0,x =1-2y ∈(0,1),解得0<y <12.DF =x 2+y 2=5y 2-4y +1=5⎝ ⎛⎭⎪⎫y -252+15,当且仅当y =25时,线段DF 长度的最小值是55,当y =0时,线段DF 的最大值是1,由于不包括端点,故y =0不能取,所以线段DF 的长度的取值范围是⎣⎢⎡⎭⎪⎫55,1,故选A.] 8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,并且经过定点P ⎝ ⎛⎭⎪⎫3,12.(1)求椭圆E 的方程;(2)问:是否存在直线y =-x +m ,使直线与椭圆交于A ,B 两点,且满足OA →²OB →=125?若存在,求出m 的值;若不存在,请说明理由. 【导学号:68334010】[解] (1)由e =c a =32且3a 2+14b2=1,c 2=a 2-b 2, 解得a 2=4,b 2=1,即椭圆E 的方程为x 24+y 2=1.4分(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1,y =-x +m⇒x 2+4(m -x )2-4=0⇒5x 2-8mx +4m 2-4=0.(*) 所以x 1+x 2=8m 5,x 1x 2=4m 2-45,8分y 1y 2=(m -x 1)(m -x 2)=m 2-m (x 1+x 2)+x 1x 2=m 2-85m 2+4m 2-45=m 2-45,由OA →²OB →=125得(x 1,y 1)²(x 2,y 2)=125,即x 1x 2+y 1y 2=125,4m 2-45+m 2-45=125,m =±2.又方程(*)要有两个不等实根,所以Δ=(-8m )2-4³5(4m 2-4)>0,解得-5<m <5,所以m =±2.12分9.如图1,直三棱柱ABC ­A ′B ′C ′中,AC =BC =5,AA ′=AB =6,D ,E 分别为AB 和BB ′上的点,且AD DB =BE EB ′=λ.图1(1)求证:当λ=1时,A ′B ⊥CE ;(2)当λ为何值时,三棱锥A ′­CDE 的体积最小,并求出最小体积. [解] (1)证明:∵λ=1,∴D ,E 分别为AB 和BB ′的中点. 1分又AA ′=AB ,且三棱柱ABC ­A ′B ′C ′为直三棱柱, ∴平行四边形ABB ′A ′为正方形,∴DE ⊥A ′B . 2分 ∵AC =BC ,D 为AB 的中点,∴CD ⊥AB . 3分 ∵三棱柱ABC ­A ′B ′C ′为直三棱柱, ∴CD ⊥平面ABB ′A ′,∴CD ⊥A ′B , 4分 又CD ∩DE =D ,∴A ′B ⊥平面CDE . ∵CE ⊂平面CDE ,∴A ′B ⊥CE .6分(2)设BE =x ,则AD =x ,DB =6-x ,B ′E =6-x .由已知可得C 到平面A ′DE 的距离即为△ABC 的边AB 所对应的高h =AC 2-⎝ ⎛⎭⎪⎫AB 22=4, 8分 ∴V A ′­CDE =V C ­A ′DE =13(S 四边形ABB ′A -S △AA ′D -S △DBE -S △A ′B ′E )²h=13⎣⎢⎡⎦⎥⎤36-3x -12 6-x x -3 6-x ²h =23(x 2-6x +36)=23[(x -3)2+27](0<x <6),14分 ∴当x =3,即λ=1时,V A ′­CDE 有最小值18. 15分技法强化训练(二) 数形结合思想(对应学生用书第160页)题组1 利用数形结合思想解决方程的根或函数零点问题 1.方程|x 2-2x |=a 2+1(a >0)的解的个数是( )【导学号:68334011】A .1B .2C .3D .4B [∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点.]2.已知函数f (x )=|log 2|x ||-⎝ ⎛⎭⎪⎫12x,则下列结论正确的是( )A .f (x )有三个零点,且所有零点之积大于-1B .f (x )有三个零点,且所有零点之积小于-1C .f (x )有四个零点,且所有零点之积大于1D .f (x )有四个零点,且所有零点之积小于1=⎝ ⎛⎭⎪⎫12x的图象, A [在同一坐标系中分别作出f 1(x )=|log 2|x ||与f 2(x )如图所示,由图象知f 1(x )与f 2(x )有三个交点,设三个交点的横坐标从左到右分别是x 1,x 2,x 3,因为f ⎝ ⎛⎭⎪⎫-12<0,f ⎝ ⎛⎭⎪⎫-14>0,所以-12<x 1<-14,同理12<x 2<1,1<x 3<2,即-1<x 1x 2x 3<-18,即所有零点之积大于-1.]3.设函数f (x )的定义域为R ,f (-x )=f (x ),f (x )=f (2-x ),当x ∈[0,1]时,f (x )=x 3,则函数g (x )=|cos(πx )|-f (x )在⎣⎢⎡⎦⎥⎤-12,52上的所有零点的和为( )A .7B .6C .3D .2A [函数g (x )=|cos(πx )|-f (x )在⎣⎢⎡⎦⎥⎤-12,52上的零点为函数h (x )=|cos(πx )|与函数f (x )的交点的横坐标.因为f (-x )=f (x ),f (x )=f (2-x ),所以函数f (x )为关于x =1对称的偶函数,又因为当x ∈[0,1]时,f (x )=x 3,则在平面直角坐标系内画出函数h (x )=|cos(πx )|与函数f (x )在⎣⎢⎡⎦⎥⎤-12,52内的图象,如图所示,由图易得两函数图象共有7个交点,不妨设从左到右依次为x 1,x 2,x 3,x 4,x 5,x 6,x 7,则由图易得x 1+x 2=0,x 3+x 5=2,x 4=1,x 6+x 7=4,所以x 1+x 2+x 3+x 4+x 5+x 6+x 7=7,即函数g (x )=|cos(πx )|-f (x )在⎣⎢⎡⎦⎥⎤-12,52上的零点的和为7,故选A.]4.若函数f (x )=a +sin x 在[π,2π]上有且只有一个零点,则实数a =________.【导学号:68334012】1 [函数f (x )=a +sin x 在[π,2π]上有且只有一个零点,即方程a +sin x =0在[π,2π]上只有一解,即函数y =-a 与y =sin x ,x∈[π,2π]的图象只有一个交点,由图象可得a =1.]5.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________.(-∞,0)∪(1,+∞) [函数g (x )有两个零点,即方程f (x )-b =0有两个不等实根,则函数y =f (x )和y =b 的图象有两个公共点.①若a <0,则当x ≤a 时,f (x )=x 3,函数单调递增;当x >a 时,f (x )=x 2,函数先单调递减后单调递增,f (x )的图象如图(1)实线部分所示,其与直线y =b 可能有两个公共点.②若0≤a ≤1,则a 3≤a 2,函数f (x )在R 上单调递增,f (x )的图象如图(2)实线部分所示,其与直线y =b 至多有一个公共点.③若a >1,则a 3>a 2,函数f (x )在R 上不单调,f (x )的图象如图(3)实线部分所示,其与直线y =b 可能有两个公共点. 综上,a <0或a >1.]题组2 利用数形结合思想求解不等式或参数范围6.若不等式log a x >sin 2x (a >0,a ≠1)对任意x ∈⎝ ⎛⎭⎪⎫0,π4都成立,则a 的取值范围为( )A.⎝⎛⎭⎪⎫0,π4B.⎝⎛⎭⎪⎫π4,1C.⎝⎛⎭⎪⎫π4,π2D .(0,1)A [记y1=log a x (a >0,a ≠1),y 2=sin 2x ,原不等式即为y 1>y 2,由题意作出两个函数的图象,如图所示,知当y 1=log a x 的图象过点A ⎝ ⎛⎭⎪⎫π4,1时,a =π4,所以当π4<a <1时,对任意x ∈⎝⎛⎭⎪⎫0,π4都有y 1>y 2.]7.函数f (x )是定义域为{x |x ≠0}的奇函数,且f (1)=1,f ′(x )为f (x )的导函数,当x >0时,f (x )+xf ′(x )>1x,则不等式xf (x )>1+ln|x |的解集是( )【导学号:68334013】A .(-∞,-1)∪(1,+∞)B .(-∞,-1)C .(1,+∞)D .(-1,1)A [令g (x )=xf (x )-ln|x |,则g (x )是偶函数, 且当x >0时,g ′(x )=f (x )+xf ′(x )-1x>0,∴g (x )在(0,+∞)上单调递增.故不等式xf (x )>1+ln|x |⇔g (|x |)>g (1), ∴|x |>1,解得x >1或x <-1.故选A.]8.若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.⎝ ⎛⎦⎥⎤-∞,12 [作出y =|x -2a |和y =12x +a -1的简图,依题意知应有2a ≤2-2a ,故a ≤12.]9.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是________.(10,12) [作出f (x )的大致图象.由图象知,要使f (a )=f (b )=f (c ),不妨设a <b <c , 则-lg a =lg b =-12c +6.∴lg a +lg b =0,∴ab =1, ∴abc =c .由图知10<c <12,∴abc ∈(10,12).]10.(2017²杭州市高三年级第二学期教学质量检测)设函数f (x )=⎩⎪⎨⎪⎧2cos π2x ,|x |≤1,x 2-1,|x |>1,若|f (x )+f (x +l )-2|+|f (x )-f (x +l )|≥2(l >0)对任意实数x 都成立,则l 的最小值为________. 【导学号:68334014】23 [作出函数f (x )的图象如图,要使原不等式对任意实数x 都成立,由不等式|a |+|b |≥|a ±b |得|f (x )+f (x +l )-2|+|f (x )-f (x +l )|≥|[f (x )+f (x +l )-2]±[f (x )-f (x +l )]|≥2,化简得⎩⎪⎨⎪⎧|2f x -2|≥2,|2f x +l -2|≥2,即⎩⎪⎨⎪⎧f x ≥2,f x +l ≥2对任意实数恒成立,当x =-3时,f (-3+l )≥2,l >0,则l -3≥3,l ≥23,故l 的最小值是2 3.]题组3 利用数形结合解决解析几何问题11.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7 B .6 C .5D .4B [根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.]12.(2017²杭州高级中学高三最后一模)已知双曲线C :x 2a 2-y 2b2=1的右顶点为A ,O 为坐标原点,以A为圆心的圆与双曲线C 的某一条渐近线交于两点P ,Q ,若∠PAQ =π3且OQ →=5OP →,则双曲线C 的离心率为( )【导学号:68334015】A.213 B .2C.72D .3A [由图知△APQ 是等边三角形,设PQ 的中点为H ,圆的半径为r ,则AH ⊥PQ ,AH =32r ,PQ =r ,由题易知,点P ,Q 在原点O 的同侧,因为OQ →=5OP →,所以OP =14r ,PH =12r ,即OH =14r +12r =34r ,所以tan ∠HOA =AH OH =233,即b a =233,b 2a 2=c 2-a 2a 2=43,从而得e =c a =213,故选A.]13.已知P 是直线l :3x +4y +8=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,则四边形PACB 面积的最小值为________. 22 [从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC =12|PA |²|AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直于直线l 时,S 四边形PACB 应有唯一的最小值, 此时|PC |=|3³1+4³1+8|32+42=3, 从而|PA |=|PC |2-|AC |2=2 2.所以(S 四边形PACB )min =2³12³|PA |³|AC |=2 2.]14.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B . (1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由. 【导学号:68334016】[解] (1)圆C 1的方程x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0). (2)设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),M (x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22.由题意可知直线l 的斜率必存在,设直线l 的方程为y =tx . 将上述方程代入圆C 1的方程,化简得(1+t 2)x 2-6x +5=0.5分由题意,可得Δ=36-20(1+t 2)>0(*),x 1+x 2=61+t 2,所以x 0=31+t 2,代入直线l 的方程,得y 0=3t1+t2. 6分因为x 20+y 20=9 1+t 2 2+9t 2 1+t 2 2=9 1+t 21+t 2 2=91+t 2=3x 0,所以⎝⎛⎭⎪⎫x 0-322+y 20=94. 由(*)解得t 2<45,又t 2≥0,所以53<x 0≤3.所以线段AB 的中点M 的轨迹C 的方程为⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3. 8分图,D ⎝ ⎛⎭⎪⎫53,253,(3)由(2)知,曲线C 是在区间⎝ ⎛⎦⎥⎤53,3上的一段圆弧.如E 53,-253,F (3,0),直线L 过定点G (4,0).11分 联立直线L 的方程与曲线C 的方程,消去y 整理得(1+k 2)x 2-(3+8k 2)x +16k 2=0.令判别式Δ=0,解得k =±34,由求根公式解得交点的横坐标为x H ,I =125∈⎝ ⎛⎦⎥⎤53,3.由图可知:要使直线L 与曲线C 只有一个交点,则k ∈[k DG ,k EG ]∪{k GH ,k GI },即k ∈⎣⎢⎡⎦⎥⎤-257,257∪⎩⎨⎧⎭⎬⎫-34,34. 15分技法强化训练(三) 分类讨论思想(对应学生用书第161页)题组1 由概念、法则、公式引起的分类讨论1.已知数列{a n }的前n 项和S n =P n-1(P 是常数),则数列{a n }是( )【导学号:68334017】A .等差数列B .等比数列C .等差数列或等比数列D .以上都不对D [∵S n =P n-1,∴a 1=P -1,a n =S n -S n -1=(P -1)Pn -1(n ≥2).当P ≠1且P ≠0时,{a n }是等比数列; 当P =1时,{a n }是等差数列;当P =0时,a 1=-1,a n =0(n ≥2),此时{a n }既不是等差数列也不是等比数列.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+ax ,x ≤1,2ax -5,x >1.若存在x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是( ) 【导学号:68334018】A .(-∞,2)B .(-∞,4)C .[2,4]D .(2,+∞)B [当-a-2<1,即a <2时,显然满足条件;当a ≥2时,由-1+a >2a -5得2≤a <4, 综上可知a <4.]3.已知函数f (x )的定义域为(-∞,+∞),f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图1所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )图1A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)A [由导函数图象知,当x <0时,f ′(x )>0, 即f (x )在(-∞,0)上为增函数,当x >0时,f ′(x )<0,即f (x )在(0,+∞)上为减函数,又不等式f (x 2-6)>1等价于f (x 2-6)>f (-2)或f (x 2-6)>f (3),故-2<x 2-6≤0或0≤x 2-6<3,解得x ∈(-3,-2)∪(2,3).]4.已知实数m 是2,8的等比中项,则曲线x 2-y 2m=1的离心率为( )A. 2B.32C. 5D.5或32D [由题意可知,m 2=2³8=16,∴m =±4. (1)当m =4时,曲线为双曲线x 2-y 24=1.此时离心率e = 5.(2)当m =-4时,曲线为椭圆x 2+y 24=1.此时离心率e =32.] 5.设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,3,…),则q 的取值范围是________. (-1,0)∪(0,+∞) [因为{a n }是等比数列,S n >0,可得a 1=S 1>0,q ≠0. 当q =1时,S n =na 1>0;当q ≠1时,S n =a 1 1-q n1-q>0,即1-q n1-q >0(n ∈N *),则有⎩⎪⎨⎪⎧1-q >0,1-q n>0 ①或⎩⎪⎨⎪⎧1-q <0,1-q n<0,②由①得-1<q <1,由②得q >1.故q 的取值范围是(-1,0)∪(0,+∞).]6.若x >0且x ≠1,则函数y =lg x +log x 10的值域为________. (-∞,-2]∪[2,+∞) [当x >1时,y =lg x +1lg x ≥2lg x ²1lg x=2,当且仅当lg x =1,即x =10时等号成立;当0<x <1时,y =lg x +1lg x =-⎣⎢⎡⎦⎥⎤ -lg x +⎝ ⎛⎭⎪⎫-1lg x ≤-2-lg x ²1 -lg x =-2,当且仅当lg x =1lg x ,即x =110时等号成立.∴y ∈(-∞,-2]∪[2,+∞).]题组2 由参数变化引起的分类讨论7.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-32,-1B.⎝⎛⎦⎥⎤-∞,-32C .(-∞,-1]D.⎝ ⎛⎭⎪⎫-32,+∞C [因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②得a ≤-1.]8.已知不等式组⎩⎪⎨⎪⎧x +y ≤1,x -y ≥-1y ≥0,所表示的平面区域为D ,若直线y =kx -3与平面区域D 有公共点,则k 的取值范围为( ) 【导学号:68334020】 A .[-3,3]B.⎝ ⎛⎦⎥⎤-∞,-13∪⎣⎢⎡⎭⎪⎫13,+∞C .(-∞,-3]∪[3,+∞)D.⎣⎢⎡⎦⎥⎤-13,13 C [满足不等式组的平面区域如图中阴影部分所示.∵y =kx -3过定点(0,-3),∴当y =kx -3过点C (1,0)时,k =3;当y =kx -3过点B (-1,0)时,k =-3.∴k ≤-3或k ≥3时,直线y =kx -3与平面区域D 有公共点,故选C.] 9.已知函数f (x )=(a +1)ln x +ax 2+1,试讨论函数f (x )的单调性. [解] 由题意知f (x )的定义域为(0,+∞),1分 f ′(x )=a +1x +2ax =2ax 2+a +1x.2分 ①当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. 4分 ②当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减. 6分 ③当-1<a <0时,令f ′(x )=0,解得x =-a +12a, 7分则当x ∈⎝⎛⎭⎪⎫0,-a +12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎪⎫-a +12a ,+∞时,f ′(x )<0. 故f (x )在⎝⎛⎭⎪⎫0,-a +12a 上单调递增, 在⎝⎛⎭⎪⎫-a +12a ,+∞上单调递减.10分综上,当a ≥0时,f (x )在(0,+∞)上单调递增; 当a ≤-1时,f (x )在(0,+∞)上单调递减; 当-1<a <0时,f (x )在⎝⎛⎭⎪⎫0,-a +12a 上单调递增,在⎝⎛⎭⎪⎫-a +12a ,+∞上单调递减.题组3 根据图形位置或形状分类讨论10.已知中心在坐标原点,焦点在坐标轴上的双曲线的渐近线方程为y =±34x ,则双曲线的离心率为( ) A.54B.53C.54或53D.35或45C [若双曲线的焦点在x 轴上,则b a =34,e =ca=1+⎝ ⎛⎭⎪⎫b a 2=54;若双曲线的焦点在y 轴上,则b a =43,e =c a=1+⎝ ⎛⎭⎪⎫b a 2=53,故选C.] 11.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为________.【导学号:68334021】43或833[若侧面矩形的长为6,宽为4,则V =S 底³h =12³2³2³sin 60°³4=4 3.若侧面矩形的长为4,宽为6,则V =S 底³h =12³43³43³sin 60°³6=833.] 12.已知中心在原点O ,左焦点为F 1(-1,0)的椭圆C 的左顶点为A ,上顶点为B ,F 1到直线AB 的距离为77|OB |.图2(1)求椭圆C 的方程;(2)若椭圆C 1的方程为:x 2m 2+y 2n 2=1(m >n >0),椭圆C 2的方程为:x 2m 2+y 2n2=λ(λ>0,且λ≠1),则称椭圆C 2是椭圆C 1的λ倍相似椭圆.如图2,已知C 2是椭圆C 的3倍相似椭圆,若椭圆C 的任意一条切线l 交椭圆C 2于两点M ,N ,试求弦长|MN |的取值范围. 【导学号:68334022】[解] (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),∴直线AB 的方程为x -a +yb=1,∴F 1(-1,0)到直线AB 的距离d =|b -ab |a 2+b 2=77b ,2分a 2+b 2=7(a -1)2,又b 2=a 2-1,解得a =2,b =3, 3分 故椭圆C 的方程为x 24+y 23=1.4分(2)椭圆C 的3倍相似椭圆C 2的方程为x 212+y 29=1,5分①若切线l 垂直于x 轴,则其方程为x =±2,易求得|MN |=2 6. 6分②若切线l 不垂直于x 轴,可设其方程y =kx +b , 将y =kx +b 代入椭圆C 的方程, 得(3+4k 2)x 2+8kbx +4b 2-12=0,7分∴Δ=(8kb )2-4(3+4k 2)(4b 2-12)=48(4k 2-3-b 2)=0,即b 2=4k 2+3,(*)8分记M ,N 两点的坐标分别为(x 1,y 1),(x 2,y 2).将y =kx +b 代入椭圆C 2的方程,得(3+4k 2)x 2+8kbx +4b 2-36=0, 9分 此时x 1+x 2=-8kb 3+4k ,x 1x 2=4b 2-363+4k ,|x 1-x 2|=43 12k 2+9-b 23+4k , 10分∴|MN |=1+k 2³43 12k 2+9-b 23+4k2=461+k23+4k2=261+13+4k2. ∵3+4k 2≥3,∴1<1+13+4k 2≤43, 即26<261+13+4k2≤4 2. 综合①②得:弦长|MN |的取值范围为[26,42]. 15分技法强化训练(四) 转化与化归思想(对应学生用书第162页)题组1 正与反的相互转化1.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.15B.35 C.710D.910D [甲或乙被录用的对立面是甲、乙均不被录用,故所求事件的概率为1-110=910.]2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围为________. 【导学号:68334023】⎝ ⎛⎭⎪⎫-3,32 [如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f -1 ≤0,f 1 ≤0⇒⎩⎪⎨⎪⎧p ≤-12或p ≥1,p ≤-3或p ≥32⇒p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.故实数p 的取值范围为⎝⎛⎭⎪⎫-3,32.]3.若椭圆x 22+y 2=a 2(a >0)与连接两点A (1,2),B (3,4)的线段没有公共点,则实数a 的取值范围为________.⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭⎪⎫822,+∞ [易知线段AB 的方程为y =x +1,x ∈[1,3],由⎩⎪⎨⎪⎧y =x +1,x 22+y 2=a 2,得a 2=32x 2+2x +1,x ∈[1,3],∴92≤a 2≤412.又a >0, ∴322≤a ≤822. 故当椭圆与线段AB 没有公共点时,实数a 的取值范围为⎝ ⎛⎭⎪⎫0,322∪⎝ ⎛⎭⎪⎫822,+∞.]4.已知点A (1,1)是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2是椭圆的两焦点,且满足|AF 1|+|AF 2|=4.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,当|AB |最大时,求证:A ,B 两点关于原点O 不对称.[解] (1)由椭圆定义,知2a =4,所以a =2.所以x 24+y 2b=1.2分 把A (1,1)代入,得14+1b 2=1,得b 2=43,所以椭圆方程为x 24+y 243=1.4分所以c 2=a 2-b 2=4-43=83,即c =263.故两焦点坐标为⎝ ⎛⎭⎪⎫-263,0,⎝ ⎛⎭⎪⎫263,0.6分(2)反证法:假设A ,B 两点关于原点O 对称,则B 点坐标为(-1,-1),7分此时|AB |=22,而当点B 取椭圆上一点M (-2,0)时,则|AM |=10,所以|AM |>|AB |. 从而知|AB |不是最大,这与|AB |最大矛盾,所以命题成立. 15分题组2 主与次的相互转化5.设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为________. 【导学号:68334024】 (-∞,-1]∪[0,+∞) [∵f (x )是R 上的增函数, ∴1-ax -x 2≤2-a ,a ∈[-1,1].①①式可化为(x -1)a +x 2+1≥0,对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1,则⎩⎪⎨⎪⎧g -1 =x 2-x +2≥0,g 1 =x 2+x ≥0,解得x ≥0或x ≤-1.即实数x 的取值范围是(-∞,-1]∪[0,+∞).]6.已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.⎝ ⎛⎭⎪⎫-23,1 [由题意,知g (x )=3x 2-ax +3a -5, 令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1. 对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ 1 <0,φ -1 <0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1.故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0.] 7.对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是________. (-∞,-1)∪(3,+∞) [设f (p )=(x -1)p +x 2-4x +3, 则当x =1时,f (p )=0,所以x ≠1.f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f 0 >0,f 4 >0,即⎩⎪⎨⎪⎧x -3 x -1 >0,x 2-1>0,解得x >3或x <-1.]8.已知函数f (x )=13x 3+⎝ ⎛⎭⎪⎫a 2-43x 2+⎝ ⎛⎭⎪⎫43-23a x (0<a <1,x ∈R ).若对于任意的三个实数x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,求实数a 的取值范围.【导学号:68334025】[解] 因为f ′(x )=x 2+⎝ ⎛⎭⎪⎫a -83x +⎝ ⎛⎭⎪⎫43-23a =⎝ ⎛⎭⎪⎫x -23(x +a -2),2分 所以令f ′(x )=0,解得x 1=23,x 2=2-a .3分由0<a <1,知1<2-a <2.所以令f ′(x )>0,得x <23或x >2-a ;4分令f ′(x )<0,得23<x <2-a ,所以函数f (x )在(1,2-a )上单调递减,在(2-a,2)上单调递增.5分所以函数f (x )在[1,2]上的最小值为f (2-a )=a6(2-a )2,最大值为max{f (1),f (2)}=max ⎩⎨⎧⎭⎬⎫13-a 6,23a .6分 因为当0<a ≤25时,13-a 6≥23a ;7分 当25<a <1时,23a >13-a6,8分由对任意x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,得2f (x )min >f (x )max (x ∈[1,2]). 所以当0<a ≤25时,必有2³a 6(2-a )2>13-a 6,12分结合0<a ≤25可解得1-22<a ≤25;当25<a <1时,必有2³a 6(2-a )2>23a ,结合25<a <1可解得25<a <2- 2.综上,知所求实数a 的取值范围是1-22<a <2- 2. 15分。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质 Word版含答

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题6 突破点14 函数的图象和性质 Word版含答

专题六函数与导数建知识网络明内在联系[高考点拨]函数与导数专题是历年浙江高考的“常青树”,在浙江新高考中常以“两小一大”的形式呈现,其中两小题中的一小题难度偏低,另一小题与一大题常在选择题与解答题的压轴题的位置呈现,命题角度多样,形式多变,能充分体现学以致用的考查目的,深受命题人的喜爱.结合典型考题的研究,本专题将从“函数的图象和性质”“函数与方程”“导数的应用”三大方面着手分析,引领考生高效备考.突破点14 函数的图象和性质(对应学生用书第52页)[核心知识提炼]提炼1函数的奇偶性(1)若函数y=f(x)为奇(偶)函数,则f(-x)=-f(x)(f(-x)=f(x)).(2)奇函数y=f(x)若在x=0处有意义,则必有f(0)=0.(3)判断函数的奇偶性需注意:一是判断定义域是否关于原点对称;二是若所给函数的解析式较为复杂,应先化简;三是判断f(-x)=-f(x),还是f(-x)=f(x),有时需用其等价形式f(-x)±f(x)=0来判断.(4)奇函数的图象关于原点成中心对称,偶函数的图象关于y轴对称.(5)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.提炼2 函数的周期性(1)若函数y =f (x )满足f (a +x )=f (x -a )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(2)若奇函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以4|a |为周期的周期性函数.(3)若偶函数y =f (x )满足f (a +x )=f (a -x )(a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(4)若f (a +x )=-f (x )⎝⎛⎭⎪⎫或f a +x =1f x (a ≠0),则函数y =f (x )是以2|a |为周期的周期性函数.(5)若y =f (x )的图象关于直线x =a ,x =b (a ≠b )对称,则函数y =f (x )是以2|b -a |为周期的周期性函数. 提炼3 函数的图象(1)由解析式确定函数图象.此类问题往往需要化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.(2)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|等的相互关系.(3)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.[高考真题回访]回访1 函数的性质1.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关B [法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关.故选B.]2.(2015·浙江高考)存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1|D [取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x =0,π,可得f (0)=0,π2+π,这与函数的定义矛盾,所以选项B 错误; 取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾,所以选项C 错误;取f (x )=x +1,则对任意x ∈R 都有f (x 2+2x )=x 2+2x +1=|x +1|,故选项D 正确. 综上可知,本题选D.]3.(2014·浙江高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.2 [若a >0,则f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a = 2.若a ≤0,则f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.0 22-3 [∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=1+2-3=0. 当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0. ∴f (x )的最小值为22-3.] 回访2 函数的图象5.(2017·浙江高考)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )图14­1D [观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A 、C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.故选D.]6.(2015·浙江高考)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )D [函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D.]7.(2014·浙江高考)在同一直角坐标系中,函数f (x )=x a(x ≥0),g (x )=log a x 的图象可能是( )D [法一:分a >1,0<a <1两种情形讨论.当a >1时,y =x a与y =log a x 均为增函数,但y =x a递增较快,排除C ;当0<a <1时,y =x a为增函数,y =log a x 为减函数,排除A ,由于y =x a递增较慢,所以选D. 法二:幂函数f (x )=x a的图象不过(0,1)点,排除A ;B 项中由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a的图象应是增长越来越慢的变化趋势,故B 错,D 对;C 项中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a的图象应是增长越来越快的变化趋势,故C 错.](对应学生用书第54页)热点题型1 函数图象的判断与应用题型分析:函数的图象是近几年高考的热点内容,主要有函数图象的判断和函数图象的应用两种题型.【例1】 (1)函数y =2x 2-e |x |在[-2,2]的图象大致为()(2)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1mx i =( )A .0B .mC .2mD .4m(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B. 设g (x )=2x 2-e x ,则g ′(x )=4x -e x. 又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D. (2)∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.] [方法指津]函数图象的判断方法1.根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置. 2.根据函数的单调性,判断图象的变化趋势. 3.根据函数的奇偶性,判断图象的对称性. 4.根据函数的周期性,判断图象的循环往复. 5.取特殊值代入,进行检验.[变式训练1] (1)函数f (x )=|x |+ax(其中a ∈R )的图象不可能是()图14­2(2)如图14­1,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}(1)C (2)C [(1)当a =0时,f (x )=|x |,故A 可能;由题意得f (x )=⎩⎪⎨⎪⎧x +ax,x >0,-x +ax ,x <0,则当x >0时,f ′(x )=1-a x 2=x 2-a x 2,当x <0时,f ′(x )=-1-a x 2=-x 2-ax 2,若a >0,易知当x >0,0<x <a 时,f (x )为减函数,x >a 时,f (x )为增函数,x <0时,f (x )为减函数,故B 可能;若a <0,易知x <0,--a <x <0时,f (x )为增函数,x <--a 时,f (x )为减函数,x >0时,f (x )为增函数,故D 可能,故选C.(2)令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.]热点题型2 函数性质的综合应用题型分析:函数性质的综合应用是高考的热点内容,解决此类问题时,性质的判断是关键,应用是难点.【例2】 (1)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝⎛⎭⎪⎫-∞,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫-13,13 D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞ (2)设奇函数y =f (x )(x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎢⎡⎦⎥⎤0,12时,f (x )=-x 2,则f (3)+f ⎝ ⎛⎭⎪⎫-32的值等于________. 【导学号:68334135】(1)A (2)-14 [(1)法一:∵f (-x )=ln(1+|-x |)-11+-x 2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔13<x <1.故选A. 法二:令x =0,此时f (x )=f (0)=-1<0,f (2x -1) =f (-1)=ln 2-12=ln 2-ln e>0,∴x =0不满足f (x )>f (2x -1),故C 错误.令x =2,此时f (x )=f (2)=ln 3-15,f (2x -1)=f (3)=ln 4-110.∵f (2)-f (3)=ln 3-ln4-110,其中ln 3<ln 4,∴ln 3-ln 4-110<0,∴f (2)-f (3)<0,即f (2)<f (3),∴x =2不满足f (x )>f (2x -1), 故B ,D 错误.故选A.(2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t )=f (1+t ),即f (t +1)=-f (t ),进而得到f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫12=-14.所以f (3)+f ⎝ ⎛⎭⎪⎫-32=0+⎝ ⎛⎭⎪⎫-14=-14. [方法指津]函数性质的综合应用类型1.函数单调性与奇偶性的综合.注意奇、偶函数图象的对称性,以及奇、偶函数在关于原点对称的区间上单调性的关系.2.周期性与奇偶性的综合.此类问题多为求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[变式训练2] (1)(2017·浙江五校联考)已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式⎪⎪⎪⎪⎪⎪f x -f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)的解集为( )【导学号:68334136】A.⎝ ⎛⎭⎪⎫0,1e B .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)(2)已知函数y =f (x )是定义在R 上的奇函数,∀x ∈R ,f (x -1)=f (x +1)成立,当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0.给出下列命题:①f (1)=0;②f (x )在[-2,2]上有5个零点;③点(2 014,0)是函数y =f (x )图象的一个对称中心; ④直线x =2 014是函数y =f (x )图象的一条对称轴. 则正确命题的序号是________.(1)C (2)①②③ [(1)∵f (x )为R 上的奇函数,则f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=-f (ln x ),∴⎪⎪⎪⎪⎪⎪fx -f ⎝ ⎛⎭⎪⎫ln 1x 2=|fx +fx2=|f (ln x )|,即原不等式可化为|f (ln x )|<f (1),∴-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,∴-1<ln x <1, 解得1e<x <e ,故选C.(2)令f (x -1)=f (x +1)中x =0, 得f (-1)=f (1). ∵f (-1)=-f (1), ∴2f (1)=0,∴f (1)=0,故①正确;由f (x -1)=f (x +1)得f (x )=f (x +2), ∴f (x )是周期为2的周期函数, ∴f (2)=f (0)=0,又当x ∈(0,1)且x 1≠x 2时,有f x 2-f x 1x 2-x 1<0,∴函数在区间(0,1)上单调递减,可作函数的简图如图:由图知②③正确,④不正确,∴正确命题的序号为①②③.]。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点2 解三角形

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题1 突破点2 解三角形

突破点2 解三角形(对应学生用书第11页)[核心知识提炼]提炼1常见解三角形的题型及解法 (1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一.(3)已知两边及其夹角,利用余弦定理求解.(4)已知三边,利用余弦定理求解.提炼2三角形形状的判断 (1)从边出发,全部转化为边之间的关系进行判断.(2)从角出发,全部转化为角之间的关系,然后进行恒等变形,再判断.注意:要灵活选用正弦定理或余弦定理,且在变形的时候要注意方程的同解性,如方程两边同除以一个数时要注意该数是否为零,避免漏解.提炼3三角形的常用面积公式 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其面积为S .(1)S =ah a =bh b =ch c (h a ,h b ,h c 分别表示a ,b ,c 边上的高).121212(2)S =ab sin C =bc sin A =ca sin B .121212(3)S =r (a +b +c )(r 为三角形ABC 内切圆的半径).12[高考真题回访]回访1 正、余弦定理的应用1.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos∠BDC =________. [依题意作出图形,如图所示,152104则sin∠DBC =sin∠ABC .由题意知AB =AC =4,BC =BD =2,则sin∠ABC =,cos∠ABC =.15414所以S △BDC =BC ·BD ·sin∠DBC 12=×2×2×=.12154152因为cos∠DBC =-cos∠ABC =-=14BD 2+BC 2-CD 22BD ·BC =,所以CD =.8-CD 2810由余弦定理,得cos∠BDC ==.]4+10-42×2×101042.(2013·浙江高考)在△ABC 中,∠C =90°,M 是BC 的中点.若sin∠BAM =,则13sin∠BAC =________. [因为sin∠BAM =,6313所以cos∠BAM =.如图,在△ABM 中,利用正弦定理,得=223BMsin ∠BAM AMsin B,所以===.BM AM sin ∠BAM sin B 13sin B 13cos ∠BAC 在Rt△ACM 中,有=sin∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以CMAM =sin(∠BAC -∠BAM ).13cos ∠BAC 化简,得2sin∠BAC cos∠BAC -cos 2∠BAC =1.2所以=1,解得tan∠BAC =.22tan ∠BAC -1tan2∠BAC +12再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin∠BAC =.]633.(2016·浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cos B .(1)证明:A =2B ;(2)若△ABC 的面积S =,求角A 的大小.a 24 【导学号:68334039】[解] (1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).3分又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B .6分(2)由S =得ab sin C =,a 2412a 24故有sin B sin C =sin A =sin 2B =sin B cos B .1212因为sin B ≠0,所以sin C =cos B .8分又B ,C ∈(0,π),所以C =±B .11分π2当B +C =时,A =;π2π2当C -B =时,A =.π2π4综上,A =或A =.14分π2π4回访2 三角形的面积问题4.(2015·浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan =2.(π4+A)(1)求的值;sin 2Asin 2A +cos2A (2)若B =,a =3,求△ABC 的面积.π4[解] (1)由tan =2,得tan A =,2分(π4+A)13所以==.5分sin 2A sin 2A +cos2A 2tan A 2tan A +125(2)由tan A =,A ∈(0,π),得13sin A =,cos A =.8分101031010由a =3,B =及正弦定理=,得b =3.10分π4a sin A bsin B 5由sin C =sin(A +B )=sin,(A +π4)得sin C =.12分255设△ABC 的面积为S ,则S =ab sin C =9.14分125.(2015·浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知A =,b 2-a 2=c 2.π412(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值.[解] (1)由b 2-a 2=c 2及正弦定理得12sin 2B -=sin 2C ,1212所以-cos 2B =sin 2C .2分又由A =,即B +C =π,得π434-cos 2B =sin 2C =2sin C cos C ,解得tan C =2.5分(2)由tan C =2,C ∈(0,π),得sin C =,cos C =.8分25555因为sin B =sin(A +C )=sin ,(π4+C)所以sin B =.10分31010由正弦定理得c =,12分22b3又因为A =,bc sin A =3,π412所以bc =6,故b =3.14分26.(2014·浙江高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =,cos 2A -cos 2B =sin A cos A -sin B cos B .333(1)求角C 的大小;(2)若sin A =,求△ABC 的面积. 【导学号:68334040】45[解] (1)由题意得-=sin 2A -sin 2B ,1+cos 2A 21+cos 2B23232即sin 2A -cos 2A =sin 2B -cos 2B ,2分32123212sin=sin .由a ≠b ,得A ≠B .又A +B ∈(0,π),得2A -+2B -=π,(2A -π6)(2B -π6)π6π6即A +B =,所以C =.5分2π3π3(2)由c =,sin A =,=,得a =.8分345a sin A c sin C 85由a <c 得,A <C ,从而cos A =,35故sin B =sin(A +C )=sin A cos C +cos A sin C =,11分4+3310所以,△ABC 的面积为S =ac sin B =.14分1283+1825(对应学生用书第12页)热点题型1 正、余弦定理的应用题型分析:利用正、余弦定理解题是历年高考的热点,也是必考点,求解的关键是合理应用正、余弦定理实现边角的互化.【例1】 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且+=.cos Aa cos Bb sin Cc (1)证明:sin A sin B =sin C ;(2)若b 2+c 2-a 2=bc ,求tan B .65[解] (1)证明:根据正弦定理,可设===k (k >0).asin A b sin B csin C 则a =k sin A ,b =k sin B ,c =k sin C ,代入+=中,有cos A a cos Bb sin Cc +=,2分cos A k sin A cos B k sin B sin C k sin C 即sin A sin B =sin A cos B +cos A sin B =sin(A +B ).4分在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C .6分(2)由已知,b 2+c 2-a 2=bc ,根据余弦定理,有65cos A ==,8分b 2+c 2-a 22bc 35所以sin A ==.9分1-cos2A 45由(1)知sin A sin B =sin A cos B +cos A sin B ,所以sin B =cos B + sin B ,12分454535故tan B ==4.14分sin Bcos B [方法指津]关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.[变式训练1] (1)(2017·温州市普通高中高考模拟考试)在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,记S 为△ABC 的面积.若A =60°,b =1,S =,则334c =________,cos B =________. 【导学号:68334041】3 [因为S =bc sin A =×1×c ×=,所以c =3;由余弦定理,得5714121232334a 2=b 2+c 2-2bc cos A =1+9-6×=7,所以cos B ===.12a 2+c 2-b 22ac 7+9-12×7×35714(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a cos B +b cos(B +C )=0.①证明:△ABC 为等腰三角形;②若2(b 2+c 2-a 2)=bc ,求cos B +cos C 的值.[解] ①证明:∵a cos B +b cos (B +C )=0,∴由正弦定理得sin A cos B +sin B cos(π-A )=0,即sin A cos B -sin B cos A =0,3分∴sin(A -B )=0,∴A -B =k π,k ∈Z .4分∵A ,B 是△ABC 的两内角,∴A -B =0,即A =B ,5分∴△ABC 是等腰三角形.6分②由2(b 2+c 2-a 2)=bc ,得=,7分b 2+c 2-a 22bc 14由余弦定理得cos A =,8分14cos C =cos(π-2A )=-cos 2A =1-2cos 2 A =.10分78∵A =B ,∴cos B =cos A =,12分14∴cos B +cos C =+=.14分147898热点题型2 三角形面积的求解问题题型分析:三角形面积的计算及与三角形面积有关的最值问题是解三角形的重要命题点之一,本质上还是考查利用正、余弦定理解三角形,难度中等.【例2】 设f (x )=sin x cos x -cos 2.(x +π4)(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f =0,a =1,求△ABC 面积的(A2)最大值.【解题指导】 (1)f x ――――→恒等变换化归思想―→f x =A sin ωx +φ +k 求f x 的单调区间(2)f(A2)=0――→锐角三角形 求A ――→余弦定理 建立b ,c 的等量关系――→基本不等式 求bc 的最大值――→正弦定理 求△ABC 的面积[解] (1)由题意知f (x )=-sin 2x 21+cos (2x +π2)2=-=sin 2x -.2分sin 2x 21-sin 2x 212由-+2k π≤2x ≤+2k π,k ∈Z ,可得-+k π≤x ≤+k π,k ∈Z .由π2π2π4π4+2k π≤2x ≤+2k π,k ∈Z ,可得+k π≤x ≤+k π,k ∈Z .4分π23π2π43π4所以f (x )的单调递增区间是-+k π,+k π(k ∈Z );单调递减区间是π4π4(k ∈Z ).6分[π4+k π,3π4+k π](2)由f =sin A -=0,得sin A =,7分(A2)1212由题意知A 为锐角,所以cos A =.8分32由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+bc =b 2+c 2≥2bc ,12分3即bc ≤2+,当且仅当b =c 时等号成立.3因此bc sin A ≤,122+34所以△ABC 面积的最大值为.14分2+34[方法指津]1.在研究三角函数的图象与性质时常先将函数的解析式利用三角恒等变换转化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B ,y =A tan(ωx +φ)+B )的形式,进而利用函数y =sin x (或y =cos x ,y =tan x )的图象与性质解决问题.2.在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a 2=b 2+c 2-2bc cos A 中,有a 2+c 2和ac 两项,二者的关系a 2+c 2=(a +c )2-2ac 经常用到,有时还可利用基本不等式求最值.[变式训练2] (名师押题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a +=4cos C ,b =1.1a (1)若sin C =,求a ,c ;217(2)若△ABC 是直角三角形,求△ABC 的面积.[解] (1)∵sin C =,∴cos 2C =1-sin 2C =,cos C =.1分2174727∵4cos C =a +,1a ∴=a +,解得a =或a =.3分871a 777又+a =4cos C =4×=4×,1a a 2+b 2-c 22ab a 2+1-c 22a ∴a 2+1=2(a 2+1-c 2),即2c 2=a 2+1.5分∴当a =时,c =2;7当a =时,c =.6分1727(2)由(1)可知2c 2=a 2+1.又△ABC 为直角三角形,C 不可能为直角.①若角A 为直角,则a 2=b 2+c 2=c 2+1,∴2c 2-1=c 2+1,∴c =,a =,8分23∴S =bc =×1×=.9分1212222②若角B 为直角,则b 2=a 2+c 2,a 2+c 2=1.∴2c 2=a 2+1=(1-c 2)+1,∴c 2=,a 2=,即c =,a =,12分23136333∴S =ac =××=.14分1212633326。

2018年高考数学(浙江专用)总复习教师用书:第1章 第1讲 集合 含解析

第1讲集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言【列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩【Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合【1)集合中元素的三个特性:确定性、互异性、无序性.【2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.【3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系【1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.【2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A. 【3)相等:若A⊆B,且B⊆A,则A=B.【4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.集合关系与运算的常用结论【1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.【2)子集的传递性:A⊆B,B⊆C⇒A⊆C.【3)A⊆B⇔A∩B=A⇔A∪B=B.【4)∁U【A∩B)=【∁U A)∪【∁U B),∁U【A∪B)=【∁U A)∩【∁U B).诊断自测1.判断正误【在括号内打“√”或“×”)【1)任何集合都有两个子集.【)【2)已知集合A={x|y=x2},B={y|y=x2},C={【x,y)|y=x2},则A=B=C.【) 【3)若{x2,1}={0,1},则x=0,1.【)【4)若A∩B=A∩C,则B=C.【)解析【1)错误.空集只有一个子集,就是它本身,故该说法是错误的.【2)错误.集合A是函数y=x2的定义域,即A=【-∞,+∞);集合B是函数y =x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C 不相等.【3)错误.当x=1,不满足互异性.【4)错误.当A=∅时,B,C可为任意集合.答案【1)×【2)×【3)×【4)×2.【必修1P7练习2改编)若集合A={x∈N|x≤10},a=22,则下列结论正确的是【)A.{a}⊆AB.a⊆AC.{a}∈AD.a∉A解析由题意知A={0,1,2,3},由a=22,知a∉A.答案 D3.【2016·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=【)A.{1,3}B.{3,5}C.{5,7}D.{1,7}解析因为A={1,3,5,7},而3,5∈A且3,5∈B,所以A∩B={3,5}.答案 B4.【2017·杭州模拟)设全集U={x|x∈N*,x<6},集合A={1,3},B={3,5},则∁U 【A ∪B )等于【 )A.{1,4}B.{1,5}C.{2,5}D.{2,4}解析 由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U 【A ∪B )={2,4}.答案 D5.【2017·绍兴调研)已知全集U =R ,集合A ={x |x ≥2},B ={x |0≤x <5},则A ∪B =________,【∁U A )∩B =________.解析 ∵A ={x |x ≥2},B ={x |0≤x <5},∴A ∪B ={x |x ≥0},【∁U A )∩B ={x |0≤x <2}. 答案 {x |x ≥0} {x |0≤x <2}6.已知集合A ={【x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={【x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为________.解析 集合A 表示圆心在原点的单位圆,集合B 表示直线y =x ,易知直线y =x 和圆x 2+y 2=1相交,且有2个交点,故A ∩B 中有2个元素.答案 2考点一 集合的基本概念【例1】 【1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是【 )A.1B.3C.5D.9【2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =【 ) A.92 B.98 C.0 D.0或98解析 【1)当x =0,y =0,1,2时,x -y =0,-1,-2;当x =1,y =0,1,2时,x -y =1,0,-1;当x =2,y =0,1,2时,x -y =2,1,0.根据集合中元素的互异性可知,B 的元素为-2,-1,0,1,2,共5个.【2)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=【-3)2-8a =0,得a =98, 所以a 的取值为0或98.答案 【1)C 【2)D规律方法 【1)第【1)题易忽视集合中元素的互异性误选D.第【2)题集合A 中只有一个元素,要分a =0与a ≠0两种情况进行讨论,此题易忽视a =0的情形.【2)用描述法表示集合,先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.【训练1】 【1)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.【2)已知集合A ={x ∈R |ax 2+3x -2=0},若A =∅,则实数a 的取值范围为________.解析 【1)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0, 所以a +b =0,且b =1,所以a =-1,b =1,所以b -a =2.【2)由A =∅知方程ax 2+3x -2=0无实根,当a =0时,x =23不合题意,舍去;当a ≠0时,Δ=9+8a <0,∴a <-98.答案 【1)2 【2)⎝ ⎛⎭⎪⎫-∞,-98 考点二 集合间的基本关系【例2】 【1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则【 )A.A BB.B AC.A ⊆BD.B =A【2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.解析 【1)易知A ={x |-1≤x ≤1},所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}.因此B A .【2)当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为【-∞,4].答案 【1)B 【2)【-∞,4]规律方法 【1)若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.【2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 【1)【2017·镇海中学质检)若集合A ={x |x >0},且B ⊆A ,则集合B 可能是【 )A.{1,2}B.{x |x ≤1}C.{-1,0,1}D.R【2)【2016·郑州调研)已知集合A ={x |x =x 2-2,x ∈R },B ={1,m },若A ⊆B ,则m 的值为【 )A.2B.-1C.-1或2D.2或2解析 【1)因为A ={x |x >0},且B ⊆A ,再根据选项A ,B ,C ,D 可知选项A 正确.【2)由x =x 2-2,得x =2,则A ={2}.因为B ={1,m }且A ⊆B ,所以m =2.答案 【1)A 【2)A考点三 集合的基本运算【例3】 【1)【2015·全国Ⅰ卷)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为【 )A.5B.4C.3D.2【2)【2016·浙江卷)设集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪【∁R Q)=【)A.[2,3]B.【-2,3]C.[1,2)D.【-∞,-2)∪[1,+∞)解析【1)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.共2个元素.【2)易知Q={x|x≥2或x≤-2}.∴∁R Q={x|-2<x<2},又P={x|1≤x≤3},故P∪【∁R Q)={x|-2<x≤3}.答案【1)D【2)B规律方法【1)在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.【2)一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.【训练3】【1)【2017·石家庄模拟)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是【)A.N⊆MB.N∩M=∅C.M⊆ND.M∩N=R【2)【2016·山东卷)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U【A∪B)=【)A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}解析【1)易知N=【-2,3),且M={-1,1},∴M⊆N.【2)∵A={1,3,5},B={3,4,5},∴A∪B={1,3,4,5},又全集U={1,2,3,4,5,6},因此∁U【A∪B)={2,6}.答案【1)C【2)A[思想方法]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性【是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组【建议用时:25分钟)一、选择题1.【2015·全国Ⅱ卷)已知集合A={1,2,3},B={2,3},则【)A.A=BB.A∩B=∅C.A BD.B A解析∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴B A.答案 D2.【2016·全国Ⅱ卷)已知集合A={1,2,3},B={x|x2<9},则A∩B=【)A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}解析由于B={x|x2<9}={x|-3<x<3},又A={1,2,3},因此A∩B={1,2}. 答案 D3.【2017·肇庆模拟)已知集合A={x|lg x>0},B={x|x≤1},则【)A.A ∩B ≠∅B.A ∪B =RC.B ⊆AD.A ⊆B解析 由B ={x |x ≤1},且A ={x |lg x >0}=【1,+∞),∴A ∪B =R .答案 B4.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是【 )A.【-∞,-1]B.[1,+∞)C.[-1,1]D.【-∞,-1]∪[1,+∞)解析 因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].答案 C5.【2016·山东卷)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =【 )A.【-1,1)B.【0,1)C.【-1,+∞)D.【0,+∞) 解析 由y =2x ,x ∈R ,知y >0,则A =【0,+∞).又B ={x |x 2-1<0}=【-1,1).因此A ∪B =【-1,+∞).答案 C6.【2016·浙江卷)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则【∁U P )∪Q =【 )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}解析 ∵U ={1,2,3,4,5,6},P ={1,3,5},∴∁U P ={2,4,6},∵Q ={1,2,4},∴【∁U P )∪Q ={1,2,4,6}.答案 C7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是【 )A.1B.3C.7D.31解析 具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.答案 B8.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U【A∪B)=【)A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}解析∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示如图.∴∁U【A∪B)={x|0<x<1}.答案 D二、填空题9.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案【-∞,1]10.【2017·宁波调研)集合A={0,|x|},B={1,0,-1},若A∪B=B,则A∩B =________;A∪B=________;∁B A=________.解析A={0,|x|},B={1,0,-1},若A∪B=B,则A⊆B,∴|x|=1,∴A∩B ={0,1},A∪B={-1,0,1},∁B A={-1}.答案{0,1}{-1,0,1}{-1}11.集合A={x|x<0},B={x|y=lg[x【x+1)]},若A-B={x|x∈A,且x∉B},则A -B=________.解析由x【x+1)>0,得x<-1或x>0,∴B=【-∞,-1)∪【0,+∞),∴A-B=[-1,0).答案[-1,0)12.【2017·湖州质检)已知集合A={x|x2-2 016x-2 017≤0},B={x|x<m+1},若A⊆B,则实数m的取值范围是________.解析由x2-2 016x-2 017≤0,得A=[-1,2 017],又B={x|x<m+1},且A⊆B,所以m+1>2 017,则m>2 016.答案【2 016,+∞)13.【2017·金华模拟)设集合A ={x ∈N |6x +1∈N },B ={x |y =ln 【x -1)},则A =________,B =________,A ∩【∁R B )=________.解析 当x =0,1,2,5时,6x +1的值分别为6,3,2,1,当x ∈N 且x ≠0,1,2,5时,6x +1∉N ,∴A ={0,1,2,5},由x -1>0,得x >1,∴B ={x |x >1},∁R B ={x |x ≤1},∴A ∩【∁R B )={0,1}.答案 {0,1,2,5} {x |x >1} {0,1}能力提升题组【建议用时:10分钟)14.【2016·全国Ⅲ卷改编)设集合S ={x |【x -2)【x -3)≥0},T ={x |x >0},则【∁R S )∩T =【 )A.[2,3]B.【-∞,-2)∪[3,+∞)C.【2,3)D.【0,+∞)解析 易知S =【-∞,2]∪[3,+∞),∴∁R S =【2,3),因此【∁R S )∩T =【2,3).答案 C15.【2016·黄山模拟)集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln 【1-x )},则图中阴影部分所表示的集合是【 )A.{x |x ≥1}B.{x |1≤x <2}C.{x |0<x ≤1}D.{x |x ≤1}解析 易知A =【-1,2),B =【-∞,1),∴∁U B =[1,+∞),A ∩【∁U B )=[1,2).因此阴影部分表示的集合为A ∩【∁U B )={x |1≤x <2}.答案 B16.【2017·南昌十所省重点中学模拟)设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln 【x 2-3x )},则A ∩B 中元素的个数是________.解析 由14≤2x ≤16,x ∈N ,∴x =0,1,2,3,4,即A ={0,1,2,3,4}.又x 2-3x >0,知B ={x |x >3或x <0},∴A ∩B ={4},即A ∩B 中只有一个元素.答案 117.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |【x -m )【x -2)<0},且A ∩B =【-1,n ),则m +n =________.解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =【-1,n )可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.所以m +n =0.答案 018.【2017·丽水质检)若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的,若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则【1)“好集”P 中的元素最大值为________;【2)“好集”P 的个数为________.解析 【1)由题意得,⎩⎪⎨⎪⎧1a +1b =2c ,a +c =2b⇒1a +2a +c =2c ⇒c 【a +c )+2ac =2a 【a +c )⇒c 2+ac -2a 2=0⇒【c +2a )【c -a )=0,∵c ≠a ,∴c =-2a ,b =a +c 2=-a 2,∴c =4b ,令-2 014≤4b ≤2 014,得-503≤b ≤503,∴P 中最大元素为4b =4×503=2 012.【2)由【1)知P ={-2b ,b ,4b }且-503≤b ≤503,所以“好集”P 的个数为2×503=1 006.答案 【1)2 012 【2)1 006。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题5 突破点13 圆锥曲线中的综合问题

突破点13 圆锥曲线中的综合问题(对应学生用书第47页)[核心知识提炼]提炼1 解答圆锥曲线的定值、定点问题,从三个方面把握(1)从特殊开始,求出定值,再证明该值与变量无关.(2)直接推理、计算,在整个过程中消去变量,得定值.(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标.提炼2 用代数法求最值与范围问题时从下面几个方面入手(1)若直线和圆锥曲线有两个不同的交点,则可以利用判别式求范围.(2)若已知曲线上任意一点、一定点或与定点构成的图形,则利用圆锥曲线的性质(性质中的范围)求解.(3)利用隐含或已知的不等关系式直接求范围.(4)利用基本不等式求最值与范围.(5)利用函数值域的方法求最值与范围.提炼3 与圆锥曲线有关的探索性问题(1)给出问题的一些特殊关系,要求探索出一些规律,并能论证所得规律的正确性.通常要对已知关系进行观察、比较、分析,然后概括出一般规律.(2)对于只给出条件,探求“是否存在”类型问题,一般要先对结论作出肯定存在的假设,然后由假设出发,结合已知条件进行推理,若推出相符的结论,则存在性得到论证;若推出矛盾,则假设不存在.[高考真题回访]回访直线与圆锥曲线的综合问题1.(2017·浙江高考)如图13­1,已知抛物线x 2=y ,点A -12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )-12<x <32.过点B 作直线AP 的垂线,垂足为Q.图13­1(1)求直线AP 斜率的取值范围. (2)求|PA |·|PQ |的最大值.[解](1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1). 6分(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +3k 2+. 9分因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -k +2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3.12分 令f (k )=-(k -1)(k +1)3,因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.15分2.(2016·浙江高考)如图13­2,设椭圆x 2a2+y 2=1(a >1).图13­2(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. [解] (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1得(1+a 2k 2)x 2+2a 2kx =0,3分故x 1=0,x 2=-2a 2k1+a 2k2.因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. 5分(2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.7分记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知,|AP |=2a 2|k 1|1+k 211+a 2k 21, |AQ |=2a 2|k 2|1+k 221+a 2k 22,故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 9分所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0. 由于k 1≠k 2,k 1,k 2>0得 1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2).①因为①式关于k 1,k 2的方程有解的充要条件是 1+a 2(a 2-2)>1, 所以a > 2.13分因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤ 2.由e =c a =a 2-1a ,得0<e ≤22.所求离心率的取值范围为0<e ≤22. 15分3.(2015·浙江高考)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).图13­3[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .3分由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.5分因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.将线段AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. 7分(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1. 10分设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 15分4.(2014·浙江高考)已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM →.(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.图13­4[解] (1)由题意知焦点F (0,1),准线方程为y =-1.2分设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得到y 0=2,所以P (22,2)或P (-22,2). 由PF →=3FM →得M ⎝ ⎛⎭⎪⎫-223,23或M ⎝ ⎛⎭⎪⎫223,23. 6分(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y 得x 2-4kx -4m =0.8分于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m ,所以AB 的中点M 的坐标为(2k,2k 2+m ). 由PF →=3FM →,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0,得k 2=-15m +415.10分由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=41+k 2·k 2+m ,点F (0,1)到直线AB 的距离为d =|m -1|1+k2,所以S △ABP =4S △ABF =8|m -1|k 2+m=16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝ ⎛⎭⎪⎫-13<m ≤43,令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1.12分可得f (m )在⎝ ⎛⎭⎪⎫-13,19上是增函数,在⎝ ⎛⎭⎪⎫19,1上是减函数,在⎝ ⎛⎭⎪⎫1,43上是增函数. 又f ⎝ ⎛⎭⎪⎫19=256243 >f ⎝ ⎛⎭⎪⎫43,所以,当m =19时,f (m )取到最大值256243,此时k =±5515.所以,△ABP 面积的最大值为2565135.15分(对应学生用书第49页) 热点题型1 圆锥曲线中的定值问题题型分析:圆锥曲线中的定值问题是近几年高考的热点内容,解决这类问题的关键是引入变化的参数表示直线方程、数量积、比例关系等,根据等式恒成立,数式变换等寻找不受参数影响的量.【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点P ⎝ ⎛⎭⎪⎫1,32与椭圆右焦点的连线垂直于x 轴,直线l :y =kx +m 与椭圆C 相交于A ,B 两点(均不在坐标轴上). (1)求椭圆C 的标准方程;(2)设O 为坐标原点,若△AOB 的面积为3,试判断直线OA 与OB 的斜率之积是否为定值?[解] (1)由题意知⎩⎪⎨⎪⎧1a 2+94b2=1,a 2=b 2+1,解得⎩⎪⎨⎪⎧a 2=4,b 2=3, 3分∴椭圆C 的标准方程为x 24+y 23=1.4分(2)设点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,得(4k 2+3)x 2+8kmx +4m 2-12=0,5分由Δ=(8km )2-16(4k 2+3)(m 2-3)>0,得m 2<4k 2+3. 6分∵x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3,∴S △OAB =12|m ||x 1-x 2|=12|m |·434k 2+3-m24k 2+3=3, 8分化简得4k 2+3-2m 2=0,满足Δ>0,从而有4k 2-m 2=m 2-3(*),9分∴k OA ·k OB =y 1y 2x 1x 2=kx 1+m kx 2+m x 1x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=-12k 2+3m 24m 2-12=-34·4k 2-m 2m 2-3,由(*)式,得4k 2-m2m 2-3=1, 12分∴k OA ·k OB =-34,即直线OA 与OB 的斜率之积为定值-34.15分[方法指津]求解定值问题的两大途径1.由特例得出一个值此值一般就是定值→证明定值:将问题转化为证明待证式与参数某些变量无关2.先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.[变式训练1] 已知椭圆C :x 2a 2+y 2b2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. [解] (1)由题意得a =2,b =1,∴椭圆C 的方程为x 24+y 2=1.3分又c =a 2-b 2=3,∴离心率e =c a =32. 5分(2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 6分又A (2,0),B (0,1),∴直线PA 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2. 9分直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 12分∴四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.15分热点题型2 圆锥曲线中的最值、范围问题题型分析:圆锥曲线中的最值、范围问题是高考重点考查的内容,解决此类问题常用的方法是几何法和代数法.【例2】 设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.[解] (1)因为|AD |=|AC |,EB ∥AC , 所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.2分由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).4分(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -,x 24+y23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3.所以|MN |=1+k 2|x 1-x 2|=k 2+4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k(x -1),点A 到直线m 的距离为2k 2+1,6分所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1.故四边形MPNQ 的面积S =12|MN || PQ |=121+14k 2+3. 8分可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).12分 当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8, 故四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83). 15分[方法指津]与圆锥曲线有关的取值范围问题的三种解法1.数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解. 2.构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. 3.构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.[变式训练2] (名师押题)已知抛物线C :x 2=2py (p >0),过其焦点作斜率为1的直线l 交抛物线C 于M ,N 两点,且|MN |=16. (1)求抛物线C 的方程;(2)已知动圆P 的圆心在抛物线C 上,且过定点D (0,4),若动圆P 与x 轴交于A ,B 两点,求|DA ||DB |+|DB ||DA |的最大值. 【导学号:68334132】 [解] (1)设抛物线的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,则直线l :y =x +p2.由⎩⎪⎨⎪⎧y =x +p 2,x 2=2py ,得x 2-2px -p 2=0,∴x 1+x 2=2p ,∴y 1+y 2=3p ,∴|MN |=y 1+y 2+p =4p =16,∴p =4, ∴抛物线C 的方程为x 2=8y .4分(2)设动圆圆心P (x 0,y 0),A (x 1,0),B (x 2,0),则x 20=8y 0,且圆P :(x -x 0)2+(y -y 0)2=x 20+(y 0-4)2, 令y =0,整理得x 2-2x 0x +x 20-16=0, 解得x 1=x 0-4,x 2=x 0+4,6分设t =|DA ||DB |=x 0-2+16x 0+2+16=x 20-8x 0+32x 20+8x 0+32=1-16x 0x 20+8x 0+32,当x 0=0时,t =1, ①7分当x 0≠0时,t =1-16x 0+8+32x 0. ∵x 0>0,∴x 0+32x 0≥82,∴t ≥1-168+82=3-22=2-1,且t <1, ② 综上①②知2-1≤t ≤1.11分∵f (t )=t +1t在[2-1,1]上单调递减,∴|DA ||DB |+|DB ||DA |=t +1t ≤2-1+12-1=22, 当且仅当t =2-1,即x 0=42时等号成立.∴|DA ||DB |+|DB ||DA |的最大值为2 2. 15分热点题型3 圆锥曲线中的探索性问题题型分析:探索性问题一般分为探究条件和探究结论两种类型,若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,否则不存在.若探究结论,则应先写出结论的表达式,再针对表达式进行讨论,往往涉及对参数的讨论.【例3】 如图13­5,在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A ,B 分别是椭圆E 的左、右顶点,D (1,0)为线段OF 2的中点,且AF 2→+5BF 2→=0.图13­5(1)求椭圆E 的方程;(2)若M 为椭圆E 上的动点(异于点A ,B ),连接MF 1并延长交椭圆E 于点N ,连接MD ,ND 并分别延长交椭圆E 于点P ,Q ,连接PQ ,设直线MN ,PQ 的斜率存在且分别为k 1,k 2.试问是否存在常数λ,使得k 1+λk 2=0恒成立?若存在,求出λ的值;若不存在,说明理由. [解题指导] (1)D 为OF 2的中点→求c →=0→a 与c 的关系→椭圆方程(2)假设存在常数λ→设点M ,N ,P ,Q 的坐标→直线MD 的方程与椭圆方程联立→用点M 的坐标表示点P ,Q 的坐标→点M ,F 1,N 共线→得到点M ,N 坐标的关系→求k 2→得到k 1与k 2的关系[解] (1)∵AF 2→+5BF 2→=0,∴AF 2→=5F 2B →,∵a +c =5(a -c ),化简得2a =3c ,又点D (1,0)为线段OF 2的中点,∴c =2,从而a =3,b =5,左焦点F 1(-2,0),故椭圆E 的方程为x 29+y 25=1.4分(2)假设存在满足条件的常数λ,使得k 1+λk 2=0恒成立, 设M (x 1,y 1),N (x 2,y 2),P (x 3,y 3),Q (x 4,y 4),则直线MD 的方程为x =x 1-1y 1y +1,代入椭圆方程x 29+y 25=1,整理得,5-x 1y 21y 2+x 1-1y 1y -4=0,6分∵y 1+y 3=y 1x 1-x 1-5,∴y 3=4y 1x 1-5,从而x 3=5x 1-9x 1-5,故点P ⎝ ⎛⎭⎪⎫5x 1-9x 1-5,4y 1x 1-5,同理,点Q ⎝⎛⎭⎪⎫5x 2-9x 2-5,4y 2x 2-5.10分∵三点M ,F 1,N 共线,∴y 1x 1+2=y 2x 2+2, 从而x 1y 2-x 2y 1=2(y 1-y 2),从而k 2=y 3-y 4x 3-x 4=4y 1x 1-5-4y 2x 2-55x 1-9x 1-5-5x 2-9x 2-5=x 1y 2-x 2y 1+y 1-y 2x 1-x2=y 1-y 2x 1-x 2=7k 14,故k 1-4k 27=0,从而存在满足条件的常数λ,λ=-47.15分[方法指津]探索性问题求解的思路及策略1.思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在. 2.策略:(1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.[变式训练3] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点分别为F 1(-3,0),F 2(3,0),点P在椭圆C 上,满足|PF 1|=7|PF 2|,tan ∠F 1PF 2=4 3. (1)求椭圆C 的方程;(2)已知点A (1,0),试探究是否存在直线l :y =kx +m 与椭圆C 交于D ,E 两点,且使得|AD |=|AE |?若存在,求出k 的取值范围;若不存在,请说明理由.【导学号:68334133】[解] (1)由|PF 1|=7|PF 2|,PF 1+PF 2=2a 得PF 1=7a 4,PF 2=a4.2分由余弦定理得cos ∠F 1PF =17=⎝ ⎛⎭⎪⎫7a 42+⎝ ⎛⎭⎪⎫a 42-322×7a 4×a 4,∴a =2,∴所求C 的方程为x 24+y 2=1.4分(2)假设存在直线l 满足题设,设D (x 1,y 1),E (x 2,y 2),将y =kx +m 代入x 24+y 2=1并整理得(1+4k 2)x 2+8kmx +4m 2-4=0,由Δ=64k 2m 2-4(1+4k 2)(4m 2-4)=-16(m 2-4k 2-1)>0,得4k 2+1>m 2.① 6分又x 1+x 2=-8km1+4k2.设D ,E 中点为M (x 0,y 0),M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2,k AMk =-1,得m =-1+4k 23k ,②将②代入①得4k 2+1>⎝ ⎛⎭⎪⎫1+4k 23k 2,化简得20k 4+k 2-1>0⇒(4k 2+1)(5k 2-1)>0,解得k >55或k <-55,所以存在直线l ,使得|AD |=|AE |,此时k 的取值范围为⎝⎛⎭⎪⎫-∞,-55∪⎝ ⎛⎭⎪⎫55,+∞.15分。

2018年高考数学(浙江专用)总复习教师用书:第5章 第4讲 数系的扩充与复数的引入 含解析

第4讲 数系的扩充与复数的引入最新考纲 1.理解复数的基本概念;2.理解复数相等的充要条件;3.了解复数的代数表示法及其几何意义;4.会进行复数代数形式的四则运算;5.了解复数代数形式的加、减运算的几何意义.知 识 梳 理1.复数的有关概念复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即(1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ→.3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ;③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i ≠0).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小 答案 (1)× (2)× (3)√ (4)√2.(2016·全国Ⅰ卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( ) A.-3B.-2C.2D.3解析 因为(1+2i)(a +i)=a -2+(2a +1)i ,所以a -2=2a +1,解得a =-3,故选A. 答案 A3.(选修2-2P112A2改编)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( ) A.4+8iB.8+2iC.2+4iD.4+i解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4),则点C 对应的复数为z =2+4i. 答案 C4.(2015·全国Ⅱ卷)若a 为实数,且2+a i 1+i =3+i ,则a 等于( )A.-4B.-3C.3D.4解析 由2+a i1+i=3+i ,得2+a i =(3+i)(1+i)=2+4i ,即a i =4i ,因为a 为实数,所以a =4.故选D. 答案 D5.已知(1+2i)z =4+3i ,则z =________. 解析 ∵z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i , ∴z =2+i. 答案 2+i6.(2017·温州调研)设a ∈R ,若复数a +i1+i (i 为虚数单位)的实部和虚部相等,则a=________,|z |=________.解析 复数a +i 1+i =(a +i )(1-i )(1+i )(1-i )=a +1+(1-a )i 2,由于复数a +i1+i (i 为虚数单位)的实部和虚部相等,则a +1=1-a ,解得a =0,则z =12-12i ,则|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫-122=22.答案 0 22考点一 复数的有关概念【例1】 (1)i 为虚数单位,i 607的共轭复数为( ) A.iB.-iC.1D.-1(2)(2017·东阳中学期末)设i 是虚数单位,复数a +i2-i 是纯虚数,则实数a =( )A.2B.12C.-12D.-2解析 (1)因为i 607=(i 2)303·i =-i ,-i 的共轭复数为i.所以应选A. (2)∵a +i 2-i=(a +i )(2+i )5=(2a -1)+(a +2)i5是纯虚数,∴2a -1=0且a +2≠0,∴a =12,故选B. 答案 (1)A (2)B规律方法 (1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部. 【训练1】 (1)(2016·河南六市联考)如果复数2-b i1+2i(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( ) A.-6B.23C.-23D.2(2)设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________. 解析 (1)由2-b i 1+2i=(2-b i )(1-2i )5=2-2b -(b +4)i5,由2-2b =b +4,得b =-23.(2)因为复数a +b i(a ,b ∈R )的模为3,即a 2+b 2=3,所以(a +b i)(a -b i)=a 2-b 2i 2=a 2+b 2=3. 答案 (1)C (2)3 考点二 复数的几何意义【例2】 (1)(2014·全国Ⅱ卷)设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A.-5B.5C.-4+iD.-4-i(2)(2016·全国Ⅱ卷)已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A.(-3,1) B.(-1,3) C.(1,+∞)D.(-∞,-3)解析 (1)由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,故选A.(2)由复数z =(m +3)+(m -1)i 在复平面内对应的点在第四象限得⎩⎨⎧m +3>0,m -1<0,解得-3<m <1,故选A. 答案 (1)A (2)A规律方法 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.【训练2】 (1)(2016·邯郸一中月考)复数z =i(1+i)在复平面内所对应点的坐标为( )A.(1,1)B.(-1,-1)C.(1,-1)D.(-1,1)(2)(2016·北京卷)设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.解析 (1)因为z =i(1+i)=-1+i ,故复数z =i(1+i)在复平面内所对应点的坐标为(-1,1),故选D.(2)(1+i)(a +i)=(a -1)+(a +1)i ,由已知得a +1=0,解得a =-1. 答案 (1)D (2)-1 考点三 复数的运算【例3】 (1)(2016·全国Ⅲ卷)若z =1+2i ,则4iz z -1=( ) A.1B.-1C.iD.-i(2)(2015·全国Ⅱ卷)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A.-1 B.0C.1D.2解析 (1)4i zz -1=4i(1+2i )(1-2i )-1=i. (2)因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B. 答案 (1)C (2)B规律方法 (1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i 的幂写成最简形式. (2)记住以下结论,可提高运算速度: ①(1±i)2=±2i ;②1+i 1-i =i ;③1-i 1+i=-i ;④a +b ii =b -a i ;⑤i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ).【训练3】 (1)(2016·北京卷)复数1+2i2-i =( )A.iB.1+iC.-iD.1-i(2)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=2+i +4i +2i 24-i 2=5i 5=i ,故选A.(2)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2答案(1)A(2)-1+i[思想方法]1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z=a+b i(a,b∈R)是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z=a+b i(a,b∈R),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识.[易错防范]1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比较大小.3.注意复数的虚部是指在a+b i(a,b∈R)中的实数b,即虚部是一个实数.基础巩固题组(建议用时:30分钟)一、选择题1.(2015·福建卷)若(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,4解析(1+i)+(2-3i)=3-2i=a+b i,∴a=3,b=-2,故选A.答案 A2.(2016·四川卷)设i为虚数单位,则复数(1+i)2=()A.0B.2C.2iD.2+2i解析(1+i)2=1+2i+i2=2i,故选C.答案 C3.(2016·山东卷)若复数z=21-i,其中i为虚数单位,则z=()A.1+iB.1-iC.-1+iD.-1-i解析 ∵z =21-i =2(1+i )(1-i )(1+i )=1+i ,∴z =1-i ,故选B.答案 B4.(2015·安徽卷)设i 为虚数单位,则复数(1-i)(1+2i)=( ) A.3+3iB.-1+3iC.3+iD.-1+i解析 (1-i)(1+2i)=1+2i -i -2i 2=3+i. 答案 C5.复数1-i 2-i 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限解析 复数1-i 2-i =(1-i )(2+i )(2-i )(2+i )=35-15i ,∴其对应的点为⎝ ⎛⎭⎪⎫35,-15,在第四象限,故选D. 答案 D6.(2017·北京东城综合测试)若复数(m 2-m )+m i 为纯虚数,则实数m 的值为( ) A.-1B.0C.1D.2解析 因为复数(m 2-m )+m i 为纯虚数,所以⎩⎨⎧m 2-m =0,m ≠0,解得m =1,故选C. 答案 C 7.已知复数z =1+2i2-i(i 为虚数单位),则z 的虚部为( ) A.-1B.0C.1D.i解析 ∵z =1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=5i5=i ,故虚部为1.答案 C8.设z 是复数,则下列命题中的假命题是( ) A.若z 2≥0,则z 是实数 B.若z 2<0,则z 是虚数 C.若z 是虚数,则z 2≥0D.若z 是纯虚数,则z 2<0解析 举反例说明,若z =i ,则z 2=-1<0,故选C. 答案 C9.(2015·全国Ⅰ卷)已知复数z 满足(z -1)i =1+i ,则z 等于( ) A.-2-iB.-2+iC.2-iD.2+i解析 由(z -1)i =1+i ,两边同乘以-i ,则有z -1=1-i ,所以z =2-i. 答案 C10.设z 1,z 2是复数,则下列命题中的假命题是( ) A.若|z 1-z 2|=0,则z 1=z 2 B.若z 1=z 2,则z 1=z 2C.若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D.若|z 1|=|z 2|,则z 21=z 22解析 A 中,|z 1-z 2|=0,则z 1=z 2,故z 1=z 2,成立.B 中,z 1=z 2,则z 1=z 2成立.C 中,|z 1|=|z 2|,则|z 1|2=|z 2|2,即z 1z 1=z 2z 2,C 正确.D 不一定成立,如z 1=1+3i ,z 2=2,则|z 1|=2=|z 2|,但z 21=-2+23i ,z 22=4,z 21≠z 22.答案 D11.(2017·浙江省三市联考)若复数z =a +3ii +a 在复平面上对应的点在第二象限,则实数a 可以是( ) A.-4 B.-3C.1D.2解析 因为z =a +3ii +a =(3+a )-a i 在复平面上对应的点在第二象限,所以a <-3,选A. 答案 A12.(2016·全国Ⅰ卷)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A.1B. 2C. 3D.2解析 由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎨⎧x =1,x =y ⇒⎩⎨⎧x =1,y =1.所以|x +y i|=x 2+y 2=2,故选B. 答案 B 二、填空题13.(2016·江苏卷改编)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________;z 的虚部是________.解析 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5,虚部为5. 答案 5 514.(2015·四川卷)设i 是虚数单位,则复数i -1i =________.解析 i -1i =i -ii 2=2i. 答案 2i15.(2015·江苏卷)设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 解析 设复数z =a +b i ,a ,b ∈R ,则z 2=a 2-b 2+2ab i =3+4i ,a ,b ∈R ,则⎩⎨⎧a 2-b 2=3,2ab =4(a ,b ∈R ),解得⎩⎨⎧a =2,b =1或⎩⎨⎧a =-2,b =-1,则z =±(2+i),故|z |= 5. 答案 516.(2017·丽水质测)若3+b i1-i=a +b i(a ,b 为实数,i 为虚数单位),则a =________;b =________.解析 3+b i 1-i =(3+b i )(1+i )2=12[(3-b )+(3+b )i]=3-b 2+3+b 2i.∴⎩⎪⎨⎪⎧a =3-b2,b =3+b 2,解得⎩⎨⎧a =0,b =3.∴a +b =3.答案 0 3能力提升题组 (建议用时:20分钟)17.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i 的点是( )A.EB.FC.GD.H解析 由题图知复数z =3+i ,∴z1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i.∴表示复数z1+i的点为H . 答案 D18. z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z 等于( ) A.1+iB.-1-iC.-1+iD.1-i解析 法一 设z =a +b i ,a ,b 为实数,则z =a -b i.∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i. 法二 ∵(z -z )i =2,∴z -z =2i =-2i. 又z +z =2,∴(z -z )+(z +z )=-2i +2, ∴2z =-2i +2,∴z =1-i. 答案 D19.(2014·全国Ⅰ卷)设z =11+i+i ,则|z |=( ) A.12 B.22C.32D.2解析 ∵z =11+i +i =1-i (1+i )(1-i )+i =1-i 2+i =12+12i , ∴|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,故选B.答案 B20.(2017·温州月考)已知复数z =(cos θ-isin θ)·(1+i),则“z 为纯虚数”的一个充分不必要条件是( ) A.θ=π4B.θ=π2C.θ=3π4D.θ=5π4解析 因为z =(cos θ+sin θ)+(cos θ-sin θ)i ,所以当θ=3π4时,z =-2i 为纯虚数,当z 为纯虚数时,θ=k π-π4.故选C. 答案 C21.(2017·哈尔滨六中期中)若复数z 满足i·z =-12(1+i),则z 的共轭复数的虚部是( ) A.-12iB.12iC.-12D.12解析 i·z =-12(1+i)⇒z =-12(1+i )i =-12(1+i )·ii·i =12(-1+i),则z 的共轭复数z =12(-1-i),其虚部是-12. 答案 C22.(2017·绍兴月考)i 是虚数单位,若2+i 1+i=a +b i(a ,b ∈R ),则lg(a +b )的值是( )A.-2B.-1C.0D.12 解析 ∵(2+i )(1-i )(1+i )(1-i )=3-i 2=32-12i =a +b i , ∴⎩⎪⎨⎪⎧a =32,b =-12,∴lg(a +b )=lg 1=0. 答案 C23.下面是关于复数z =2-1+i的四个命题: p 1:|z |=2; p 2:z 2=2i ;p 3:z 的共轭复数为1+i; p 4:z 的虚部为-1.其中的真命题为( )A.p 2,p 3B.p 1,p 2C.p 2,p 4D.p 3,p 4解析 ∵z =2-1+i =-1-i , ∴|z |=(-1)2+(-1)2=2,∴p 1是假命题;∵z 2=(-1-i)2=2i ,∴p 2是真命题;∵z =-1+i ,∴p 3是假命题;∵z 的虚部为-1,∴p 4是真命题.其中的真命题共有2个:p 2,p 4.答案 C24.(2017·广州综合测试)若1-i(i 是虚数单位)是关于x 的方程x 2+2px +q =0(p ,q ∈R )的一个解,则p +q =( )A.-3B.-1C.1D.3 解析 依题意得(1-i)2+2p (1-i)+q =(2p +q )-2(p +1)i =0,即⎩⎨⎧2p +q =0,p +1=0,解得p =-1,q =2,所以p +q =1,故选C.答案 C25.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________. 解析 z =(3m -2)+(m -1)i ,其对应点(3m -2,m -1)在第三象限内,故3m -2<0且m -1<0,∴m <23.答案 ⎝ ⎛⎭⎪⎫-∞,23 26.设f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为________. 解析 f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n =i n +(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,… ∴集合中共有3个元素.答案 327.(2017·杭州调研)已知复数z =x +y i ,且|z -2|=3,则y x 的最大值为________;最小值为________.解析 ∵|z -2|=(x -2)2+y 2=3,∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭⎪⎫y x max =31= 3.⎝ ⎛⎭⎪⎫y x min=- 3. 答案 3 - 328.定义运算=ad -bc .若复数x =1-i 1+i ,y =,则y =________. 解析 因为x =1-i 1+i=(1-i )22=-i. 所以y ===-2. 答案 -2。

2018年浙江高考数学二轮复习教师用书:第1部分 重点强化专题 专题3 突破点6 古典概型

专题三概率及期望与方差建知识网络明内在联系[高考点拨]本专题涉及面广,往往以生活中的热点问题为依托,在浙江新高考中的考查方式十分灵活,背景容易创新.基于上述分析,本专题按照“古典概型”“随机变量及其分布”两个方面分类进行引导,强化突破.突破点6 古典概型(对应学生用书第24页)[核心知识提炼]提炼1古典概型问题的求解技巧(1)直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一列举出来,然后进行求解.(2)画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图,列举过程更具有直观性、条理性,使列举结果不重、不漏.(3)逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思维,先求其对立事件的概率,进而可得所求事件的概率.(4)活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决. 提炼2求概率的两种常用方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率. (2)若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.[高考真题回访]回访 古典概型1.(2011·浙江高考)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A.110B.310 C.35D.910D [“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白球”,因而所求的概率P =1-C 33C 35=1-110=910.]2.(2014·浙江高考)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.13[记“两人都中奖”为事件A , 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),2种,所以P (A )=26=13.]3.(2013·浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.15[用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc ,共15种选法,其中都是女同学的选法有3种,即ab ,ac ,bc ,故所求概率为315=15.](对应学生用书第25页) 热点题型1 古典概型题型分析:古典概型是高考考查概率的核心,问题背景大多是取球、选人、组数等,求解的关键是准确列举基本事件,难度较小.【例1】 (1)(2017·浙东北教学联盟高三一模考试7)袋子里有大小、形状相同的红球m 个,黑球n 个(m >n >2).从中任取1个球是红球的概率记为p 1.若将红球、黑球个数各增加1个,此时从中任取1个球是红球的概率记为p 2;若将红球、黑球个数各减少1个,此时从中任取1个球是红球的概率记为p 3,则( ) A .p 1>p 2>p 3 B .p 1>p 3>p 2 C .p 3>p 2>p 1D .p 3>p 1>p 2(2)已知M ={1,2,3,4},若a ∈M ,b ∈M ,则函数f (x )=ax 3+bx 2+x -3在R 上为增函数的概率是( )【导学号:68334080】A.916B.716 C.416D.316(1)B (2)A [(1)由题意得p 1=mm +n,p 2=m +1m +n +2,p 3=m -1m +n -2,则1p 1=m +n m =1+n m ,1p 2=m +n +2m +1=1+n +1m +1,1p 3=m +n -2m -1=1+n -1m -1,则1p 1-1p 2=n m -n +1m +1=n -mm m +<0,1p 1-1p 3=nm-n -1m -1=m -n m m ->0,所以1p 2>1p 1>1p 3,所以p 3>p 1>p 2,故选D.(2)记事件A 为“函数f (x )=ax 3+bx 2+x -3在R 上为增函数”.因为f (x )=ax 3+bx 2+x -3,所以f ′(x )=3ax 2+2bx +1. 因为函数f (x )在R 上为增函数,所以f ′(x )≥0在R 上恒成立.又a >0,所以Δ=(2b )2-4×3a =4b 2-12a ≤0在R 上恒成立,即a ≥b 23.所以当b =1时,有a ≥13,故a 可取1,2,3,4,共4个数;当b =2时,有a ≥43,故a 可取2,3,4,共3个数;当b =3时,有a ≥3,故a 可取3,4,共2个数; 当b =4时,有a ≥163,故a 无可取值.综上,事件A 包含的基本事件有4+3+2=9(种). 又a ,b ∈{1,2,3,4},所以(a ,b )共有4×4=16(种). 故所求事件A 的概率为P (A )=916.故选A.][方法指津]利用古典概型求事件概率的关键及注意点1.关键:正确列举出基本事件的总数和待求事件包括的基本事件数.2.注意点:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏. (2)当直接求解有困难时,可考虑求其对立事件的概率.[变式训练1] (2016·温州调研)若将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率是________.29[将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则有3×3=9种不同放法,其中在1,2号盒子中各有一个球的结果有2种,故所求概率是29.]热点题型2 互斥事件与对立事件的概率题型分析:互斥事件与对立事件的概率常与古典概型等交汇命题,主要考查学生的分析转化能力,难度中等.【例2】现有甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的活动,每人参加且只能参加一个社团的活动,且参加每个社团是等可能的.(1)求文学社和街舞社都至少有1人参加的概率;(2)求甲、乙同在一个社团,且丙、丁不同在一个社团的概率.[解]甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的情况如下:共有 (1)文学社或街舞社没有人参加的基本事件有2个, 故所求概率为1416=78.9分(2)甲、乙同在一个社团,且丙、丁不同在一个社团的基本事件有4个,故所求概率为416=14.12分[方法指津]1.直接求法:将所求事件分解为一些彼此互斥事件的和,运用互斥事件概率的加法公式计算. 2.间接求法:先求此事件的对立事件,再用公式P (A )=1-P (A )求解,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法会较简便. 提醒:应用互斥事件概率的加法公式的前提是确定各个事件是否彼此互斥.[变式训练2] (名师押题)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率.【导学号:68334081】[解] 记事件A 为“该车主购买甲种保险”,事件B 为“该车主购买乙种保险但不购买甲种保险”,事件C 为“该车主至少购买甲、乙两种保险中的1种”,事件D 为“该车主甲、乙两种保险都不购买”.4分(1)由题意得P (A )=0.5,P (B )=0.3,6分 又C =A ∪B ,所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8. 12分 (2)因为D 与C 是对立事件,所以P (D )=1-P (C )=1-0.8=0.2. 15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破点12圆锥曲线的定义、方程、几何性质(对应学生用书第44页)[核心知识提炼]提炼1圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于M (l 为抛物线的准线). 提炼2 圆锥曲线的重要性质(1)椭圆、双曲线中a ,b ,c 之间的关系①在椭圆中:a 2=b 2+c 2;离心率为e =ca=1-b 2a 2; ②在双曲线中:c 2=a 2+b 2;离心率为e =ca=1+b 2a2. (2)双曲线的渐近线方程与焦点坐标①双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±ba x ;焦点坐标F 1(-c,0),F 2(c,0);②双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±abx ,焦点坐标F 1(0,-c ),F 2(0,c ).(3)抛物线的焦点坐标与准线方程①抛物线y 2=±2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫±p 2,0,准线方程为x =∓p 2;②抛物线x 2=±2py (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫0,±p 2,准线方程为y =∓p2.提炼3弦长问题(1)直线与圆锥曲线相交时的弦长斜率为k 的直线与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2或|AB |=1+⎝ ⎛⎭⎪⎫1k 2|y 1-y 2|=1+⎝ ⎛⎭⎪⎫1k 2y 1+y 22-4y 1y 2.(2)抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则①x 1x 2=p 24,y 1y 2=-p 2;②弦长|AB |=x 1+x 2+p =2p sin 2α(α为弦AB 的倾斜角);③1|FA |+1|FB |=2p;④以弦AB为直径的圆与准线相切.[高考真题回访]回访1 椭圆及其性质1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59B [∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4= 5. ∴e =c a =53. 故选B.]2.(2016·浙江高考)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1A [C 1的焦点为(±m 2-1,0),C 2的焦点为 (±n 2+1,0), ∵C 1与C 2的焦点重合,∴m 2-1=n 2+1,∴m 2=n 2+2,∴m 2>n 2. ∵m >1,n >0,∴m >n .∵C 1的离心率e 1=m 2-1m ,C 2的离心率e 2=n 2+1n ,∴e 1e 2=m 2-1m ·n 2+1n=m 2-n 2+mn =m 2-n 2+m 2n 2=n 2+2n 2+n 2=n 4+2n 2+1n 4+2n 2>1=1.]3.(2015·浙江高考)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是________.22 [设椭圆的另一个焦点为F 1(-c,0),如图,连接QF 1,QF ,设QF 与直线y =bcx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ . 又O 为线段F 1F 的中点, ∴F 1Q ∥OM ,∴F 1Q ⊥QF ,|F 1Q |=2|OM |. 在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc,|OF |=c , 可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c2a.由椭圆的定义得|QF |+|QF 1|=2bc a +2c2a=2a ,整理得b =c ,∴a =b 2+c 2=2c , 故e =c a =22.] 4.(2014·浙江高考)如图12­1,设椭圆C :x 2a 2+y 2b2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.图12­1(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a -b .[解] (1)设直线l 的方程为y =kx +m (k <0),由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y2b2=1,消去y ,得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0.2分由于l 与椭圆C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝ ⎛⎭⎪⎫-a 2kmb 2+a 2k 2,b 2m b 2+a 2k 2. 4分又点P 在第一象限,故点P 的坐标为⎝ ⎛⎭⎪⎫-a 2k b 2+a 2k2,b 2b 2+a 2k 2. 6分(2)证明:由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k2, 8分整理,得d =a 2-b 2b 2+a 2+a 2k 2+b 2k2. 10分因为a 2k 2+b 2k2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab=a -b , 12分当且仅当k 2=ba时等号成立.所以,点P 到直线l 1的距离的最大值为a -b . 15分回访2 双曲线及其性质5.(2016·浙江高考)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.(27,8) [∵双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,∴|F 1F 2|=4,||PF 1|-|PF 2||=2.若△F 1PF 2为锐角三角形,则由余弦定理知|PF 1|2+|PF 2|2-16>0,可化为(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|>16①.由||PF 1|-|PF 2||=2,得(|PF 1|+|PF 2|)2-4|PF 1||PF 2|=4.故2|PF 1||PF 2|=PF 1|+|PF 22-42,代入不等式①可得(|PF 1|+|PF 2|)2>28,解得|PF 1|+|PF 2|>27.不妨设P 在左支上,∵|PF 1|2+16-|PF 2|2>0,即(|PF 1|+|PF 2|)·(|PF 1|-|PF 2|)>-16,又|PF 1|-|PF 2|=-2, ∴|PF 1|+|PF 2|<8.故27<|PF 1|+|PF 2|<8.]6.(2015·浙江高考)双曲线x 22-y 2=1的焦距是________,渐近线方程是________.2 3 y =±22x [由双曲线标准方程,知双曲线焦点在x 轴上,且a 2=2,b 2=1,∴c 2=a 2+b 2=3,即c =3,∴焦距2c =23,渐近线方程为y =±b a x ,即y =±22x .] 7.(2014·浙江高考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|PA |=|PB |,则该双曲线的离心率是________.52 [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax . 由⎩⎪⎨⎪⎧y =b ax ,x -3y +m =0,得A ⎝⎛⎭⎪⎫am 3b -a ,bm 3b -a ,由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0,得B ⎝⎛⎭⎪⎫-am a +3b ,bm a +3b ,所以AB 的中点C 坐标为⎝ ⎛⎭⎪⎫a 2m9b 2-a 2,3b 2m 9b 2-a 2.设直线l :x -3y +m =0(m ≠0), 因为|PA |=|PB |,所以PC ⊥l , 所以k PC =-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =ca =52.] 回访3 抛物线及其性质8.(2015·浙江高考)如图12­2,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )图12­2A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1A [由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1.]9.(2016·浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 点到y 轴的距离是________.9 [设点M 的横坐标为x ,则点M 到准线x =-1的距离为x +1,由抛物线的定义知x +1=10,∴x =9,∴点M 到y 轴的距离为9.]10.(2016·浙江高考)如图12­3,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.[解] (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.4分(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0,6分故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .7分又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t . 8分设M (m,0),由A ,M ,N 三点共线得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1, 11分所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).15分(对应学生用书第46页)热点题型1 圆锥曲线的定义、标准方程题型分析:圆锥曲线的定义、标准方程是高考常考内容,主要以选择、填空的形式考查,解题时分两步走:第一步,依定义定“型”,第二步,待定系数法求“值”.【例1】 (1)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) 【导学号:68334125】 A .(-1,3) B .(-1,3) C .(0,3)D .(0,3)(2)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72B .3 C.52D .2(1)A (2)B [(1)若双曲线的焦点在x 轴上,则⎩⎪⎨⎪⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎪⎨⎪⎧1+n >0,3-n >0,∴-1<n <3.若双曲线的焦点在y 轴上,则双曲线的标准方程为y 2n -3m 2-x 2-m 2-n =1,即⎩⎪⎨⎪⎧n -3m 2>0,-m 2-n >0,即n >3m 2且n <-m 2,此时n 不存在.故选A.(2)如图所示,因为FP →=4FQ →,所以|PQ ||PF |=34,过点Q 作QM ⊥l 垂足为M ,则MQ ∥x 轴,所以|MQ |4=|PQ ||PF |=34,所以|MQ |=3,由抛物线定义知|QF |=|QM |=3.][方法指津]求解圆锥曲线标准方程的方法是“先定型,后计算”1.定型,就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程.2.计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[变式训练1] (1)经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( ) A.x 2113-y 211=1 B.x 22-y 2=1 C.y 2113-x 211=1 D.y 211-x 2113=1 (2)(2017·金华十校第一学期调研)已知抛物线C :y 2=2px (p >0),O 为坐标原点,F 为其焦点,准线与x 轴交点为E ,P 为抛物线上任意一点,则|PF ||PE |()图12­4A .有最小值22B .有最小值1C .无最小值D .最小值与p 有关(1)A (2)A [(1)设双曲线的渐近线方程为y =kx ,即kx -y =0,由题意知|-2|k 2+1=1,解得k =±3,则双曲线的焦点在x 轴上,设双曲线方程为x 2a 2-y 2b2=1,则有⎩⎪⎨⎪⎧22a 2-12b 2=1,ba =3,解得⎩⎪⎨⎪⎧a 2=113,b 2=11,故选A.(2)过点P 作PF ′垂直于准线交准线于F ′.设P ⎝ ⎛⎭⎪⎫y 22p ,y ,故|PF ′|=y 22p +p 2,|EF ′|=y ,因为|EF ′||PF ′|=1y 2p +p 2y≤1,此时|PF ||PE |有最小值22,故选A.] 热点题型2 圆锥曲线的几何性质题型分析:圆锥曲线的几何性质是高考考查的重点和热点,其中求圆锥曲线的离心率是最热门的考点之一,建立关于a ,c 的方程或不等式是求解的关键.【例2】 (1)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13B.12C.23D.34(2)(2017·杭州第二次质检)设抛物线y 2=2px (p >0)的焦点为F ,点A ,B 在抛物线上,且∠AFB =120°,弦AB 的中点M 在准线l 上的射影为M 1,则|MM 1||AB |的最大值为________. (1)A (2)33[(1)如图所示,由题意得A (-a,0),B (a,0),F (-c,0).由PF ⊥x 轴得P ⎝⎛⎭⎪⎫-c ,b 2a .设E (0,m ),又PF ∥OE ,得|MF ||OE |=|AF ||AO |, 则|MF |=m a -ca.①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a. ②由①②得a -c =12(a +c ),即a =3c ,所以e =c a =13.故选A.(2)如图所示,由抛物线的定义以及梯形的中位线定理得|MM 1|=|AF |+|BF |2,在△ABF 中,由余弦定理得|AB |2=|AF |2+|BF |2-2|AF |·|BF |cos 2π3=|AF |2+|BF |2+|AF |·|BF |=(|AF |+|BF |)2-|AF |·|BF |≥(|AF |+|BF |)2-⎝⎛⎭⎪⎫|AF |+|BF |22=3|MM 1|2,当且仅当|AF |=|BF |时,等号成立,故|MM 1||AB |取得最大值33.][方法指津]1.求椭圆、双曲线离心率(离心率范围)的方法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求c a的值. 2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值.②利用渐近线方程设所求双曲线的方程.[变式训练2] (1)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D .2(2)(名师押题)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )【导学号:68334126】A.22 B .2-3 C.5-2 D.6- 3=b 2a . (1)A (2)D [(1)法一:如图,因为MF 1与x 轴垂直,所以|MF 1|又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =c a = 2.法二:如图,因为MF 1⊥x 轴,所以|MF 1|=b 2a . 在Rt △MF 1F 2中,由sin ∠MF 2F 1=13得tan ∠MF 2F 1=24.所以|MF 1|2c =24,即b 22ac =24,即c 2-a 22ac =24,整理得c 2-22ac -a 2=0,两边同除以a 2得e 2-22e -1=0.解得e =2(负值舍去).(2)设|F 1F 2|=2c ,|AF 1|=m ,若△F 1AB 是以A 为直角顶点的等腰直角三角形, ∴|AB |=|AF 1|=m ,|BF 1|=2m .由椭圆的定义可知△F 1AB 的周长为4a ,∴4a =2m +2m ,m =2(2-2)a .∴|AF 2|=2a -m =(22-2)a .∵|AF 1|2+|AF 2|2=|F 1F 2|2,∴4(2-2)2a 2+4(2-1)2a 2=4c 2,∴e 2=9-62,e =6- 3.]。

相关文档
最新文档