一次函数图像说课稿[1]
《一次函数的图像(1)》说课稿——徐秋慧

《一次函数的图像(1)》说课稿——徐秋慧大家好!我说的课是北师大版数学教材八年级上册第四章《函数》的第三节《一次函数的图像》的第1课时。
我将从教学任务、方法、手段、过程、预期和板书这六大板块的设计进行挑重点的阐述。
一、教学任务设计先看【学情】——在七年级下册的《变量之间的关系》里,学生对用图像表示变量之间的关系已积累了丰富的经验;在本章第一节《函数》里,学生又明确了作函数图像的一般步骤。
所以,学生作一次函数的图像并不困难。
然而,学生在这章刚刚接触函数,一次函数又是学生学习的第一种函数,所以,学生对如何研究函数,如何研究函数的性质,如何把函数的解析式和图像有机地结合起来,都会感到陌生和困难。
再看【内容】——所有老师在讲函数时,都会花大量的时间和精力。
一是因为函数重要,重要到它是初中数学、高中数学、大学数学,乃至整个庞大数学体系的一个重要核心;二是因为函数难,它抽象难懂、错综复杂。
所以,一次函数作为学生接触的第一类基本函数,需要浓墨重彩,这就不难理解《教参》规定这节课用2课时完成的原因了。
第一节应先从简单的、特殊的一次函数(即正比例函数)着手。
基于以上分析,我对教学任务设计如下——首先是四维教学目标。
我们重点看一下第二维和第三维目标,它们是专门针对数学学科设定的。
其中,数学思考方面——在利用正比例函数图像探究性质的过程中,发展合情推理能力;在利用解析式反思正比例函数性质的过程中,发展演绎推理能力。
问题解决方面——经历一系列探究过程,领会“从特殊到一般”、“数形结合”和“分类讨论”等思想方法;通过类比k>0类型的正比例函数,合作探究k<0类型的正比例函数的图像和性质,培养类比学习的能力。
一次函数的图像和正比例函数的性质,自然就是本节课的教学重点;探究正比例函数的性质,则是难点。
我将通过层层递进的梯度设计、几何画板的直观演示、让学生亲历探究过程、给学生充分思考和交流的时间,使学生在知识发生和思维发展的过程中水到渠成地解决这一难点。
北师大版八年级上册数学《 一次函数的图像》说课稿

学法
(1)观察法:通过观察一次函数的图象的基本特征, 理解一次函数的图象的规律。 (2)练习法:通过练习绘制一次函数的图象,掌握 绘图方法。
(3)合作学习法:通过小组合作学习,互相讨论、 互相帮助,提高学习效果。
06
说教学过程
新课导入
1. 教师出示一张图,上面画有一条直线,斜 率为1,截距为0,并问学生这是什么图形。 2. 学生思考一会儿后,教师引导学生发现这 是一次函数的图象。 3. 教师提问:一次函数的图象有哪些基本特 征?引导学生回答:斜率、截距、单调性、 定义域、值域等。
02
说学情
说学情
本节课是初中数学北师大版八年级上册的一次函数 章节的第三节,学生已经学习了一次函数的定义、 一次函数的基本形式、一次函数的斜率和截距等知 识。学生已经具备了一定的数学基础,但对于一次 函数的图象还存在一定的陌生感和困惑。因此,本 节课需要通过生动有趣的教学方法,激发学生的学 习兴趣,让学生更好地理解和掌握一次函数的图象。
合作学习
2、教师巡视各小组 教师巡视各小组,指导学生绘图,并及时纠正学生的 错误。例如,教师可以询问学生如何确定这个函数的 斜率和截距,以及如何通过斜率和截距来绘制出这个 函数的图象。
巩固练习
1. 已知一次函数 y = 2x - 1,求其图象的斜 率和截距,并绘制出其图象。 2. 已知一次函数 y = -3x + 2,经过点(1, -1),求其图象,并判断其单调性。 3. 给定一次函数 y = kx + b,若其经过点 (1,2)和(2,5),求 k 和 b 的值,并 绘制出其图象。
03
说教学目标
知识与技能目标
(1)了解一 次函数的图象 的基本特征;
(2)掌握 如何绘制 一次函数 的图象;
一次函数的图像说课稿

明确目标 出示知识目标、情感目标和能力目标
温故知新
正比例函数性质:
Y=-2X
8
Y
8
76 6 54 4
2
Y=½ X
3 温故知新 2 复习正比例函数的图象和性质,起到引出新课的目的。 1 本节课创设一个一次函数应用方面的问题情境作用不大 没学,难以理解。 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 X -1 对于正比例函数y=kx -2
六、教学方法 我采用启发式教学方法,引导学生自主探究一次函数的图 象和性质,经过观察图形——数形结合——寻找规律——得出 结论——巩固练习等过程,使学生积极参与课堂,提高课堂教 学的有效性。 七、能力培养 并且,我在设计练习时,搜集了一些变式题目,这样既有 利于学生巩固一次函数的性质,又能提高学生多方面思考问题、 多角度解决问题的能力。 八、教学手段 由于课堂教学时要展示函数图象,加上课堂容量较大,所 以我采用了多媒体教学手段。 九、选题意图 由授课时间(五、六周)和班级基础决定。(简易程度、动手 操作、计算量、课堂容量、演示过程等) 十、每一张幻灯片的设计意图
-6
-8
Y
Y=-X+3
8 8
议一议:
(1)直线y=-x与直线y=-x+3的位置关系 如何?你能通过适当的移动将直线y=-x变 为直线y=-x+3吗?一般地,直线y=kx+b与 y=kx又有怎样的位置关系?
-10 -9
-10
Y=-X
7 6 6 5
4 4
3 2 2 1 -6 -5
-5
-8 -7
-4
-3 -2 -1
-2
1 O -1 -2 -3
北师大版八年级数学上册:4.3《一次函数的图象》说课稿

北师大版八年级数学上册:4.3《一次函数的图象》说课稿一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4章第3节的内容。
本节课主要介绍了一次函数的图象特点,以及如何通过图象来分析一次函数的性质。
教材通过生动的实例,引导学生探究一次函数图象的规律,培养学生的观察能力、思考能力和实践能力。
二. 学情分析八年级的学生已经掌握了函数的基本概念,一次函数的解析式也有一定的了解。
但在实际操作中,对一次函数图象的认识和分析还相对薄弱。
因此,在教学过程中,要注重引导学生通过观察、实践来理解一次函数图象的特点,提高学生对一次函数图象的分析能力。
三. 说教学目标1.知识与技能目标:让学生掌握一次函数图象的性质,能够通过图象来分析一次函数的特点。
2.过程与方法目标:通过观察、实践,培养学生的观察能力、思考能力和实践能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神,使学生在探究过程中体验到数学的乐趣。
四. 说教学重难点1.教学重点:一次函数图象的性质及其应用。
2.教学难点:如何引导学生通过观察、实践来理解一次函数图象的特点。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的图片,引导学生关注一次函数图象在现实生活中的应用,激发学生的学习兴趣。
2.探究一次函数图象的性质:让学生观察、分析实例,引导学生发现一次函数图象的规律,总结一次函数图象的特点。
3.小组讨论:让学生分小组讨论一次函数图象在实际问题中的应用,培养学生解决问题的能力。
4.巩固提高:通过练习题,让学生运用所学知识分析一次函数图象,提高学生的实践能力。
5.总结:对本节课的内容进行总结,强调一次函数图象的性质及其在实际问题中的应用。
七. 说板书设计板书设计要清晰、简洁,突出一次函数图象的性质。
2018-2019-《一次函数的图像》说课稿-精选word文档 (5页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==《一次函数的图像》说课稿以下是初中数学优秀说课稿《一次函数的图像》,欢迎参考借鉴!今天我说课的题目是《一次函数的图像》,所选用的教材为华师大版义务教育阶段初中数学实验教材第四册。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。
一.教材分析1.教材的地位和作用本节教材是初中数学 8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。
第18章,既是学生函数的入门,也是进一步学习的基础。
作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
2.教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。
二.学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
苏科版数学八年级上册6.3《一次函数的图象》说课稿1

苏科版数学八年级上册6.3《一次函数的图象》说课稿1一. 教材分析《一次函数的图象》是苏科版数学八年级上册第六章第三节的内容。
本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。
通过本节内容的学习,使学生能够掌握一次函数的图象特征,能够运用一次函数的图象解决一些实际问题。
二. 学情分析学生在学习本节内容时,已经具备了初步的函数知识,对于一次函数的概念和性质有一定的了解。
但是,对于一次函数的图象特征和如何运用一次函数的图象解决实际问题,可能还存在一些困难。
因此,在教学过程中,需要注重引导学生通过观察、操作、思考、交流等活动,自主探索一次函数的图象特征,提高学生解决问题的能力。
三. 说教学目标1.知识与技能目标:使学生掌握一次函数的图象特征,能够识别一次函数的图象,能够运用一次函数的图象解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生自主探索、合作交流的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学思维能力。
四. 说教学重难点1.教学重点:一次函数的图象特征。
2.教学难点:如何运用一次函数的图象解决实际问题。
五. 说教学方法与手段1.教学方法:采用观察、操作、思考、交流等教学方法,引导学生自主探索一次函数的图象特征。
2.教学手段:利用多媒体课件,展示一次函数的图象,帮助学生直观地理解一次函数的图象特征。
六. 说教学过程1.导入新课:通过复习一次函数的定义和性质,引出本节课的内容——一次函数的图象。
2.自主探索:让学生自主探究一次函数的图象特征,引导学生通过观察、操作、思考、交流等活动,总结一次函数的图象特征。
3.合作交流:让学生分组讨论,分享各自探索的成果,互相学习,互相启发。
4.讲解演示:教师根据学生的探索结果,进行讲解和演示,使学生更直观地理解一次函数的图象特征。
5.练习应用:布置一些练习题,让学生运用所学的知识解决实际问题,巩固所学内容。
鲁教版一次函数的图像单元说课稿

《一次函数的图像》说课稿山东省荣成市石岛实验中学姜喜芳尊敬的各位评委、老师:大家好。
我来自山东省荣成市石岛实验中学,我今天说课的课题是:《一次函数的图像》,选自鲁教版义务教育课程标准实验教科书数学七年级上册第六章第三节。
我将从说课标、说教材、说建议三个方面展开我的单元说课。
初中数学知识结构,它包括四部分:数与代数,空间与图形,概率与统计,实践与综合应用。
《一次函数的图象》属于数与代数的范畴。
说课标:一、课程理念新课标的理念是人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
遵循数学课程、教材、教师与学生之间的认知规律。
同时要关注学生活动以及重塑知识的形成过程,倡导学生主动探索、自主学习、合作讨论,体现数学再发现的过程。
鼓励学生“观察”、“操作”、“发现”,在这个过程中通过合作交流,让学生发展自主学习的能力,发展学生的个性品质,从而激发学生的学习兴趣,提高学生学习数学的能力。
新一轮鲁教版初中数学教材展示了丰富多彩的与实际生活联系的例子,借助例子培养学生应用数学的意识,同时又借助数学知识去感悟生活。
二、课程目标(一)知识技能经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。
(二)数学思考建立数感、符号意识,初步形成运算能力,发展形象思维与抽象思维。
学会独立思考,体会数学的基本思想和思维方式。
(三)问题解决初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,增强应用意识,提高实践能力。
(四)情感态度体会数学的特点,了解数学的价值。
三、课程内容数与代数包含三大类:数与式、方程与不等式、函数。
数与式涵盖的内容有:数与式的概念、分类、意义、性质和运算。
方程与不等式涉及的内容有:方程(组)和不等式(组)的意义、性质、求解方法以及根据情景列方程(组)和不等式(组)。
函数内容包括:函数的概念、表示方法、函数图象的画法、特征以及运用函数解决实际问题。
数与代数各内容的知识间有一定的内在逻辑关系:1、内容注重基础,留有发展余地,体现螺旋上升的概念思想,如:方程和函数,按照一次和二次数量关系使方程和函数交替出现,螺旋上升,从函数角度认识方程。
一次函数的图像和性质(说课稿)

一次函数的图像和性质(说课稿)《一次函数的图像和性质(1)》说课稿珠海市九洲中学裴红梅新课标理念下的数学教学,是师生之间、学生之间交流互动与共同发展的过程。
基于以上的教育教学理念,我对新人教版教科书八年级上册第十一章《一次函数》中《一次函数的图象和性质》第一节的知识做了教材分析、目标分析、学情分析、教法分析与学法指导、教学过程分析及教学评价等六个方面的分析。
下面我将结合这六个方面向各位专家、老师汇报我是如何分析教材和设计教学过程的。
一、教材分析1、教材的地位和作用本节课的教学内容是一次函数的图象和性质,它是正比例函数图象与性质的推广,在许多方面与正比例函数的图象与性质有着紧密联系。
本节课是继续学习反比例函数、二次函数的图象和性质的重要基础,也是学习高中代数、解析几何以及其他数学分支的重要基础。
2、教学重点与难点教学重点:一次函数的图象和性质。
教学难点:由函数的图象归纳得出函数的性质及对性质的理解。
3、教材处理本节课是一节新知探究课。
为了使学生在探索的过程中理解并掌握一次函数的图象和性质,我将会充分调动学生的学习积极性,引导学生开展观察、猜想、操作、比较、归纳、交流等多种形式的活动。
2、说学法:在本节的教学中我会把教法融于学法中,在学法中体现教法。
让学生通过一些不同问题的讨论、归纳来提高他们分析、解决问题的能力。
五、教学过程分析1、教学过程设计2、教学过程教学过程(一)(1)、复习:教学过程设计复习旧知引出新知分层作业提高新知归纳总结体会新知深入研究拓展新知动手实践探究新知跟踪练习巩固新知教学内容设计意图复习旧知引出新知①、在平面直角坐标系中画出函数y x=的图象②、正比例函数的图像与性质。
(2)、提出问题:①、正比例函数作为特殊的一次函数,它的图象是一条直线,那么一次函数的图象也是一条直线吗?②、从解析式上看,一次函数(,y kx b k b=+为常数,0)k≠与正比例函数(,0)y kx k k=≠是常数只差一个常数b,这个差别体现在图象上又会怎样呢?让学生回顾旧知的同时,带着问题去探究新知,将抽象的问题具体化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的图像说课稿
一、说教材
本节课是北师大版数学八年级上册第六章第3节,是在学生已有的变量与函数、平面直角坐标系、以及一次函数的概念等有关知识基础上,对一次函数的图像和有关性质探索学习。
本节也是继续学习反比例函数、二次函数图像和性质的重要基础,本节是第一课时,它将主要学习如何做一次函数的图像,同时也为第二课时研究其图像性质打下良好的基础。
根据上述教材结构与内容分析,考虑到目前学生已有的认知结构心理特征,我确立本节课的教学目标是
知识与技能目标
1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.过程与方法目标
1.经历函数图象的作图过程,初步了解作函数图象的一般步骤.2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.
情感、态度与价值观目标
1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.
2.在探究活动中发展学生的合作意识和探究能力.
教学重点
1.理解、归纳作函数图象的一般步骤:列表、描点、连线.
2.熟练地作一次函数的图象.
3.理解一次函数的代数表达式与图象之间的一一对应关系.教学难点
理解一次函数的代数表达式与图象之间的一一对应关系.
二、说教法与学法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。
基于本节课的特点:应着重采用数形结合的教学方法,以及由特殊到一般的方法、类比法,还有多媒体课件应用于课堂教学,增强知识的直观性。
在教学中要特别重视学法的指导。
初步培养学生用事物相互联系和发展变化的观点来分析问题,从而认识事物之间是相互联系和有规律地变化着的。
培养学生的画图能力,主要是培养学生的看图、识图能力。
培养思维能力,主要是学会根据概念的直观表象,归纳得出概念的性质,由特殊到一般,由简单到复杂,运用类比、归纳、数形结合等方法,培养学生分析问题、解决问题的能力。
三、说教学过程
本节课设计了七个教学环节:
第一环节:课前回顾引入课题,领学学习目标;
第二环节:师生合作,画一次函数的图象;
第三环节:学生动手操作,深入探索,深化理解;
第四环节:课堂检测
第五环节:课时小结;
第六环节:作业布置
四、教学过程分析:
1、回顾函数的几种表现形式,通过多媒体列举一些函数的图像,让学生体会它的直观性,引出本节课的课题:一次函数的图像,同时利用幻灯片展示本节课的学习目标。
2、给出函数图像的概念,利用课件的动画效果示范作出一次函数 y=2x+1的图象,并归纳总结作函数图象的一般步骤:列表,描点,连线。
3、做一做:学生结合函数作图的一般步骤动手做出一次函数
y=-2x+5的图像,结合例1总结一次函数图像就是一条直线,只需要两个点即与两坐标轴的交点就可以做出图像,
再次给出两个练习题:做出函数y=1/3x和y=-3x+6的图像,对函数作图进行巩固练习,突出本节课的重点。
4、在一次函数y=-2x+5的图像上任取几个点,找出它们的横坐标和纵坐标,并验证它们都满足关系y=-2x+5.,同时满足一次函数
y=-2x+5的x,y所对应的(x,y)都在一次函数y=-2x+5的图像上,突出“一次函数的表达式与图象之间的对应关系”这一重点。
5、通过“砸金蛋”的游戏让学生进一步理解“一次函数的表达式与图象之间的对应关系”进而突破难点。
6、通过课堂检测检验本节课学生的学习情况。
六效果预测:
课堂上,尽量留给学生更多的空间,更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立了学好数学的信心。
真正实现“知识的超市,生命的狂欢”。
1、在创设情境,引入新课。
引导学生相应的简单的说出相关概念。
可能需要老师适当地做以补充和说明。
2、在自主学习的过程中,有的学生可能会对相关的学习目标不太清楚,对实在有些困难的学生适当加以说明和全程指导。
同时提醒学生应该用红笔进行圈点,注意在有效的时间里高效学习。
3、在合作探究过程中,有组稍稍薄弱的,应该适当地给予帮助,检测一下学习目标和导学案的完成情况。
4、在展示交流环节,可能有的同学思路变得有些模糊,影响了学习进度,应该给予肯定,同时注意组织好自己的语言,有条理性,简洁易懂。
5、大多数学生能积极合作,深入探究。
但对于严重两极分化的学困生由于基础差,因而缺乏合作能力,没有合作意识。
6、可能因为某种原因,在某个环节耽误了时间,收放不自如。
没有完成预定的学习内容。
以上,通过几个方面上说明了“学什么”和“怎么学”,阐明了“为什么这样学”。
希望各位专家领导对本堂说课提出宝贵意见。