离散数学(本)2009年7月试题
《离散数学》试题及答案

一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2},则A — B={3};ρ(A) - ρ(B)={3},{1,3},{2,3},{1,2,3}} .2。
设有限集合A,|A| = n, 则|ρ(A×A)| = 22n。
3。
设集合A = {a,b},B = {1,2},则从A到B的所有映射是α1= {(a,1), (b,1)}, α2= {(a,2), (b,2)},α3= {(a,1), (b,2)}, α4= {(a,2),(b,1)},其中双射的是α3,α4 .4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是(P∧⌝Q∧R)5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为12,分枝点数为3.6设A、B为两个集合,A= {1,2,4}, B = {3,4},则从A⋂B={4};A⋃B={1,2,3,4};A-B={1,2}.7.设R是集合A上的等价关系,则R所具有的关系的三个特性是自反性,对称性传递性.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有(1,0,0), (1,0, 1),(1,1, 0)9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)},R2 = {(2,1),(3,2),(4,3)},则R1•R2 ={(1,3),(2,2),(3,1)} ,R2•R1 = {(2,4),(3,3),(4,2)} _R12 ={(2,2),(3,3).10。
设有限集A, B,|A| = m,|B|= n, 则||ρ(A⨯B)|.11设A,B,R是三个集合,其中R是实数集,A = {x |—1≤x≤1, x∈R}, B = {x |0≤x < 2,x∈R},则A-B = -1<=x〈0 ,B-A = {x |1 < x < 2,x∈R},A∩B ={x |0≤x≤1,x∈R},。
《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。
命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。
《离散数学》试题及答案

一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) -ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是_______________________________________, 其中双射的是__________________________.4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=_________________________; A⋃B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1∙R2 = ________________________,R2∙R1 =____________________________,R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________.14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。
7月自考离散数学试题及答案

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列句子不是..命题的是( D ) A .中华人民共和国的首都是北京B .张三是学生C .雪是黑色的D .太好了!2.下列式子不是..谓词合式公式的是( B ) A .(∀x )P (x )→R (y )B .(∀x ) ┐P (x )⇒(∀x )(P (x )→Q (x ))C .(∀x )(∃y )(P (x )∧Q (y ))→(∃x )R (x )D .(∀x )(P (x ,y )→Q (x ,z ))∨(∃z )R (x ,z )3.下列式子为重言式的是( )A .(┐P ∧R )→QB .P ∨Q ∧R →┐RC .P ∨(P ∧Q )D .(┐P ∨Q )⇔(P →Q )4.在指定的解释下,下列公式为真的是( )A .(∀x )(P (x )∨Q (x )),P (x ):x =1,Q (x ):x =2,论域:{1,2}B .(∃x )(P (x )∧Q (x )),P (x ):x =1,Q (x ):x =2,论域: {1,2}C .(∃x )(P (x ) →Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4}D .(∀x )(P (x )→Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4}5.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( )A .y 是自由变元B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )6.设论域为{1,2},与公式(∀x )A (x )等价的是( )A .A (1)∨A (2)B .A (1)→A (2)C .A (1)∧A (2)D .A (2)→A (1)7.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是入射B .仅是满射C .是双射D .不是函数8.下列关系矩阵所对应的关系具有反对称性的是( )A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101110001C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010101 9.设R 1和R 2是集合A 上的相容关系,下列关于复合关系R 1︒R 2的说法正确的是( )A .一定是等价关系B .一定是相容关系C.一定不是相容关系D.可能是也可能不是相容关系10.下列运算不满足...交换律的是()A.a*b=a+2b B.a*b=min(a,b)C.a*b=|a-b| D.a*b=2ab11.设A是偶数集合,下列说法正确的是()A.<A,+>是群B.<A,×>是群C.<A,÷>是群D.<A,+>, <A,×>,<A,÷>都不是群12.设*是集合A上的二元运算,下列说法正确的是()A.在A中有关于运算*的左幺元一定有右幺元B.在A中有关于运算*的左右幺元一定有幺元C.在A中有关于运算*的左右幺元,它们不一定相同D.在A中有关于运算*的幺元不一定有左右幺元13.题13图的最大出度是()A.0 B.1C.2 D.314.下列图是欧拉图的是()15.一棵树的3个4度点,4个2度点,其它的都是1度,那么这棵树的边数是()A.13 B.14C.15 D.16二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
离散数学自考试题

离散数学自考试题一、选择题1. 下列哪个是离散数学的基础?A. 微积分B. 线性代数C. 集合论D. 概率论2. 以下哪个是正命题?A. 如果今天下雨,那么我就带伞。
B. 如果今天下雨,我没有带伞。
C. 如果今天下雨,我可能会带雨鞋。
D. 如果今天下雨,我带了雨伞。
3. 若集合 A={1,2,3},集合 B={2,3,4},则A∩B等于:A. {1,2}B. {2,3}C. {3}D. {2}4. 下列命题中,哪个是概率命题?A. 今天下雨了。
B. 明天会是晴天。
C. 抛硬币正面朝上的概率是0.5。
D. 人类能登陆火星。
5. 若命题 p 为“今天下雨”,命题 q 为“我带了雨伞”,则p→q 的真值表为:A. T T TB. T F TC. F T TD. F F T二、填空题1. 若集合 A={1,2,3,4},集合 B={3,4,5},则A∪B等于______。
2. 命题p:“我今天去看电影”,q:“电影院放映时间是晚上8点”,则p∧q 的真值为______。
3. 若命题 p 为“5是一个奇数”,则非命题p的否定形式为______。
三、简答题1. 解释离散数学在计算机科学中的重要性。
2. 说明集合的基本运算并给出一个例子。
3. 论述命题逻辑和谓词逻辑的区别。
四、综合题1. 设集合 A={a, b, c},B={c, d, e},C={e, f, g},求(A∩B)∪C。
2. 用真值表验证以下推理是否成立:p∨(q∧r)与(p∨q)∧(p∨r)等价。
以上就是离散数学自考试题,希。
2离散数学

三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“尽管他接受了这个任务,但他没有完成好.”翻译成命题公式.12.将语句“今天没有下雨.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.下面的推理是否正确,试予以说明.(1) (∀x)F(x)→G(x)前提引入(2) F(y)→G(y)US(1).14.若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,最小元不存在.图二五.计算题(每小题12分,本题共36分)15.求(P∨Q)→(R∨Q)的合取范式.16.设A={0,1,2,3,4},R={<x,y>|x∈A,y∈A且x+y<0},S={<x,y>|x∈A,y∈A 且x+y≤3},试求R,S,R∙S,R-1,S-1,r(R).17.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它们的权.六、证明题(本题共8分)18.设G是一个n阶无向简单图,n是大于等于2的奇数.证明G与G中的奇数度顶点个数相等(G是G的补图).三、逻辑公式翻译(每小题6分,本题共12分)11.设P:他接受了这个任务,Q:他完成好了这个任务,(2分)P∧⌝Q.(6分)12.设P:今天下雨,(2分)⌝P.(6分)四、判断说明题(每小题7分,本题共14分)13.错误.(3分)(2)应为F(y)→G(x),换名时,约束变元与自由变元不能混淆.(7分)14.错误.(3分)集合A的最大元不存在,a是极大元.(7分)五.计算题(每小题12分,本题共36分)15.(P∨Q)→(R∨Q)⇔⌝(P∨Q)∨(R∨Q)(4分)⇔(⌝P ∧⌝Q )∨(R ∨Q )⇔(⌝P ∨R ∨Q )∧(⌝Q ∨R ∨Q )⇔(⌝P ∨R ∨Q ) ∧R 合取范式(12分)16.R =∅, (2分) S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} (4分) R ∙S =∅,(6分)R -1=∅,(8分) S -1= S ,(10分) r (R )=I A .(12分) 17.(10分)权为1⨯3+2⨯3+2⨯2+3⨯2+4⨯2=27 (12分)六、证明题(本题共8分)18.证明:因为n 是奇数,所以n 阶完全图每个顶点度数为偶数,(3分) 因此,若G 中顶点v 的度数为奇数,则在G 中v 的度数一定也是奇数,(6分) 所以G 与G 中的奇数度顶点个数相等.(8分)三、逻辑公式翻译(每小题6分,本题共12分) 11.将语句“今天考试,明天放假.”翻译成命题公式. 12.将语句“我去旅游,仅当我有时间.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.如果图G 是无向图,且其结点度数均为偶数,则图G 是欧拉图.14.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元是f .图二五.计算题(每小题12分,本题共36分)15.设谓词公式)),,()(),()((z x y B z y x A x ∀→∃,试ο οο ο ο ο ο ο ο1 2 23 34 75 12(1)写出量词的辖域;(2)指出该公式的自由变元和约束变元. 16.设集合A ={{1},1,2},B ={1,{1,2}},试计算(1)(A -B );(2)(A ∩B );(3)A ×B .17.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4 },E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4) },试 (1)给出G 的图形表示;(2)写出其邻接矩阵; (3)求出每个结点的度数;(4)画出其补图的图形.六、证明题(本题共8分)18.设A ,B 是任意集合,试证明:若A ⨯A=B ⨯B ,则A=B .三、逻辑公式翻译(每小题4分,本题共12分) 11.设P :今天考试,Q :明天放假.(2分) 则命题公式为:P ∧Q .(6分)12.设P :我去旅游,Q :我有时间,(2分)则命题公式为:P →Q .(6分)四、判断说明题(每小题7分,本题共14分) 13.错误.(3分)当图G 不连通时图G 不为欧拉图.(7分) 14.错误.(3分)集合A 的最大元与最小元不存在, a 是极大元,f 是极小元,.(7分) 五.计算题(每小题12分,本题共36分)15.(1)∃x 量词的辖域为)),,()(),((z x y B z y x A ∀→,(3分)∀z 量词的辖域为),,(z x y B , (6分) (2)自由变元为)),,()(),((z x y B z y x A ∀→中的y ,(9分)约束变元为x 与z .(12分) 16.(1)A -B ={{1},2} (4分)(2)A ∩B ={1} (8分) (3)A ×B={<{1},1>,<{1},{1,2}>,<1,1>,<1, {1,2}>,<2,1>,<2, {1,2}>} (12分)17.(1)G 的图形表示为(如图三):(3分)图三(2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110101111000100(6分) (3)v 1,v 2,v 3,v 4结点的度数依次为1,2,3,2 (9分)(4)补图如图四所示:(12分)图四六、证明题(本题共8分)18.证明:设x ∈A ,则<x ,x >∈A ⨯A ,(1分) 因为A ⨯A=B ⨯B ,故<x ,x >∈B ⨯B ,则有x ∈B ,(3分) 所以A ⊆B .(5分)设x ∈B ,则<x ,x >∈B ⨯B ,(6分)因为A ⨯A=B ⨯B ,故<x ,x >∈A ⨯A ,则有x ∈A ,所以B ⊆A .(7分) 故得A=B .(8分)试卷代号:1009国家开放大学(中央广播电视大学)2014年春季学期“开放本科”期末考试离散数学(本)试题(半开卷)一、单项选择题(每小题3分,本题共15分)一、单选题:在下列各题的备选答案中选择一个正确的。
《离散数学》题库及答案

《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式x((A(x)B(y,x))z C(y,z))D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式x A和x A中,称x为指导变元,A为量词的辖域。
在x A和x A的辖域中,x的所有出现都称为约束出现,即称x 为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x 为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗 (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。
)6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
《离散数学》试题带答案

《离散数学》试题带答案一、填空 20% (每小题2分)1、 P :你努力,Q :你失败。
“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为 。
2、论域D={1,2},指定谓词P则公式x ∃∀真值为 。
2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。
3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R=(列举法)。
R 的关系矩阵M R =。
5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ;A 上既是对称的又是反对称的关系R= 。
6、设代数系统<A ,*>,其中A={a ,b ,c},则幺元是 ;是否有幂等 性 ;是否有对称性 。
群或 群。
8、下面偏序格是分配格的是 。
9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。
10、公式R Q P Q P P ⌝∧∨⌝∧∧⌝∨)(())((的根树表示为。
二、选择 20% (每小题2分)1、在下述公式中是重言式为( )A .)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P ∧→⌝)(;D .)(Q P P ∨→。
2、命题公式 )()(P Q Q P ∨⌝→→⌝ 中极小项的个数为( ),成真赋值的个数为( )。
A .0;B .1;C .2;D .3 。
3、设}}2,1{},1{,{Φ=S ,则 S2 有( )个元素。
A .3;B .6;C .7;D .8 。
4、 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系},,,, | ,,,{c b d a S S d c S S b a d c b a R +=+⨯>∈<⨯>∈<><><<=则由 R 产 生的S S ⨯上一个划分共有( )个分块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷代号:1009
中央广播电视大学2008--2009学年度第二学期“开放本科”期末考试(半开卷)
离散数学(本) 试题
7月
一、单项选择题(每小题3分,本题共15分)
1.若集合A ={a ,b },B ={ a ,b ,{ a ,b }},则( ).
A .A ⊂
B ,且A ∈B B .A ∈B ,但A ⊄B
C .A ⊂B ,但A ∉B
D .A ⊄B ,且A ∉B
2.集合A ={1, 2, 3, 4, 5, 6, 7, 8}上的关系R ={<x ,y >|x +y =10且x , y ∈A },则R 的性质为( ).
A .自反的
B .对称的
C .传递且对称的
D .反自反且传递的
3.如果R 1和R 2是A 上的自反关系,则R 1∪R 2,R 1∩R 2,R 1-R 2中自反关系有( )个.
A .0
B .2
C .1
D .3
4.如图一所示,以下说法正确的是 ( ) .
A .{(a, e )}是割边
B .{(a, e )}是边割集
C .{(a, e ) ,(b, c )}是边割集
D .{(d , e )}是边割集
图一
5.设A (x ):x 是人,B (x ):x 是学生,则命题“不是所有人都是学生”可符号化为( ).
A .(∀x )(A (x )∧
B (x )) B .┐(∃x )(A (x )∧B (x ))
C .┐(∀x )(A (x ) →B (x ))
D .┐(∃x )(A (x )∧┐B (x ))
二、填空题(每小题3分,本题共15分)
6.若集合A 的元素个数为10,则其幂集的元素个数为 . 7.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 .
8.若A ={1,2},R ={<x , y >|x ∈A , y ∈A , x +y =10},则R 的自反闭包为 .
9.结点数v 与边数e 满足 关系的无向连通图就是树.
10.设个体域D ={a , b , c },则谓词公式(∀x )A (x )消去量词后的等值式为 .
三、逻辑公式翻译(每小题6分,本题共12分)
11.将语句“尽管他接受了这个任务,但他没有完成好.”翻译成命题公式.
12.将语句“今天没有下雨.”翻译成命题公式.
四、判断说明题(每小题7分,本题共14分)
判断下列各题正误,并说明理由.
13.下面的推理是否正确,试予以说明.
(1) (∀x)F(x)→G(x)前提引入
(2) F(y)→G(y)US(1).
14.若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,最小元不存在.
图二
五.计算题(每小题12分,本题共36分)
15.求(P∨Q)→(R∨Q)的合取范式.
16.设A={0,1,2,3,4},R={<x,y>|x∈A,y∈A且x+y<0},S={<x,y>|x∈A,y∈A 且x+y≤3},试求R,S,R∙S,R-1,S-1,r(R).
17.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它们的权.
六、证明题(本题共8分)
18.设G是一个n阶无向简单图,n是大于等于2的奇数.证明G与G中的奇数度顶点个数相等(G是G的补图).。