通过自上而下制备垂直硅纳米线阵列
“自上而下”制作硅化镍纳米线

( 中国科 学院物理研 究 所微加 工 实验 室 , 北 京 10 8 ) 00 0
摘 要 : 出了“ 提 自上 而下 ” 制作硅 化镍 纳 米 线 的方 法 , 究 了制 备 出的 纳米 结构 的形 成 过程及 微 研
观形貌。这种金属硅化物纳米线的制作方法对于集成电路制造很有应用价值。
统 的铝互 连相 比 ,铜互 连所 面 临的难 以刻蚀 和易
扩散于氧化硅和硅等 问题 ,通过 大马士革工艺 (a acn rcs) dm s e oes和阻挡层金属处理等手段 , e p 目
前 已经基 本得 到 解决 。尽管 铜互 连 和低 介 电常数 介 质 的 应 用 可 以缓 解 今 后 几代 高 性 能 集 成 电路 的互 连 问题 ,但 是 随 着器 件 尺 寸 的进 一 步 缩小 ,
缘介 质两 种途径解 决 。 就互 连材料 而言 , 铝线 因电 致 迁移 问题 易导致 集 成 电路 失效 而遭 人诟 病 。铜 互 连技 术 的引入 可 以避免 电致迁 移效 应带 来 的可
也需要考虑其它导电材料作为可能的选择。 金属
硅化物具有较低的电阻率 、 高的热稳定性 、 良好 的抗 电致 迁 移 性 能 ,并 且 难 以扩 散 于 氧 化 硅 和 硅, 在硅基上可 以实现 自对准生长 , 也有希望被 用作互连材料 , 因此 , 金属硅化物纳米结构 的制备 和其电学特性的研究 ,对于它们在未来集成电路 中的潜在应用具有重要意义 , 并且 已经受到了很
维普资讯
第 4卷第 4 期
2 0 年 8月 07
纳 米 加 工 工 艺
Na o p o e s gT c nq e n - rc si e h iu n
硅纳米线的现代制备方法

硅纳米线的现代制备方法作者:王策来源:《硅谷》2014年第15期摘要硅纳米线是一种新型的一维纳米材料,其独特的物理特性,使其在光电器件,纳米器件以及微电子电路上有很好的应用。
简要概括了目前大规模制备硅纳米线的主流技术:激光烧蚀法、化学气相沉积法、热蒸发法以及金属辅助化学腐蚀法。
关键词硅纳米线;制备;生长机理中图分类号:TB383 文献标识码:A 文章编号:1671-7597(2014)15-0110-02硅基半导体材料是目前整个半导体器件和集成电路的基础,随着集成电路的高密度化,体硅逐渐难以满足微电子制造技术的发展需求。
硅纳米线作为一维硅纳米材料,在具有半导体性质的同时,由于其直径与其德布罗意波长相当,还具有不同于体硅材料的量子限制效应[1]、库仑阻塞效应以及光致发光等物理特性。
更重要的是硅纳米线和目前的硅基材料有极好的兼容性,因而在未来的纳米半导体材料以及纳米电子器件中具有良好的应用前景[2]。
对于硅纳米线制备方法的研究发展迅速,最初1998年利用照相平板蚀刻技术及扫描隧道显微方法[3~5]得到硅纳米线产量较小,不能满足实际研究需求,同年即采用激光烧蚀法[6~9]制备出大量硅纳米线。
目前已有多种方法可制备出大量硅纳米线,目前的主流方法有激光烧蚀法,化学气相沉积法,热气相沉积法以及近年来的金属辅助化学腐蚀法等。
而生长机理则包括气-液-固(VLS)生长机理,氧化物辅助生长机理及超临界溶液-液-固合成等多种机理。
1 激光烧蚀法激光烧蚀法是一种将固体靶材放入真空或填充某种特定气体的腔体内,靶材在激光烧蚀下快速蒸发及超高速冷却、凝聚,从而形成纳米材料的技术。
在以VLS为原理的制备中,金属纳米的颗粒大小决定了纳米线的直径,并通过不断吸附反应物使之在催化剂-纳米线界面上过饱和溢出,使得纳米线不断生长。
采用含少量Fe,Au,Ni的硅粉作为靶材,放入填充Ar气的石英管中,在一定温度下激光烧蚀可获得硅纳米线。
含有Fe的硅粉在激光烧蚀作用下生成Fe和Si的高温浓缩蒸汽,Fe和Si碰撞形成纳米团簇,并在Ar气作用下冷却为液态。
自上而下”法制备高性能GaN纳米线阵列

2019年第32卷第9期Electronic Sci.&Tech./Sep.15,2019收稿日期:2018-09-04基金项目:国家自然科学基金(51572173,51602197,51771121,51702212)National Natural ScienceFoundationofChina (51572173,51602197,51771121,51702212)作者简介:桂奇(1994-)男,硕士研究生。
研究方向:半导体紫外光探测器。
“自上而下”法制备高性能GaN纳米线阵列桂奇,祝元坤,王现英(上海理工大学材料科学与工程学院,上海200093)摘要针对自下而上生长GaN 纳米线的尺寸、形态、取向不易控制的问题,文中采用自上而下刻蚀的方法来制备GaN 纳米线材料。
以图形化的金属Ni 作为掩膜对GaN 进行ICP 刻蚀,系统研究了刻蚀参数,主要是ICP 功率以及RF 功率对GaN 纳米线形貌以及拉曼、PL 光谱的影响,同时也对比了干法刻蚀后,有无湿法处理的影响。
研究发现,当ICP 功率为1000W ,RF 功率为100W 时,GaN 纳米线的拉曼和PL 光谱强度较大,表明此功率下刻蚀的纳米线损伤较小。
经过KOH 浸泡30min 后,GaN 纳米线的形貌得到了改善,拉曼和PL 光谱强度均优于单纯的干法刻蚀,为下一步器件的制备提供了良好的材料基础。
关键词GaN ;纳米线;Ni 掩膜;ICP 刻蚀;湿法腐蚀;侧壁形貌中图分类号TN305文献标识码A文章编号1007-7820(2019)09-001-05doi :10.16180/ki.issn1007-7820.2019.09.001Preparation of High Performance GaN Nanowire Arrays by Top -down MethodGUI Qi ,ZHU Yuankun ,WANG Xianying(School of Materials Science and Engineering ,University of Shanghai for Science and Technology ,Shanghai 200093,China )AbstractIn this paper ,the top -down etching method is used to fabricate GaN nanowires for solving the prob-lem that the uncontrollable of the size ,morphology and orientation of GaN nanowires grown from bottom.ICP dry etching was used on GaN epitaxy with patterned metal Ni as a mask.The etching parameters were systematically stud-ied ,and the effects of ICP power ,RF power and wet etching on the morphology ,Raman and PL spectra of GaN nanowires were also been investigated.It has been found that when the ICP power is 1000W and the RF power is 100W ,the intensity of Raman and PL spectra of the GaN nanowires are relatively strong ,indicating that the nanowires etched under this condition are with less defects.After immersion in KOH for 30min ,the morphology of GaN nanowires was improved.The intensity of Raman and PL spectra was better than that of only with dry etching ,which provided a good nanowires for the preparation of the device application.KeywordsGaN ;nanowires ;Ni mask ;ICP etching ;wet etching ;morphology of sidewall氮化镓(GaN )作为第三代宽禁带半导体材料,由于具备较大的禁带宽度,较高的电子迁移率,较高的化学稳定性等诸多优点,在光电子器件以及电子器件领域被国内外学者广泛研究[1-2]。
自上而下(Top-down)方法实现高密度垂直硅纳米线(Vertical Si NWs)阵列

36 nm100 nm100 nm 100 nm(c)(d)100 nm21 nm(a)(b)Fig.1.SEM images (titled view)of HSQ nanocolumns networks with a height of 130nm (a–c)and 300nm (d),and a diameter/pitch of (a)21nm/100nm,(b)36nm/30nm,(c)30nm/25nm,(d)80nm/60nm,respectively.of negative-tone resist Hydrogen SylsesQuioxane (HSQ)diluted in isobutyl ketone marketed by Dow Corning under name of FOx-12and FOx-16was used.The HSQ solution was spin coated on (100)Si wafers and baked at 80 C for 60s to evaporate the solvent.Resist thicknesses rang-ing from 70nm to 330nm have been obtained by spin-coating at various angular speeds.E-beam exposures are performed with an EBPG 5000+system from LEICA at the high energy of 100K eV .100pA beam current gives an extremely small spot size,estimated at 5nm.An opti-mum dose of 2750 C/cm 2coupled with correction fac-tors that take into account proximity effects and pattern sizes generate HSQ nanocolumns networks with diame-ters ranging from 20nm to 240nm.After exposure,the HSQ resist was developed by manual immersion in 25%Tetramethylammonium Hydroxide (TMAH)at 20 C for 60s,rinsed in deionized water,and blown dry with ing this process sequence,HSQ nanopillars net-works with very high contrast are obtained as shown in10 mTorr (a)HSQSi 20 nm2 mTorr(b)HSQ20 nmSi061218243020406080100120140Source power (W)(c)M i c r o t r e n c h i n g d e p t h (n m )20 nm20 nm2.SEM images (cross-section view)of Si nanoblade using 100 nm(b)50 nmθθD 1D 2L 1L 2(c)(d)100 nm(a)(e)100 nm180 nm100 nm60 nmFig.3.(a)SEM image (cross-section view)of network of 30nm length nanoblades with a spacing of 60nm,100nm and 180nm and (b)zoom of the densest part (c)schematic representation of species scattered from the resist mask.(d–e)SEM images (titled view)of Si NWs network etched with two different resist thicknesses.(a)(b)1 µm100 nmFig.4.SEM images(titled view)of(a)a large area(22 m×22 m) of vertical Si NWs networks with a100%yield;(b)ultra high density (4×1010cm−2)vertical Si NWs networks with a100%yield.performed on a dense network of HSQ nanocolumns,as shown in Figure3(d).The same phenomenon is observed with a shape of nail head in the top part of the Si NWs. In order to realize dense networks of vertical Si NWs with a limited undercut,a sufficient resist height should remain until the end of the process as presented in Figure3(e).In summary,using the optimized RIE conditions applied on dense HSQ columns,ultra high density vertical Si NWs networks were demonstrated.Figure4(a)shows SEM viewNWs without any defects and20 nm11.7 nmFig.5.SEM image(titled view)of vertical Si NWs networks tapered wet oxidation with11.7nm diameter and a high aspect ratio of11.12.K.H.A.Bogart,F.P.K lemens,M.V.Malyshev,J.I.Colonell,V.M.Donnelly,J.T.C.Lee,and ne,J.Vac.Sci.Technol.B 18,197(2000).13.M.A.Vyvoda,H.Lee,M.V.Malyshev,F.P.klemens,M.Cerullo,V.M.Donnelly,D.B.Graves,A.K ornblit,and J.T.C.Lee,J.Vac.Sci.Technol.A16,3247(1998)rrieu and E.Dubois,J.Vac.Sci.Technol.B23,2046(2005).15.G.S.Oehrlein,R.M.Tromp,Y.H.Lee,and E.J.petrillo,Appl.Phys.Lett.45,420(1984).16.M.M.A.Hakim,L.Tan,O.Buiu,W.Redman-White,S.Hall,andP.Ashburn,Solid-State Electron53,753(2009).Received:4September2009.Accepted:30October2009.RESEARCHARTICLE。
纳米线的制备综述

纳米线的制备综述现代材料制备技术期末报告姓名:翁小康学号: 12016001388专业:材料工程教师:朱进Si纳米线的制备方法总结及其应用摘要:Si纳米线是一种新型的一维纳米半导体材料,具有独特的电子输运特性、场发射特性和光学特性等。
此外,硅纳米线在宽波段、宽入射角范围内有着优异的减反射性能以及在光电领域的巨大应用前景。
传统器件已不满足更快更小的要求,因此纳米线器件成为研究的热点。
关于硅纳米线阵列的制备方法,本文主要从“自下而上”和“自上而下”两大类出发,分别阐述了模板辅助的化学气相沉积法、化学气相沉积结合Langmuir-Blodgett技术法和金属催化化学刻蚀法等方法。
最后介绍了Si纳米线在场效应晶体管、太阳能电池、传感器、锂电池负极材料等方面相关应用。
关键词:Si纳米线;阵列;制备方法;器件应用0 引言近年来,Si纳米线及其阵列的制备方法、结构表征、光电性质及其新型器件应用的研究,已成为Si基纳米材料科学与技术领域中一个新的热点课题。
人们之所以对Si纳米线的研究广泛关注,是由于这种准一维纳米结构具有许多显著不同于其他低维半导体材料的电学、光学、磁学以及力学等新颖物理性质,从而使其在场发射器件、单电子存储器件、高效率激光器、纳米传感器以及高转换效率太阳电池等光电子器件中具有重要的实际应用[1]。
硅纳米线阵列( silicon nanowires arrays,简称SiNWs阵列) 是由众多的一维硅纳米线垂直于基底排列而成的,SiNWs阵列与硅纳米线之间的关系如同整片森林与单棵树木一样,它除了具有硅纳米线的特性外,还表现出集合体的优异性能:SiNWs阵列独特的“森林式”结构,使其具有优异的减反射特性,在宽波段、宽入射角范围都能保持很高的光吸收率,显著高于目前普遍使用的硅薄膜。
例如,对于波长300—800 nm的光,在正入射的情况下,硅薄膜的平均光吸收率为65% ,而SiNWs阵列的平均光吸收率在80% 以上;在光入射角为60°时,硅薄膜的平均光吸收率为45%,而SiNWs阵列的平均光吸收率达70%[2]。
纳米材料的分类

纳米材料的分类
纳米材料可以根据其组成、结构和制备方法进行多种分类。
以下是几种常见的纳米材料分类方法:
1.按组成分分类:
-无机纳米材料:如金属纳米颗粒、氧化物纳米颗粒、量子点等。
-有机纳米材料:如纳米碳管、石墨烯、纳米胶体等。
2.按结构分类:
-纳米颗粒:具有球形、棒状、多面体等形状的纳米颗粒。
-纳米线/纳米管:具有纳米级直径和长径比的纳米线状材料。
-纳米薄膜:具有纳米级厚度的平面材料。
3.按制备方法分类:
-自下而上法:通过原子、分子或簇的组装自下而上地构建纳米结构,如溶液法、气相沉积法等。
-自上而下法:通过宏观材料的切割、磨碎或化学处理等手段自上而下地制备纳米材料,如机械球磨法、物理气相沉积法等。
-生物合成法:利用生物体内的生物合成过程制备纳米材料,如细菌、植物、藻类等。
4.按应用领域分类:
-电子材料:如量子点、纳米线场效应晶体管(NW-FET)、纳米电容器等。
-光学材料:如纳米光子晶体、纳米金、纳米量子点等。
-生物医学材料:如纳米药物载体、纳米生物传感器、纳米生物标记物等。
-能源材料:如纳米材料催化剂、纳米结构电池电极材料、纳米光伏材料等。
5.按形态分类:
-球形纳米材料:如纳米颗粒、纳米球状结构等。
-非球形纳米材料:如纳米管、纳米片、纳米棒等。
这些分类方法并不是相互独立的,纳米材料通常可以根据不同的特性和应用需求进行多种维度的分类。
一种垂直硅纳米线场效应晶体管的制备方法[发明专利]
![一种垂直硅纳米线场效应晶体管的制备方法[发明专利]](https://img.taocdn.com/s3/m/79663fe0e87101f69f31950e.png)
专利名称:一种垂直硅纳米线场效应晶体管的制备方法专利类型:发明专利
发明人:黄如,樊捷闻,艾玉杰,孙帅,王润声,邹积彬,黄欣申请号:CN201110190786.4
申请日:20110708
公开号:CN102315129A
公开日:
20120111
专利内容由知识产权出版社提供
摘要:本发明提供一种寄生电阻较小的垂直硅纳米线场效应晶体管的制备方法,属于超大规模集成电路制造技术领域。
利用本发明制备出的垂直型硅纳米线场效应晶体管相比于传统的平面场效应晶体管,一方面由于其本身的一维几何结构导致的良好栅控能力,能够提供很好的抑制短沟道效应的能力,并减小泄漏电流和漏致势垒降低(DIBL);另一方面,进一步缩小器件面积,提高了IC系统的集成度。
申请人:北京大学
地址:100871 北京市海淀区颐和园路5号
国籍:CN
代理机构:北京万象新悦知识产权代理事务所(普通合伙)
代理人:张肖琪
更多信息请下载全文后查看。
硅纳米线阵列

模板辅助的CVD法
• 先利用电子束蒸发法在Si表面镀一层Al膜并通过阳极氧化形成多 孔结构; • 而后用磷酸除去Si表面的SiO2层; • 再在孔道内无电沉积 Au粒子作为催化剂; • 最后利用超真空CVD(Chemical Vapor Deposition,化学气相沉积) 法分解硅烷气体,生长出了SiNWs阵列。
硅纳米线阵列
硅纳米线阵列(silicon nanowires arrays,简称SiNWs) 是由众多的一维硅纳米线垂直于基底排列而成的,SiNWs 阵列与硅纳米线之间的关系如同整片森林与单棵树木一样, 它除了具有硅纳米线的特性外,还表现出集合体的优异性 能:SiNWs阵列独特的“森林式”结构,使其具有优异的减 反射特性,在宽波段、宽入射角范围都能保持很高的光吸 收率,显著高于目前普遍使用的硅薄膜。
总结
主要从“自下而上”和“自上而上”两类阐述了SiNWs阵列的制备 方法,其中,详述了目前使用最为广泛的金属催化化学刻蚀法制备 SiNWs阵列的步骤、原理、可控因素等最新进展。
SiNWs阵列的应用
• 光电探测器 • 光电化学太阳能电池 • 光解水制氢等光电领域
硅纳米线阵列的制备
• 近年来袁为制备有序的SiNWs阵列,研究者先后开发出多种制备方 法,这些方法大体上可分为两类: “自下而上”(bottom-up)和“自上而下”(top-down)。
• 前者是从原子或分子出发控制组装成SiNWs阵列;而后者则是从体 硅(硅片)出发,经化学刻蚀制得。
内容
• 1.硅纳米线
• 2.硅纳米线阵列
Байду номын сангаас
• 3.SiNWs阵列的应用
• 4.SiNWs阵列的制备 • 5.SiNWs阵列的局限性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Realization of ultra dense arrays of vertical silicon nanowires with defect free surface and perfect anisotropy using a top-down approachXiang-Lei Han a ,Guilhem Larrieu a ,b ,⇑,Pier-Francesco Fazzini b ,Emmanuel Dubois aa IEMN/UMR CNRS 8520,Avenue Poincaré,BP 60069,59652Villeneuve d’Ascq,France bLAAS-CNRS,Universitéde Toulouse,7av.du Col.Roche,31077Toulouse,Francea r t i c l e i n f o Article history:Available online 4January 2011Keywords:Electron-beam lithographyHighly dense arrays of vertical Si nanowires Oxidation of Si nanostructure Top-down approacha b s t r a c tThe routine synthesis of ultra dense nanowires arrays appears as an inescapable requirement to imple-ment future generations of nanodevices.In this study,we demonstrate the fabrication of vertical of ultra dense (4Â1010cm À2)Si NWs arrays using a top-down fabrication strategy.The developed process also feature nearly perfect anisotropy (98.5%),100%yield and an excellent surface cleanliness based a self-limiting oxidation mechanism that develops in 1D nanostructure.Ó2011Published by Elsevier B.V.1.IntroductionNanodevice based silicon nanowires (Si NWs)have been identified as potential candidates for ultimate complementary me-tal-oxide-semiconductor (CMOS)as well as more-than-Moore applications,as reported in the international technology roadmap for semiconductors (ITRS).The fabrication of ultra dense arrays of Si NWs is a requirement to implement future generations of nanodevices [1],including gate-all-around (GAA)MOSFETs [2],high sensitive biochemical sensors [3]or photovoltaic applications [4].Top-down and bottom-up approaches have their own advanta-ges and drawbacks:the bottom-up route has the potential to growth NWs with a virtually unlimited variety of materials while the top-down approach has the capability of quick integration in standard CMOS flow,with a very good reproducibility and control of the vertical NWs (position,diameter and pitch).Unlike bottom-up growth methods based on catalytic growth,the more conven-tional top-down approach is free of metallic contamination.In this study,Si NWs are defined using electron-beam lithography over a single layer of hydrogen silsesquioxane (HSQ)that acts as a robust mask to structure NWs by anisotropic plasma etching followed by a tightly controlled oxidation step.Taking advantage of the self-limited oxidation mechanism due to mechanical stress build-up in 1D nanostructure,a thin sacrificial oxide layer is grown to improve both the anisotropy and surface quality of NWs,resulting in a final tapered profile.The fabrication of Si NWs arrays with anultra high density (4Â1010cm À2),a 100%yield,excellent surface cleanliness and 98.5%etching anisotropy are demonstrated.2.Experimental procedures2.1.Realization of a hard mask by electron-beam lithography and etching vertical Si NWs arrayA single layer of negative-tone electron-beam resist,namely,hydrogen silsesquioxane (HSQ),was used as a hard mask.This choice was motivated by its excellent contrast properties upon e-beam exposure and development as well as its inorganic nature that provides an excellent etching selectivity with respect to sili-con.A solution of HSQ diluted in isobutyl ketone marketed by Dow Corning under the name of FOx-12and FOx-16was used.HSQ was spin coated on (100)Si wafers and baked at 80°C for 60s to evaporate the solvent.Electron-beam exposure was per-formed with an EBPG 5000+system from LEICA at the high energy of 100KeV.A 100pA beam current gives an extremely small spot size,estimated at 5nm.An optimum dose of 2750l C/cm 2coupled to correction factors that take into account proximity effects and pattern sizes were selected to generate HSQ nanocolumns.After exposure,the HSQ resist was developed by manual immersion in 25%tetramethylammonium hydroxide (TMAH)at 20°C for 60s,rinsed in methanol and dried using a supercritical carbon dioxide process to avoid the collapse of nanopillars caused by capillary forces that develop in conventional techniques that use gas blow [5].Using this process sequence,HSQ nanopillars arrays with very high contrast and density are obtained as shown in Fig.1(left)(diameter =27nm,pitch =24nm).0167-9317/$-see front matter Ó2011Published by Elsevier B.V.doi:10.1016/j.mee.2010.12.102⇑Corresponding author at:LAAS-CNRS,7av.du Col.Roche,31077Toulouse,France.E-mail address:rrieu@laas.fr (rrieu).Under electron beam exposure,HSQ has the remarkable prop-erty to evolve from a cage-like monomer to a network-like poly-mer that approaches the structure of silicon dioxide(SiO x),[6] improving the selectivity against plasma etching.The vertical HSQ nanopillars were transferred to the silicon bulk substrate by reactive ion etching(RIE)using a PlasmaLab100chamber from Ox-ford Instruments.A chlorine based plasma chemistry along with an optimized parameter selection(low pressure,without inductive plasma coupling)was used to obtain an anisotropy of92%without observing any traces of micro-trenching effect or‘grass effect’. More details were presented in our previous works[7].This ap-proach enabled the realization of vertical NWs arrays with a 19nm diameter and a nanowire density up4Â1010cmÀ2as given in Fig.1(right),which represents the highest density published up to now.2.2.Wet oxidation Si NWsAfter patterning,Si NWs were subjected to thermal wet oxida-tion a conventional tubular furnace(TEMPRESS)at850°C under a flow of1.5L/min of O2,2.5L/min of H2and a variable time.The SiO2layer grown was then stripped in a diluted HF solution.Based on high resolution SEM characterization,diameters at mid-height of the oxidized Si NW(d ox)and after stripping of the SiO2layer (d Si)were measured and the thickness of the grown SiO2layer (t oxide)deduced as following:t oxide¼ðd OXÀd SiÞ=2ð1Þ3.Results and discussion3.1.Self-limited oxidation phenomenon in1D Si nanostructureThermal oxidation is identified as an effective method to realize ultra-small diameter Si NWs by tapering the dimension[8].The comprehension of the different mechanisms that compete during the oxidation of a1D nanostructure,such as surface reaction and oxidant diffusivity,is a prerequisite to perfectly control the process at such dimensions.The oxidation rate of Si NWs is governed by a competition between stress build-up as the volume of oxide layer expands and stress relaxation by viscousflow.Buttner et al.[9] suggested that the stress increase is responsible for the retarded oxidation mechanism which cannot be relaxed by viscousflow of the oxide in case of dry oxidation.Under wet oxidation condition, the effect of stress relaxation by viscousflow of the oxide is more significant than in the case of dry oxidation due to the presence of hydroxyl ions[10].In Fig.2(a),the thicknesses of the oxide layer grown at850°C for different starting diameters of Si NWs are plot-ted as a function of oxidation time.The oxide thickness resulting from an one-dimensional oxidation of a planar(100)Si bulk wafer (dashed line)is given for comparison.Firstly,the shape of curve for the oxidation of Si wafer is nearly linear compared with the para-bolic profile associated to Si NWs.During the1D wet oxidation of a wafer at950°C and below,compressive stress is generated in the SiO2[11].A biaxial compressive stress at the SiO2/Si interface due to the increase of atomic volume from Si(20Å3)to SiO2 (45Å3)leads to the bending from a plane surface to a convex sur-face,resulting in a limitation in the diffusion of oxidizing agents. This phenomenon becomes even more significant in the oxidation of nanoscale cylindrical structures,such as NWs.In Fig.2(a),oxida-tion of the Si NWs is obviously retarded due to the reduced oxygen diffusion and decrease of the interface reaction rate by the com-pressive stress normal to the SiO2/Si interface.It is mentioned that this stress is strengthened in the oxidation process.Secondly,the NW oxide is grown anomalously faster than on a bulk Si wafer in the initial stage due to a supply of oxidizing species at the SiO2/ Si surface which is enhanced by the convex geometry.It this latter case,the surface of oxide shell is larger than the area at SiO2/Si interface.[12,13]Furthermore,during short oxidation on the con-vex surfaces,a tensile stress is created by the stretching of the al-ready grown oxide as it expands to a larger circumference leading to an increase of the oxidant diffusivity and solubility.As oxidation proceeds,the normal compressive stress becomes more important and retardation of oxidation is observed[13].Fig.2(b)shows the effect of the convex NWs geometry on the oxidation rate for sev-eral starting NWs diameters as function of the oxidation time.It is obvious that the self-limiting behavior is more apparent with smaller NWs diameters because of a higher surface/volume ratio which leads to a faster stress build-up.For example,considering a diameter below50nm,this dimension remains nearly constant after20min of oxidation.3.2.Improving anisotropy and smoothing surface of Si NWsOptimized RIE parameters associated to chlorine based chemis-try give anisotropy of about90%.The ideal vertical etched profile2.(a)Dependence of the oxide thickness with the oxidation time for severaldiameters obtained at850°C.The dashed line is an oxidation reference obtained on a(100)Si bulk wafer.(b)Evolution of several NW diameters function of oxidation time.(c)Dependence of the oxidation rate with oxidation time several NW diameters.(i.e.100%anisotropy)can not be reached due to the nature be-tween ionized chlorine and silicon that involves physical but also chemical reactions.In particular,lateral etching is introduced by chemical reaction and ions scattering.As previously discussed, the oxidation rate rapidly decreases and saturates to a very low rate with the oxidation duration,as shown in Fig.2(c).In other words,the rate of Si consumption by thermal oxidation in the out-er part of a large Si NW is faster than for smaller diameter NWs. Therefore,this mechanism can be used to improve the anisotropy while controlling the shrinking of diameter.Experimental results in Fig.3show Si NWs arrays before(left)and after(after)the wet oxidation step.The Si NWs diameter was reduced from42to 16nm while the anisotropy was improved from92%to98.5%.Finally,plasma-induced damage is recognized as a source of de-vice performance and reliability degradation,including UV radia-tion,electrostatic discharge and physical damage due to ionic bombardment.Ion-induced point defects and surface or interface nonstoichiometric states resulting from plasma exposure hold a major responsibility in degradation of carrier mobility,and sub-threshold metal–oxide-semiconductor characteristic[14].To cope with this problem,the vertical Si NW arrays were cured by wet oxidation and the SiO2layer grown was stripped in diluted HF. Using high-resolution TEM characterization shown in Fig.4,an atomically abrupt surface is observed after an oxidation step at 850°C/20min(right image)compared with the rough surface ob-tained after plasma etching(left image).4.ConclusionIn this study,a simple method of top-down fabrication cou-pled to a perfectly controlled oxidation step is demonstrated to realize vertical Si NWs arrays with an ultra high density (4Â1010cmÀ2),a perfect anisotropy(98.5%),100%yield and a sharply defined clean surface.The understandings of the differ-ent mechanisms that compete during the oxidation of1D nano-structure are presented in order to perfectly control the process at the nanometer scale.The mechanism of self-limited oxidation is advantageously used to effectively improve the anisotropy of vertical Si NWs.The authors thank the CNRS-CEMES laboratory (Toulouse,France)for the use of their TEM facilities. AcknowledgementsThis work was supported by the European Commission through the NANOSIL Network of Excellence(FP7-IST-216171). References[1]B.H.Iwai,IWJ(2008)1.[2]J.Goldberger,Allon I.Hochbaum,R.Fan,Peidong Yang,Nano Lett.6(2006)973–977.[3]G.J.Zhang,G.Zhang,J.H.Chua,R.E.Chee, E.H.Wong, A.Agarwal,K.D.Buddharaju,N.Singh,Z.Gao,N.Balasubramanian,Nano Lett.8(2008)1066–1070.[4]Zhiyong Fan,Haleh Razavi,Jae-won Do,Aimee Moriwaki,Onur Ergen,Yu-Lun Chueh,Paul W.Leu,Johnny.C.Ho,Toshitake Takahashi,Lothar.A.Reichertz,Steven Neale,Kyoungsik Yu,Ming Wu,Joel.W.Ager,X.Ali Javey, Nat.Mat.8(2009)648–653.[5]Toshihiko Tanaka,Mitsuaki Morigami,Nobufumi Atoda,Jpn.J.Appl.Phys.32(1993)6059–6064.[6]H.Namatsu,Y.Takahashi,K.Yamazake,T.Yamaguchi,M.Nagase,K.Kurihara,J.Vac.Sci.Technol.B16(1998)69–78.[7]X.-L.Han,rrieu,E.Dubois,J.Nanosci.Nanotechnol.10(2010)7423–7427.[8]H.I.Liu,D.K.Biegelsen,F.A.Ponce,N.M.Johnson,R.F.W.Pease,Appl.Phys.Lett.64(1994)1383–1385.[9]C.C.Buttner,M.Zacharias,Appl.Phy.Lett.89(2006)263106-(1-3).[10]S.M.Hu,J.Appl.Phys.64(1988)323–330.[11]E.P.EerNisse,Appl.Phys.Lett.35(1979)8–10.[12]Dah-Bin Kao,James P.McVittie,William D.Nix,Krishna C.Saraswat,IEEETrans.Electron Devices34(1987)1008–1017.[13]Dah.-Bin.Kao,James.P.McVittie,William.D.Nix,Krishna.C.Saraswat,IEEETrans.Electron Devices35(1988)25–37.[14]M.M.A.Hakim,L.T.an,O.Buiu,W.Redman-White,S.Hall,P.Ashb urn,Solid-State Electron.53(2009)753–759.Engineering88(2011)2622–2624。