纳米线的制备综述
硅纳米线的制备及其在生物医学领域的应用

硅纳米线的制备及其在生物医学领域的应用近年来,纳米技术在生物医学领域中的应用越来越广泛。
硅纳米线作为一种重要的纳米材料,在生物医学领域中也具有非常重要的作用。
本文将介绍硅纳米线的制备及其在生物医学领域中的应用。
一、硅纳米线的制备硅纳米线的制备方法有多种,其中比较常见的方法有电化学法、化学气相沉积法、溶胶-凝胶法和氧化法等。
1. 电化学法电化学法是一种比较常见的硅纳米线制备方法。
具体操作过程是将硅板放入电解质溶液中,然后通过外加电场控制氧化还原反应,使硅板表面逐渐形成纳米线。
该方法制备出来的硅纳米线形状规则、结晶度高、纯度高,同时生产成本相对较低。
2. 化学气相沉积法化学气相沉积法是一种通过热蒸发硅源物质后,在惰性气体中加入反应气体,然后在基片表面化学反应形成硅纳米线。
该方法可以控制硅纳米线的长度、直径和密度等参数,操作简单,但是需要高温热源。
3. 溶胶-凝胶法溶胶-凝胶法是一种通过合成硅源、添加助剂和催化剂,制备出硅纳米线。
该方法可以制备出不同形状、不同粒径、不同比表面积的硅纳米线,并且可以通过改变催化剂的种类和浓度来调控制备的硅纳米线。
4. 氧化法氧化法是一种通过将硅粉末加入到含钪、钛等氧化物混合物中,在高温下进行氧化反应生成硅纳米线。
该方法可以制备出具有较好高温稳定性的硅纳米线,在气体传感、光电器件等领域中有广泛的应用。
二、硅纳米线在生物医学领域中的应用硅纳米线作为一种重要的纳米材料,在生物医学领域中具有很广泛的应用,主要包括以下方面:1. 细胞成像硅纳米线具有高比表面积、良好的生物相容性以及较强的荧光发射能力,可以作为细胞成像的探针。
通过对硅纳米线的材料和表面改性,可以实现对细胞生长、分裂以及相互作用的高分辨成像。
2. 药物传递硅纳米线可以作为药物传递的载体,通过改变硅纳米线的表面性质和尺寸,可以实现对药物的承载、稳定、释放和定向传递等功能。
同时,硅纳米线具有较好的生物医学安全性,可以被分解吸收,减少对人体的不良反应。
银纳米线的制备及电化学应用研究进展

收稿日期:2020-09-30;修回日期:2020-10-29 基金项目:国家自然科学基金(51874101,21802113) 作者简介:肖 妮(1989—),女,湖南汉寿人,博士研究生,研究方向为银纳米材料的制备及电化学应用;福州市闽侯大学城新区学园路 2号,福州
大学材料科学与工程学院,350108;Email:18396310297@163.com 通信作者,Email:zspcsu@163.com,15280385768
图 1 银纳米线生长机制图解(据文献[19]修改)
鉴于高长径比 AgNWs在应用中的优势显著,研 究人员为制备更长或更细的 AgNWs做了大量的工 作,采用多种方法合成超小直径、超长长度、长径比高 的 AgNWs。例如:Br-具有诱导单晶种子各向异性生 长的 能 力。 BoLi等 [20]摆 脱 了 注 射 泵 缓 慢 添 加 试 剂 的路线,将 AgNO3 与 Br-和 Cl-混合,在惰性气体中 加热,结果证明这种方法在选择性沉淀分离后可以制 备直径小于 20nm的 AgNWs。RobsonRosaDaSilva 等[21]在多元醇体系中通 过 一 锅 法 合 成 了 直 径 小 于 20nm、长径比超过 1000的 AgNWs。该方法通过注 射泵将 AgNO3溶液缓慢注入反应溶液中,在常压下 反应 35min即可得到形态纯度高达 85%的 AgNWs, 成功的关键在于以 Br-抑制横向生长、以高分子量的 PVP包覆{100}侧面并减缓还原动力学,从反 应动力 学的角度研究了 PVP和 Br-对小直径AgNWs形成的 影响;结果表明高浓度 PVP或 Br-诱导形成更多各向 同性的粒子。此外,Fe3+和 Cl-也被用于调节 AgNWs 的尺寸。KanZhan等[22]通过试验揭示了 Fe3+和 Cl- 在 AgNWs生长过程中的独特作用,提出了氧化腐蚀 辅助下的异相成核模型来阐明其生长机理。
硅纳米线的制备

小组成员: 主讲人:
一、简介
纳米线可以被定义为一种具有在横向上被限制在 100 纳米以下(纵向没有限 制)的一维结构。悬置纳米线指纳米线在真空条件下末端被固定。典型的纳米线 的纵横比在1000以上,因此它们通常被称为一维材料。在电子,光电子和纳米电 子机械器械中,纳米线有可能起到很重要的作用。它同时还可以作为合成物中的 添加物、量子器械中的连线、场发射器和生物分子纳米感应器。硅纳米线是一种 新型的一维半导体纳米材料,线体直径一般在10 nm 左右,内晶核是单晶硅,外 层有一SiO2 包覆层。
有模板的地方形成柱状结构。
PS球
银薄膜
硅基体
类似的利用多孔阳极氧化铝(AAO)模板制备了直径 8-15nm 的 SiNWs。其过程如图所示:(1)在
硅衬底上制AAO/PS 复合层,带有 10-350nm 直径孔的 AAO 层可以方便的通过阳极氧化铝来制备;(2)
聚苯乙烯(PS)层用来稳AAO 层,可通过在空气中加热到 400℃去除。(3)溅射镀银;(4)HF+H2O2 溶液中刻蚀,AAO 层被 HF 去除,因而覆盖 AAO 膜的银网直接和硅接触;由于银网的催化速度比银颗粒
具体反应式为: 阴极反应:
阳极反应:
总反应:
2.2制备原理
空位
贵金属
基体硅
反应过程如图 上所示:(1)在贵金属表面处,氧化剂被优先催化还原,产生空穴。(2)空穴通 过金属颗粒注入到与之接触的硅中。(3)在贵金属和硅接触的界面处,注入的空穴将硅氧属与硅接触的地方空穴溶度最高,腐蚀速度最快。因此,与贵金属接触的
在这个领域取得大的进展,服务我们的社会主义现代化建设!
谢谢观看!
的快,因此 AAO 孔所在处刻蚀慢,形成 SiNWs 阵列。
纳米材料综述范文

纳米材料综述范文纳米材料是自上世纪90年代以来兴起的一项新兴科技,其具有独特的物理、化学和生物性能,因此受到了广泛的关注和研究。
本文将综述纳米材料的定义、制备方法、应用领域以及潜在的风险和挑战。
首先,纳米材料是指至少在一个维度上具有纳米级尺寸(1-100纳米)的材料。
由于其尺寸处于微观和宏观之间,纳米材料往往具有与传统材料不同的物理和化学性质。
例如,纳米颗粒表面积大大增加,导致其在催化、光学和磁性等方面具有更高的活性和敏感性。
此外,纳米材料还具有较高的比表面积和功率密度,使其在能源存储、传感器和生物医学等领域有着广泛的应用前景。
纳米材料的制备方法多种多样,但可以分为两大类:自下而上和自上而下。
自下而上方法是通过控制和组装分子、原子或离子来构建纳米结构。
例如,溶液法、气相沉积和电化学沉积等方法可以制备出纳米颗粒、纳米薄膜和纳米线等结构。
自上而下方法则是通过纳米加工工艺将材料从大尺寸逐渐减小到纳米级。
常见的自上而下方法包括球磨、机械研磨和激光刻蚀等。
纳米材料具有广泛的应用领域,包括能源、环境、生物医学、电子等。
在能源领域,纳米材料被广泛应用于太阳能电池、燃料电池和储能材料中。
纳米材料的高比表面积可以提高电池的能量密度和效率。
在环境领域,纳米材料可以用于水处理、污染物检测和空气净化等方面。
例如,纳米颗粒可以作为催化剂用于有害气体的催化转化和光催化分解。
在生物医学领域,纳米材料可以用于药物输送、分子成像和组织修复等方面。
纳米颗粒可以通过控制其大小和表面修饰来实现药物的靶向输送和释放。
在电子领域,纳米材料可以用于制备纳米电子元件和纳米传感器等。
纳米材料的尺寸效应和表面效应使其在电子器件的性能和灵敏度方面具有巨大的优势。
然而,纳米材料的应用也面临着一些潜在的风险和挑战。
首先,纳米材料的生产和处理过程中可能释放出有害物质,并对环境和人体健康造成潜在风险。
此外,由于纳米材料的小尺寸和特殊性质,其对生物体的毒性和生物互作性尚不完全了解。
氧化锌纳米线制备

氧化锌纳米线制备
氧化锌纳米线是一种具有潜在应用价值的纳米材料,可以应用于光电子学、传感器、生物医学等领域。
为了制备高质量的氧化锌纳米线,需要选择合适的合成方法和工艺条件。
常用的制备方法包括化学气相沉积法、溶液法、物理气相沉积法等。
其中,物理气相沉积法可以制备高质量的氧化锌纳米线,但需要高温条件和较长的生长时间。
溶液法是一种简单易行的制备方法,可以制备出高质量的氧化锌纳米线,但需要控制反应条件和溶液成分。
此外,还可以采用微波辅助合成、光诱导合成等方法。
制备氧化锌纳米线的工艺条件包括温度、时间、反应物浓度、气氛等。
通过合理调控这些工艺条件,可以得到具有良好性能的氧化锌纳米线。
- 1 -。
纳米线制作器件流程

纳米线制作器件流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!纳米线器件制造流程。
1. 基底准备。
清洗基底,去除表面杂质和氧化层,确保基底表面干净、平整。
纳米线的制备与应用

纳米线的类型
• 根据组成材料的不同,纳米线可分为不 同的类型,包括金属纳米线(如:Ni,Pt, Au等),半导体纳米线(如:InP,Si, GaN 等)和绝缘体纳米线(如:SiO2, TiO2等)。分子纳米线由重复的分子元组 成,可以是有机的(如:DNA)或者是无 机的(如:Mo6S9-xIx)
纳米线的应用
• 1 制造电子设备:截至2014年,纳米线仍然处于试
验阶段。不过,一些早期的实验显示它们可以被用于下一 代的计算设备,纳米线交叉可能对数字计算的将来很重要。 2 太阳能转换: 纳米线能够将太阳光自然聚集到晶体中 一个非常小的区域,聚光能力是普通光照强度的15倍。这 有助于提高太阳能的转换效率,从而使得基于纳米线的太 阳能电池技术得到真正的提升。
CVD
• 化学气相沉积法(CVD)主要是利用所需制 备元素的一种或几种气相化合物或单质在 衬底表面上进行化学反应生成纳米材料。 其材料的制备过程包括:气体的扩散、反应 气体在衬底表面的吸附、表面反应、成核 和生长、气体解吸和扩散挥发等步骤
热气相沉积法
• 以SiO为原料,Ar为保护气体,将硅源放入高温 管式炉中加热至1200 ℃,于920~950 ℃处发生 气相沉积合成了直径6~28 nm,长约1 mm的硅纳 米线。研究发现,产物随着Ar压强和SiO升华温 度增大而增大,且在适宜的沉积温度下其产率高 于10 mg/h。Feng等人[11]采用简单化学气相沉积 法,以Ar为保护气体,在1200 ℃下在置有热压靶 的石英管内成功获得了长约几十到上百微米、直 径为12~18 nm的硅纳米线。研究表明:气压和催 化剂对纳米线的生长起了关键性的作用。
一种纳米线-纳米颗粒修饰电极的制备方法及其应用-概述说明以及解释

一种纳米线-纳米颗粒修饰电极的制备方法及其应用-概述说明以及解释1.引言1.1 概述纳米线-纳米颗粒修饰电极是一种新兴的电化学修饰技术,通过在电极表面修饰纳米线和纳米颗粒,可以显著提高电化学性能和催化活性。
纳米线具有高比表面积、优异的导电性能和较好的机械强度,而纳米颗粒则具有丰富的催化活性和可调控性,因此将二者有效结合在一起,能够实现更高效、更可控的电化学反应和催化过程。
本文主要针对纳米线-纳米颗粒修饰电极的制备方法和应用进行系统研究和总结。
首先,介绍了两种常用的制备方法:方法一是利用化学合成的方式,通过控制反应条件和添加适量的表面活性剂来合成纳米线和纳米颗粒,并将其修饰在电极表面;方法二则是采用物理沉积的方法,将事先制备好的纳米线和纳米颗粒直接沉积在电极表面。
对比分析了这两种方法的优缺点,并探讨了它们在实际应用中的适用性和局限性。
其次,重点探讨了纳米线-纳米颗粒修饰电极的应用。
应用一方面涉及电化学领域,纳米线-纳米颗粒修饰电极在电催化、电化学传感和电化学储能等方面显示出了显著的优势,可以提高催化活性、提升传感灵敏度和增加电化学储能密度。
应用二方面则涉及催化剂领域,纳米线-纳米颗粒修饰电极在催化剂的设计和合成中具有巨大的潜力,可以通过控制纳米结构和相互作用来调控催化剂的活性和选择性。
综上所述,纳米线-纳米颗粒修饰电极的制备方法和应用是一个具有广阔前景的研究领域。
本文旨在探讨这种技术的制备方法、性能优势和应用潜力,为相关研究和应用提供一定的理论和实践指导。
通过深入研究和探索,相信纳米线-纳米颗粒修饰电极技术将对电化学和催化领域带来新的突破和发展。
文章结构部分的内容如下:1.2 文章结构本文主要包括引言、正文和结论三个主要部分。
引言部分对研究主题进行了概述,介绍了纳米线-纳米颗粒修饰电极制备方法及其应用的背景和意义。
同时,引言部分还对本文的结构进行了简要说明,包括正文部分的内容和目的。
正文部分分为两个主要章节:纳米线-纳米颗粒修饰电极的制备方法和纳米线-纳米颗粒修饰电极的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代材料制备技术 期末报告
姓名: 翁小康 学号: 12016001388 专业: 材料工程 教师: 朱进 2017年6月24日 Si纳米线的制备方法总结及其应用 摘要:Si纳米线是一种新型的一维纳米半导体材料,具有独特的电子输运特性、
场发射特性和光学特性等。此外,硅纳米线在宽波段、宽入射角范围内有着优异的减反射性能以及在光电领域的巨大应用前景。传统器件已不满足更快更小的要求,因此纳米线器件成为研究的热点。关于硅纳米线阵列的制备方法,本文主要从“自下而上”和“自上而下”两大类出发,分别阐述了模板辅助的化学气相沉积法、化学气相沉积结合Langmuir-Blodgett技术法和金属催化化学刻蚀法等方法。最后介绍了Si纳米线在场效应晶体管、太阳能电池、传感器、锂电池负极材料等方面相关应用。
关键词:Si纳米线;阵列;制备方法;器件应用
0 引言 近年来,Si纳米线及其阵列的制备方法、结构表征、光电性质及其新型器件应用的研究,已成为Si基纳米材料科学与技术领域中一个新的热点课题。人们之所以对Si纳米线的研究广泛关注,是由于这种准一维纳米结构具有许多显著不同于其他低维半导体材料的电学、光学、磁学以及力学等新颖物理性质,从而使其在场发射器件、单电子存储器件、高效率激光器、纳米传感器以及高转换效率太阳电池等光电子器件中具有重要的实际应用[1] 。
硅纳米线阵列( silicon nanowires arrays,简称SiNWs阵列) 是由众多的一维硅纳米线垂直于基底排列而成的,SiNWs阵列与硅纳米线之间的关系如同整片森林与单棵树木一样,它除了具有硅纳米线的特性外,还表现出集合体的优异性能:SiNWs阵列独特的“森林式”结构,使其具有优异的减反射特性,在宽波段、宽入射角范围都能保持很高的光吸收率,显著高于目前普遍使用的硅薄膜。例如,对于波长300—800 nm的光,在正入射的情况下,硅薄膜的平均光吸收率为65% ,而SiNWs阵列的平均光吸收率在80% 以上;在光入射角为60°时,硅薄膜的平均光吸收率为45%,而SiNWs阵列的平均光吸收率达70%[2]。这对于硅材料在太阳能高效利用方面,具有十分重要的意义。本文将对国内外关于硅纳米线阵列的制备及其在光电领域应用的研究进展进行系统阐述。
1 Si纳米线阵列的制备方法 近年来,为制备有序的SiNWs阵列,研究者先后开发出多种制备方法,这些方法大体上可分为两类:“自下而上( bottom-up )”和“自上而下( topdown)”。前者是从原子或分子出发控制组装成SiNWs阵列;而后者则是从体硅(硅片)出发,经化学刻蚀制得。 1.1 自下而上 目前,“自下而上”的制备方法,主要是激光烧蚀沉积,化学气相沉积法( chemical vapor deposition,CVD)与有序排列技术相结合及热蒸发等。CVD法是利用气态或蒸气态物质在气相或气固界面上反应生长固态沉积物的方法。该法直接在衬底上生长的硅纳米线是杂乱的[3],需要结合有序排列方法或技术实现有序SiNWs阵列的制备。例如,CVD与模板法结合、CVDLangmuir-Blodgett技术结合等。
1.1.1 激光烧蚀沉积 利用LAD制备纳米线的过程一般是根据欲制备的材料与其催化组分形成共晶合金的相图,按一定比例混合配置成靶材料,根据共晶温度调整激光辐照能量密度和控制材料的凝聚条件,便可获得欲制备的纳米线。该方法中激光的作用主要是作为热源,使靶材在激光辐照作用下加热融化并蒸发为气态。这种方法具有工序简单,所生长的纳米线纯度较高、直径均匀和能够实现材料的快速冷凝等特点,但它的不足是设备比较复杂昂贵,产品成本较高,不便于产业化制备。
1.1.2 模板辅助的CVD法 模板在纳米线生长过程中起到了限定纳米线的直径、生长位置和生长方向的作用。Zhang 等[4]使用具有紧密排列的六角形纳米孔道的氧化铝作为模板,先在模板的孔道中电化学沉积金粒子,然后在金粒子的催化下CVD法高温分解硅烷生长硅纳米线,成功地合成了单晶硅纳米线有序阵列,硅纳米线直径与模板孔道直径一致。
Shimizu等[5]利用电子束蒸发法先在Si( 100)表面镀一层Al 膜并通过阳极氧
化形成多孔结构,而后用磷酸除去Si表面的SiO2层,再在孔道内无电沉积Au
粒子作为催化剂,最后利用超真空CVD分解硅烷气体,生长出了晶向为Si( 100 ) 的SiNWs阵列,制备过程见图1。
图1 氧化铝模板法合成SiNWs阵列示意图[5] 1.1.3 CVD 结合Langmuir-Blodgett 技术 Lieber等[6]采用CVD与Langmuir-Blodgett技术结合的方法,自下而上成功
地构筑了排列整齐的平行和交叉的SiNWs阵列。他们首先利用CVD法合成硅纳米线,再将硅纳米线分散在非极性溶剂中配制成纳米线悬浮液,而后将悬浮液分散在Langmuir-Blodgett 槽中,压缩液膜使纳米线平行排列,将其转移到平坦的衬底上,再将另一个平行排列的纳米线阵列膜采用平板压印技术十字交叉地堆砌在第一层纳米线阵列膜上,如此往复,阵列膜逐层交叉堆砌,可形成十字交叉的多层纳米线阵列膜,工艺过程见图2。
图2 CVD结合Langmuir-Blodgett技术工艺流程图: ( a)CVD法合成的硅纳米线的悬浮液; ( b) 悬浮液分散在Langmuir-Blodgett槽中压缩; ( c) 阵列膜转移到平坦的衬底上形成平行排列的SiNWs阵列; ( d )十字交叉的SiNWs阵列[6]
该法制成的平行SiNWs阵列有望用于制造高性能纳米线场效应管阵列;而十字交叉的阵列颇具吸引力,因为目前小尺度的交叉纳米线结节表现出特别的电学和光学特性,可望作为可编织纳米发光二极管的源极和计算机的基础元件使用[7],具有很大的发展潜力。
1.1.4 热蒸发 热蒸发是制备高纯Si纳米线最简单的方法,采用这种方法制备的Si纳米线具有产量大、纯度高、直径分布均匀、对环境无污染的优点,因而具有重要的实用推广价值。然而,目前所制备的Si纳米线多呈杂乱分布,相互缠绕,而且存在较多的缺陷,例如,堆垛层错、孪晶等,从而影响了Si纳米线的性能测试和实际应用。
Feng等[8]采用物理蒸发的方法,利用质量分数为5%的Fe粉作为催化剂和质量分数为95%的Si粉混和后放置在石英管中,在温度为1200℃条件下,成功制备了直径分布均匀(13±3 nm),长度为几十微米的Si纳米线。其生长示意图及其所制备的Si纳米线,分别如图1a和b所示。Si纳米线的生长可分为2个阶段:FeSi液滴的成核和长大,以及基于VIS机制的Si纳米线的生长。首先在I区,Si和Fe原子被蒸发出来,它们与载气中的Ar原子碰撞而损失热运动能量,使Fe,Si蒸气迅速冷却成为过冷气体,促使FeSiz液滴自发成核.当载气将在区域I中形成的FeSi 液滴带入区域℃时,由于区域℃中的Si原子浓度相对较高,Fe—Si 液滴吸收过量Si原子将从液滴中析出并形成Si纳米线.在区域℃中,FeSi2保持
液态,由于上述过程不断发生,可以使Si纳米线不断生长。当载气将Si纳米线和与之相连的FeSi2液滴带出区域℃后,由于区域℃的温度低于T2(FeSi2液滴的凝
固温度),液滴将凝固成FeSi2颗粒,于是Si纳米线停止生长.该方法的缺点是
耗时较长,而且生长过程难于控制,这使其应用受到一定的限制。
图3 Si纳米线的生长示意图和TEM像 a. Si纳米线的生长示意图;b. Si纳米线的TEM像
1.2 自上而下 传统的“自上而下”制备硅纳米线的方法中,如金属催化化学刻蚀法,溶液法及电化学法等虽能成功制备出大量的硅纳米线,却很难制备出有序排列的SiNWs阵列。目前,“自上而下”制备有序SiNWs 阵列的主要方法是朱静课题组[9]首创的金属催化化学刻蚀法,该法在常温常压、金属纳米粒子的催化作用下,利用刻蚀剂刻蚀硅片,简单、快速地制备出大面积、高取向的SiNWs 阵列,且不受硅片晶型和晶向的限制[10]。
1.2.1 金属催化化学刻蚀法 作为一种易操作、成本低、产率高的制备方法,金属辅助化学刻蚀法最先是D.Di mova— Mal i novs kaL以Al为催化剂在HF和HNO3水溶液中刻蚀Si实现的,并提出以模板沉积Ag膜可制备理想的si纳米结构。主要步骤包括: ℃硅片的清洗和硅片表面H终端化:用HF浸泡硅片,使硅片表面形成Si—H键;℃硅片表面沉积金属Ag颗粒:H终端化的硅片浸入到HF和AgNO3的混合溶液中,在硅片表面沉积不连续的Ag颗粒薄膜;℃化学刻蚀硅片:将沉积了Ag颗粒的硅片浸入到刻蚀液中进行刻蚀,硅片表面上有Ag颗粒覆盖的位置将被逐渐刻蚀下去,没有Ag颗粒的位置保持原样;℃稀硝酸溶解除去Ag颗粒。图4为Wong[11]等采用两步法刻蚀不同掺杂类型、不同晶向的硅片制得的SiNWs阵列。
图4 金属催化化学刻蚀不同掺杂类型、不同晶向的硅片制得SiNW 阵列的SEM 图: ( a) p-Si( 100) 轻掺杂; ( b)p-Si( 100) 重掺杂; ( c) 、( d) p-Si( 111) 轻掺杂; ( e) 、( f) p-Si( 111) 重掺杂; ( g) 、( h) n-Si( 100 ) 轻掺杂; ( i) 、( j) n-Si( 111) 轻掺杂[10]
朱静课题组对金属催化化学刻蚀法的机理进行了深入的研究,并最早提出了该法的化学反应机理(图5)[9]。第一步:沉积Ag的机理。硅片表面经HF处理后形成大量的Si—H键,Si—H具有较强的还原性,Ag+ 具有较强的氧化性,两者发生氧化还原反应,Ag+获得电子被还原成Ag 原子并以纳米颗粒的形式沉积在Si 片表面形成不连续的Ag颗粒薄膜。第二步:刻蚀机理。Ag粒子作为催化剂,Ag粒子下面的Si被刻蚀液中的氧化剂( 如H2O2) 氧化成SiO2并被HF溶解,导致Ag粒子下沉,因此,有Ag粒子覆盖的位置,Si被逐渐向下刻蚀形成“坑道”。由于Ag颗粒薄膜是不连续的,相邻Ag粒子之间的空隙未被刻蚀,导致相邻的“坑道”之间形成硅纳米线。刻蚀的总反应方程式如下:
Si0 + 2H2O2 + 6F-+ 4H →[SiF6]2-+ 4H2O