2018届高中数学必修(人教版)两个原理1课件

合集下载

2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用

2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用
a>0, ff((kk12))><00,, f(k3)>0.
(6)在(k1,k2)内有且仅有一个实根的充要条件是
Δ=0, f(k1)f(k2)<0,或k1<-2ba<k2.
例3 方程x2-2ax+4=0的两根均大于1,求实数a的取值范 围.
【解析】 方法一:设f(x)=x2-2ax+4,由于方程x2-2ax
由于相邻两个零点之间的所有函数值保持同号,函数的图 像如图所示.
(2)不等式xf(x)<0同解于
x>0, f(x)<0
或xf(<0x,)>0,
结合函数图
像得不等式的解集为(0,2)∪(-2,0).
探究 根据函数的零点定义与性质,可以用来帮助画函数
的图像,结合函数图像不仅可以直观的研究函数的性质,而且
∴函数y=-x2-2x+3的零点为-3,1. y=-x2-2x+3=-(x+1)2+4. 画出这个函数的简图(如右图),从图像 上可以看出,当-3<x<1时,y>0.
当x<-3或x>1时,y<0. ∴函数y=-x2-2x+3的零点是-3,1. y>0时,x的取值范围是(-3,1); y<0时,x的取值范围是(-∞,-3)∪(1,+∞). 探究2 由于一元二次不等式在前面没有讲过,因此对本题 的解法要正确作出函数的简图,从而解决问题.
课时学案
题型一 求函数的零点 例1 求函数f(x)=(x2+x-2)(x2-2x-8)的零点,并指出使 y<0成立的x的取值范围.
【解析】 y=(x2+x-2)(x2-2x-8)=(x+2)(x-1)(x+2)(x -4)=(x+2)2(x-1)(x-4),

人教版高中数学选择性必修3《二项式定理》第1课时课件

人教版高中数学选择性必修3《二项式定理》第1课时课件

(a b)(a b)(a b)(a b)
b4 (a b)(a b)(a b)(a b)
探 探究3 仿照上述过程,推导 (a b)4 的展开式.
究 (a b)4 (a b)(a b)(a b)(a b)
归 ① 项: a4 a3b a2b2 ab3 b4 a4-kbk (k=0,1,2,3,4)
猜想:
(a b)n C0nan C1na b n1 1 Cnk ankbk Cnnbn (n N ).
探 究
探究4 分析 (a b)n的展开过程,证明猜想.
(a b)n (a b)(a b)(a b) (a b)
归 纳
n个
① 项: an a b n1 1 ankbk bn an-kbk (k=0,1,2,…,n)
分析 a2b (a b)(a b)(a b)
(a b)(a b)(a b) C13 (a b)(a b)(a b)
探 探究2 推导 (a b)3的展开式.
究 (a b)3 (a b)(a b)(a b)
归 ① 项: a3 a2b ab2 b3 纳 ② 系数:1 C13 C32
纳 ② 系数:1
C13
C32
C
3 3
a3-kbk ,其中k=0,1,2,3
探 探究2 推导 (a b)3的展开式. 究 (a b)3 (a b)(a b)(a b)
归 ① 项: a3 a2b ab2 b3
纳 ② 系数:C130 C13
C32
C
3 3
a3-kbk ,其中k=0,1,2,3 C3k ,其中k=0,1,2,3
探 究
探究3 仿照上述过程,推导 (a b)4 的展开式.
(a b)4 (a b)(a b)(a b)(a b)

《金版学案》2018-2019学年高中数学必修一(人教版)课件:第一章1.1-1.1.3第1课时并集与交集

《金版学案》2018-2019学年高中数学必修一(人教版)课件:第一章1.1-1.1.3第1课时并集与交集

答案:(1)C (2){m|m≥-1}
类型 2 集合交集的简单运算 [典例 2] (1)已知集合 A={x∈R|3x+2>0}, B={x|x< -1 或 x>3},求 A∩B; (2)若 A={x|-2≤x≤3},B={x|x>a},求 A∩B. 2 解:(1)由 3x+2>0,得 x>- . 3
第一章
集合与函数概念
1.1
集合
1.1.3 集合的基本运算 第 1 课时 并集与交集
[学习目标]
1.理解两个集合的并集与交集的含义,
会求两个简单集合的并集与交集(重点). 2.能使用 Venn 图表达集合的关系及运算, 体会直观图示对理解抽象概念 的作用(重点). 3.能够利用交集、并集的性质解决有关 问题(重点、难点).
解析:(1)错,A∪B 的元素个数小于或等于集合 A 与 集合 B 的元素个数和. (2)错,当集合 A 与 B 没有公共元素时,集合 A 与 B 的交集为∅,即 A∩B=∅. (3)错,B 中最多有 3 个元素,也可能 B=∅. 答案:(1)× (2)× (3)×
2.已知集合 M={-1,-2,-3,-4},N={-3, 3},下列结论成立的是( A.N⊆M C.M∩N=N ) B.M∪N=M D.M∩N 是单元素集合
[知识提炼· 梳理] 1.集合的并集 并集的三种语言表示: (1)文字语言:由所有属于集合 A 或属于集合 B 的元 素组成的集合,称为集合 A 与 B 的并集. (2)符号语言:A∪B={x|x∈A 或 x∈B}.
(3)图形语言:如图所示.
温馨提示 “x∈A ,或 x∈B” 包括了三种情况: ①x∈A,但 x∉B;②x∈B,但 x∉A;③x∈A,且 x∈B.
2.求两个集合交集的一般方法:①明确集合中,借助数轴求解.③当所给集合中有一个不确 定时,要注意分类讨论,分类的标准取决于已知集合.

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .

[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.

2018-2019学年高中数学 第一章 计数原理 1.2.2 第1课时 组合(一)讲义 新人教A版选修2-3

2018-2019学年高中数学 第一章 计数原理 1.2.2 第1课时 组合(一)讲义 新人教A版选修2-3

含组合数的化简、证明或解方程、不
(1)对于含组合数的化简、证明或解方程、不等式等问题多利 ①组合数公式,即: Cnm=m!nn!-m!=nn-1…m!n-m+1; ②组合数的性质,即 Cnm=Cnn-m和 Cnm+1=Cmn +Cmn -1; ③排列数与组合数的关系,即 Anm=Cmn Amm. (2)当含有字母的组合数的式子要进行变形论证时,利用阶乘 便.
1.由 Cx1+0 1+C1170-x可得不相同的值的个数是
A.1
B.2
C.3
D.4
[解析]
x+1≤10 ∵x1+7-1≥x≤010,∴7≤x≤9,
17-x≥0
又 x∈Z,∴x=7,8,9.
当 x=7 时,C810+C1100=46
当 x=8 时,C910+C910=20 当 x=9 时,C1100+C810=46.
规律总结』 1.性质“Cnm=Cnn-m”的意义及作用. 反映的是组合数的对称性,即从n个不
意义 → 同的元素中取m个元素的一个组合与 剩下的n-m个元素的组合相对应
作用 → 当m>n2时,计算Cnm通常转化为计算Cnn-m
2.与排列组合有关的方程或不等式问题要用到排列数、组 组合数的性质,求解时,要注意由 Cnm中的 m∈N+,n∈N+,且 的范围,因此求解后要验证所得结果是否适合题意.
序写出,即
• ∴所有组合为ABC,ABD,ABE,ACD,ACE BCD,BCE,BDE,CDE.
解法二:画出树形图,如图所示.
∴所有组合为 ABC,ABD,ABE,ACD,ACE,ADE,BCD CDE.
命题方向2 ⇨组合数公式
典例 2 (2018·江西玉山一中检测)若 20C5n+5=4(n+4)Cnn+- 的值.

人教版高中数学必修1全套课件

人教版高中数学必修1全套课件

函数与方程
函数与方程的基本概念
包括函数定义、函数值、自变量、因 变量等概念的介绍。
函数的表示方法
解析法、列表法、图象法等表示方法 的特点和适用范围。
函数的性质
单调性、奇偶性、周期性等性质的定 义和判断方法。
方程与不等式的解法
一元一次方程、一元二次方程、分式 方程等方程和不等式的解法,以及函 数与方程的联系。
对数函数
对数函数的定义与性质
01
介绍对数函数的基本概念、性质,包括底数、对数的定义和运
算规则。
对数函数的图像与性质
02
通过图像展示对数函数的增减性、奇偶性、周期性等性质,帮
助学生直观理解函数特点。
对数函数的应用
03
列举对数函数在生活中的实际应用,如音量的分贝计算、地震
震级的计算等,培养学生运用数学知识解决问题的能力。
数列的项与通项公式
数列中的每一个数称为数列的项;表示数列第n项的公式称为数列 的通项公式。
数列的表示方法
列表法、图象法和通项公式法。
等差数列和等比数列
等差数列的定义与性质
从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列的定义与性质
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
正切函数、余切函数的图象和性质 三角函数的最值问题
三角恒等变换
两角和与差的正弦、余弦 公式
半角公式及其应用
二倍角公式及其应用 积化和差与和差化积公式
解三角形及其应用举例
01
正弦定理及其应用
02
余弦定理及其应用
03
解三角形的常用方法:面积法、正弦定理 法、余弦定理法等
04
解三角形的实际应用举例:测量、航海、 地理等问题

人教A版高中数学必修1 课件 :第一章 1.1 1.1.3 第一课时

人教A版高中数学必修1 课件 :第一章 1.1 1.1.3 第一课时

(2)A∩B中的元素是“所有”属于集合A且属于集合B的元 素,而不是部分,特别地,当集合A和集合B没有公共元素时, 不能说A与B没有交集,而是A∩B=∅.
2.掌握两种技巧 (1)对于元素个数有限的集合,可直接根据集合的 “交”“并”定义求解,但要注意集合元素的互异性. (2)对于元素个数无限的集合,进行交、并运算时,可借助 数轴,利用数轴分析法求解,但要注意端点值取到与否.
「自测检评」
1.(2018·天津卷)设集合A={1,2,3,4},B={-1,0,2,3},C=
{x∈R|-1≤x<2},则(A∪B)∩C=( )
A.{-1,1}
B.{0,1}
C.{-1,0,1}
D.{2,3,4}
解析:选C ∵A={1,2,3,4},B={-1,0,2,3},
∴A∪B={-1,0,1,2,3,4}.
(4)性质:①A∪B=B∪A;②A∪A=A;③A∪∅=A;④A⊆ B⇔A∪B=B.
[思考辨析]|判断正误| 1.A∪B的元素个数等于集合A中元素的个数与集合B中元素 个数的和.( × ) 2.并集定义中的“或”能改为“和”.( × ) 3.若A∪B=A∪C,则B=C.( × )
知识点二|交集
阅读教材P9的内容,完成下列问题. (1)定义:一般地,由属于集合A且属于集合B的所有 3 __元__素______组成的集合,叫做A与B的交集. (2)符号表示:A与B的交集记作 4 __A__∩_B_____,即A∩B={x|x ∈A,且x∈B}.
题型三 交集、并集性质的应用 【例3】 已知A={x|2a≤x≤a+3},B={x|x<1或x>5}. (1)若A∩B=∅,求a的取值范围; (2)是否存在实数a,使得A∪B=R,若存在,求出实数a的 值,不存在,说明理由.

高中数学必修1课件全册(人教A版)

高中数学必修1课件全册(人教A版)
若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A”
否则,称为mA,读作“元素m不属于集合A。
例如:1 N, -5 Z,
Q


2、集合与元素的关系(属于∈或不属于 )
1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
因此,函数就是表达了两个变量之间变化关系的一个表达式。其准确定义如下: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数(function),记作y=f(x),x∈A。 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数的值域。而对应的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20”和“平方后乘以4.9”
观察下面几个例子,你能发现两个集合之间的关系吗?
⑴ A={1,2,3} , B={1,2,3,4,5};
⑵设A为新华中学高一(2)班女生的全体组成的集合, B为这个班学生的全体组成的集合;
⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.
2,3
-2
-1,1
A
B
C
交集的运算性质:
思考题:如何用集合语言描述?
2、并集
一般地,由所有属于集合A或者属于集合B的所构成的集合,称为A与B的并集,记作A∪B,即 A∪B = {x|x∈A,或x∈B} A∪B可用右图中的阴影部分来表示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

书架的第 1层放有 4本不同的计算机书,第 2层放 有3本不同的文艺书,第3层放有2本不同的体育书.
例1
(1)从书架上任取1本书,有多少种不同的取法?
( 2)从书架的第 1 、 2、 3 层各取 1 本书,有多少种 不同的取法?
一种号码锁有4个拨号盘,每个拨号盘上有从0 到9共10个数字,这4个拨号盘可以组成多少个四位 数字的号码?
例2
例3 要从甲、乙、丙3名工人中选出2名分别上日
班和晚班,有多少种不同的选法?
1.有不同的中文书9本,不同的英文书7本,不 同的日文书5本.从其中取出不是同一国文字 的书2本,问有多少种不同的取法?
[演练反馈]
2.集合 .

从 A、B 中各取1个元素作为点 的坐标. (1)可以得到多少个不同的
3.某中学的一幢6层教学楼共 有2处楼梯,问从1楼到6楼共有 多少种不同;
②c用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字 的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字 的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的 4位奇数; ⑥用0,1,2,……,9可以组成多少个有两个重复 数字的4位整数等等.
分类计数原理 分类计数原理 完成一件事,有 n 类办法 ,在第1类办法中有 m1 种不同的方法,在第2类 n 类办法 办法中有 m2 种不同的方法,…,在第 mn 种不同的方法,那么完成这件事共有: 中有
N m1 m2 mn 种不同的方法.
问题三:从甲地到乙地,要从甲地选乘火车到 丙地,再于次日从丙地乘汽车到乙地.一天中,火车 有3班,汽车有2班.那么两天中,从甲地到乙地共有 多少种不同的走法 ?
分步计数原理 分步计数原理 完成一件事,需要分成 n 类办法,做第1步有 m种不同的方法,做第 2 步 1 有 m2种不同的方法,…,做第 n 步有 mn种不同 的方法,那么完成这件事共有:
N m1 m2 mn 种不同的方法.
问题:
分类计数原理与分步计数原理有什么不同?
相同点:分类计数原理与分步计数原理都是涉及 完成一件事的不同方法的种数的问题。 不同点:分类计数原理与“分类”有关,各种 方法相互独立,用其中任何一种方法都可以完成这件 事;分步计数原理与“分步”有关,各个步骤相互依 存,只有各个步骤都完成了,这件事才算完成.
这个问题与前一个问题不同.在前一个问题中,采用 乘火车或汽车中的任何一种方式,都可以从甲地到乙地;而 在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才 能从甲地到乙地.
这里,因为乘火车有3种走法, 乘汽车有2种走法,所以乘一次火车
问题四:在由电键组 A、B 组成的串联电路中,如图,要接通 电源,使电灯发光的方法有几种?
4.某艺术组有9人,每人至少 会钢琴和小号中的一种乐器, 其中7人会钢琴,3人会小号, 从中选出会钢琴与会小号的各1 人,有多少种不同的选法?
小结
分类计数原理与分步计数原理体 现了解决问题时将其分解的两种常用 方法,即分步解决或分类解决,它不 仅是推导排列数与组合数计算公式的 依据,而且其基本思想贯穿于解决本 章应用问题的始终.要注意“类”间 互相独立,“步”间互相联系.
问题一:从甲地到乙地,可以乘火车,也可 以乘汽车,一天中,火车有3班,汽车有2班.那 么一天中,乘坐这些交通工具从甲地到乙地共有 多少种不同的走法?
因为一天中乘火车有3种走法, 乘汽车有2种走法,每一种走法都
问题二:在由电键组 A与 B所组成的并联电路中,如图,要接通 电源,使电灯发光的方法有多少种?
实际问题
2002年夏季在韩国与日本举行的第17届 世界杯足球赛共有32个队参赛.它们先分成8 个小组进行循环赛,决出16强,这16个队按确 定的程序进行淘汰赛后,最后决出冠亚军,此 外还决出了第三、第四名.问一共安排了多少 场比赛?
要回答这个问题,就要用到排列、组合的知 识.在运用排列、组合方法时,经常要用到分类 计数原理与分步计数原理.
相关文档
最新文档