新人教版初三九年级上册数学21试卷.3实际问题与一元二次方程_测试(含答案)

合集下载

初中数学 人教版九年级上册 21.3 实际问题与一元二次方程 同步练习(含答案)

初中数学 人教版九年级上册   21.3 实际问题与一元二次方程 同步练习(含答案)

实际问题与一元二次方程同步练习一.选择题(共12小题)1.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降低至1.21%,设平均每次降息的百分率为x,则x满足方程()A.2.25%(1-2x)=1.21%B.1.21%(1+2x)=2.25%C.1.21%(1+x)2=2.25%D.2.25%(1-x)2=1.21%2.一次围棋比赛,要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x个参赛棋手,则可列方程为()A.0.5x(x-1)=45B.0.5x(x+1)=45C.x(x-1)=45D.x(x+1)=453.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4424.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()B.15C.16D.255.某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则x为()A.5B.10C.19D.816.2017年底,全国铁路营业里程为12.7万公里,其中高铁2.5万公里;截至2019年底,中国高铁运营里程突破3.5万公里(按3.5万公里计算),约占全球高铁网的七成,若这两年我国高铁里程的增长率相同,在保持年增长率不变的前提下,预计2021年中国高铁里程为多少万公里()A.4.5B.4.7C.4.9D.5.17.疫情期间,某口罩厂一月份的产量为100万只,由于市场需求量不断增大,三月份的产量提高到121万只,该厂二、三月份的月平均增长率为()A.12.1%B.20%D.10%8.近几年来安徽省各地区建立了比较完善的经济困难学生资助体系.某地区在2017年给每个经济困难学生发放的资助金额为800元,2019年发放的资助金额为1250元,则该地区每年发放的资助金额的平均增长率为()A.10%B.15%C.20%D.25%9.三角形两边的长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是()A.24B.24或C.48D.10.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10mB.4mC.10mD.8m11.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7B.8C.9D.1012.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A.0.5B.0.6C.2-D.4-2二.填空题(共5小题)13.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.14.如图,在一个长20m,宽10m的矩形草地内修建宽度相等的小路(阴影部分),若剩余草地(空白部分)的面积171m2,则小路的宽度为m.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.17.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有人.三.解答题(共5小题)18.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?19.适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.20.受疫情影响,某种蔬菜的价格快速上涨,是原价的1.5倍,同样用48元能买到的蔬菜比原来少了2千克.(1)求这种蔬菜的原价是每千克多少元?(2)政府采取增加采购渠道、财政补贴等多种措施,降低价格,方便老百姓的生活.这种蔬菜的批发价两次下调后,由每千克10元降为每千克6.4元.求平均每次下调的百分率.21.甲商品的进价为每件20元,商场确定其售价为每件40元.(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?22.乐高积木是儿童喜爱的玩具.这种塑胶积木一头有凸粒,另一头有可嵌入凸粒的孔,形状有1300多种,每一种形状都有12种不同的颜色,以红、黄、蓝、白、绿色为主.它靠小朋友自己动手动脑,可以拼插出变化无穷的造型,令人爱不释手,被称为“魔术塑料积木”.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价;(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降m(m>0)元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润为5760元。

人教版九年级上册数学 21.3 实际问题与一元二次方程(传播问题)专题练习(Word版,含答案)

人教版九年级上册数学 21.3 实际问题与一元二次方程(传播问题)专题练习(Word版,含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程--传播问题专题练习一、单选题1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,设每个支干长出x 个小分支,则下列方程中正确的是( )A .2143x +=B .2143x x ++=C .243x x +=D .()2143x += 2.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确的是( ) A .x +x (1+x )=100B .1+x +x 2=100C .1+x +x (1+x )=100D .x (1+x )=1003.新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快.已知有1个人患了新冠肺炎,经过两轮传染后共有169个人患了新冠肺炎,每轮传染中平均一个人传染m 人,则m 的值为( )A .11B .12C .13D .14 4.早期,甲肝流行,在一天内,一人能传染4人,若有三人患上甲肝,那么经过两天患上甲肝的人数为( )A .50B .75C .25D .70 5.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .x (x +1)=28B .12x (x ﹣1)=28 C .x (x ﹣1)=28 D .12x (x +1)=28 6.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑? A .-10 B .10 C .8 D .9 7.一个同学经过培训后会做某项实验,回到班级后第一节课他教会了若干个同学,第二节课会做的同学每人又教会了同样多的同学,这样全班共有36人会做这项实验,若设1人每次能教会x 名同学,则可列方程为( )A.x+(x+1)x=36B.(x+1)2=36C.1+x+x2=36D.x+(x+1)2=368.在一次同学聚会上,参加的每个人都与其他人握手一次,共握手95次,设参加这次同学聚会的有x人,可得方程()A.x(x﹣1)=190B.x(x﹣1)=380C.x(x﹣1)=95D.(x﹣1)2=380二、填空题9.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x个人,则由题意列出方程___________________.10.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到200个红包,则可以列方程为__.11.有3人患了流感,经过两轮传染后共有192人患流感,设每轮传染中平均一个人传染了x人,则可列方程为____________.12.有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.13.某种植物的主干长出若干数目的支干,每个支干长出同样数量的小分支.若主干、支干和小分支的总数是73,设每个支干长出x个小分支,则可列方程为______.14.中秋节当天,小明将收到的一条短信发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有111人,则小明给_______人发了短信.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,两轮传播后,流感病人总数为288人,则每轮传播中平均一个病人传染的人数为______人.16.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染的人数为________.三、解答题17.某种流感病毒,若有一人患了这种流感,则在每轮传染中一人将平均传染x人.(1)现有一人患上这种流感,求第一轮传染后患病的人数(用含x的代数式表示);(2)在进入第二轮传染前,有两位患者被及时隔高并治愈,问第二轮传染后患病的人数会有21人吗?18.某种病毒传播速度非常快,如果最初有两个人感染这种病毒,经两轮传播后,就有五十个人被感染,求每轮传播中平均一个人会传染给几个人?若病毒得不到有效控制,三轮传播后将有多少人被感染?19.新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.(1)求这种病毒每轮传播中一个人平均感染多少人?(2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?20.为了宣传垃圾分类,小王写了一封倡议书,用微博转发的方式传播,他设计了如下的转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共有111个人参与了本次活动.(1)x的值是多少?(2)再经过几轮转发后,参与人数会超过10000人?参考答案:1.B2.C3.B4.B5.B6.C7.B8.A9.2(1)100x +=10.x (x ﹣1)=20011.()3333192x x x +++=12.1413.x 2+x +1=7314.1015.1116.1017.(1)(1)x +;(2)不会,18.每轮传播中平均一个人会传染给4个人,若病毒得不到有效控制,三轮传播后将有250人被感染19.(1)7人;(2)512人20.(1)10;(2)再经过两轮转发后,参与人数会超过10000人.。

人教数学九年级上《21.3实际问题与一元二次方程》测试题(含答案解析)

人教数学九年级上《21.3实际问题与一元二次方程》测试题(含答案解析)

一元二次方程的应用测试题时间:90分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A. 20(1+2x)=28.8B. 28.8(1+x)2=20C. 20(1+x)2=28.8D. 20+20(1+x)+20(1+x)2=28.82.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A. 12x(x−1)=45 B. 12x(x+1)=45 C. x(x−1)=45 D. x(x+1)=453.如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为()A. √2−12B. √3−12C. √5−12D. √6−124.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A. (x+1)(x+2)=18B. x2−3x+16=0C. (x−1)(x−2)=18D. x2+3x+16=05.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A. 560(1+x)2=1850B. 560+560(1+x)2=1850C. 560(1+x)+560(1+x)2=1850D. 560+560(1+x)+560(1+x)2=18506.某市计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A. 19%B. 20%C. 21%D. 22%7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A. (32−2x)(20−x)=570B. 32x+2×20x=32×20−570C. (32−x)(20−x)=32×20−570D. 32x+2×20x−2x2=5708.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A. 16(1+2x)=25B. 25(1−2x)=16C. 16(1+x)2=25D. 25(1−x)2=169.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A. 10.8(1+x)=16.8B. 16.8(1−x)=10.8C. 10.8(1+x)2=16.8D. 10.8[(1+x)+(1+x)2]=16.810.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A. 0.5cmB. 1cmC. 1.5cmD. 2cm二、填空题(本大题共10小题,共30.0分)11.如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为______cm.12.红米note手机连续两次降价,由原来的1299元降688元,设平均每次降价的百分率为x,则列方程为______ .13.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为______ 米.14.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为______ .15.如图,在边长为6cm正方形ABCD中,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC和CD边向D点以2cm/s的速度移动,如果点P、Q分别从A、B同时出发,其中一点到终点,另一点也随之停止.过了______ 秒钟后,△PBQ的面积等于8cm2.16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.17.如图,EF是一面长18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块.若要围成的矩形面积为60平方米,则AB的长为______ 米.18.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同且设为x,则列出的方程是______ .19.去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月,3月的平均增长率为______ .20.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是______.三、计算题(本大题共4小题,共24.0分)21.商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?22.如图,在△ABC中,∠B=90∘,点P从点A开始,沿AB向点B以1cm/s的速度移动,点Q从B点开始沿BC以2cm/s的速度移动,如果P、Q分别从A、B同时出发:(1)几秒后四边形APQC的面积是31平方厘米;(2)若用S表示四边形APQC的面积,在经过多长时间S取得最小值?并求出最小值.23.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为11米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45平方米的花圃,那么AD的长为多少米?(2)能否围成面积为60平方米的花圃?若能,请求出AD的长;若不能,请说明理由.24.“白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?四、解答题(本大题共2小题,共16.0分)25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.26.如图所示,已知在△ABC中,∠B=90∘,AB=6cm,BC=12cm,点Q从点A开始沿AB边向点B以1cm/s的速度移动,点P从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2?(2)在(1)中,△PBQ的面积能否等于10cm2?试说明理由.答案和解析【答案】1. C2. A3. C4. C5. D6. B7. A8. D9. C10. B11. 1112. 1299×(1−x)2=1299−68813. 114. 10%15. 2或10316. 50(1−x)2=3217. 1218. 10(1+x)2=12.119. 25%20. 10%21. 解:(1)当每件商品售价为55元时,比每件商品售价50元高出5元,即55−50=5(元),则每天可销售商品450件,即500−5×10=450(件),商场可获日盈利为(55−40)×450=6750(元).答:每天可销售450件商品,商场获得的日盈利是6750元;(2)设商场日盈利达到8000元时,每件商品售价为x元.则每件商品比50元高出(x−50)元,每件可盈利(x−40)元,每日销售商品为500−10(x−50)=1000−10x(件).依题意得方程(1000−10x)(x−40)=8000,整理,得x2−140x+4800=0,解得x=60或80.答:每件商品售价为60或80元时,商场日盈利达到8000元.22. 解:(1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据题意得:12BP⋅BQ=12AB⋅BC−31,即12(6−x)⋅2x=12×6×12−31,整理得(x−1)(x−5)=0,解得:x1=1,x2=5.答:经过1或5秒钟,可使得四边形APQC的面积是31平方厘米;(2)依题意得,S四边形APQC=S△ABC−S△BPQ,即S=12AB⋅BC−12BP⋅BQ=12×6×12−12(6−x)⋅2x=(x−3)2+27(0<x<6),当x−3=0,即x=3时,S最小=27.答:经过3秒时,S取得最小值27平方厘米.23. 解:(1)设AD的长为x米,则AB为(24−3x)米,根据题意列方程得,(24−3x)⋅x=45,解得x1=3,x2=5;当x=3时,AB=24−3x=24−9=15>11,不符合题意,舍去;当x=5时,AB=24−3x=9<11,符合题意;答:AD的长为5米.(2)不能围成面积为60平方米的花圃.理由:假设存在符合条件的长方形,设AD的长为y米,于是有(24−3y)⋅y=60,整理得y2−8y+20=0,∵△=(−8)2−4×20=−16<0,∴这个方程无实数根,∴不能围成面积为60平方米的花圃.24. 解:(1)设裤子的定价为每条x元,根据题意,得:(x−50)[50+5(100−x)]=4000,解得:x=70或x=90,答:裤子的定价应该是70元或90元;(2)销售利润y=(x−50)[50+5(100−x)]=(x−50)(−5x+550)=−5x2+800x−27500,=−5(x−80)2+4500,∵a=−5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;答:定价为每条80元可以使每天的利润最大,最大利润是4500元.25. 解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=−2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.26. 解:(1)设t秒后,△PBQ的面积等于8cm2,根据题意得:1×2t(6−t)=8,2解得:t=2或4.答:2秒或4秒后,△PBQ的面积等于8cm2.(2)由题意得,1×2t(6−t)=10,2整理得:t2−6t+10=0,b2−4ac=36−40=−4<0,此方程无解,所以△PBQ的面积不能等于10cm2.【解析】1. 【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)增长的次数,一般形式为a(1+x)n=b,a为起始时间的有关数量,b为终止时间的有关数量,n为增长的次数.设这两年观赏人数年均增长率为x,根据“2014年约为20万人次,2016年约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8.故选C.2. 解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,x(x−1),∴共比赛场数为12∵共比赛了45场,∴1x(x−1)=45,2故选:A.先列出x支篮球队,每两队之间都比赛一场,共可以比赛12x(x−1)场,再根据题意列出方程为12x(x−1)=45.此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3. 试题分析:根据对称性可知:BE=FE,∠AFE=∠ABE=90∘,又∠C=∠C,所以△CEF∽△CAB,根据相似的性质可得出:EFAB =CEAC,BE=EF=CEAC×AB,在△ABC中,由勾股定理可求得AC的值,AB=1,CE=2−BE,将这些值代入该式求出BE的值.设BE的长为x,则BE=FE=x、CE=2−x在Rt△ABC中,AC=√AB2+BC2=√5∵∠C=∠C,∠AFE=∠ABE=90∘∴△CEF∽△CAB(两对对应角相等的两三角形相似)∴EFAB =CEAC∴FE=x=CEAC ×AB=√51,x=√5−12,∴BE=x=√5−12,故选:C.4. 解:设原正方形的边长为xm,依题意有(x−1)(x−2)=18,故选:C.可设原正方形的边长为xm,则剩余的空地长为(x−1)m,宽为(x−2)m.根据长方形的面积公式方程可列出.本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.5. 解:依题意得二月份的产量是560(1+x),三月份的产量是560(1+x)(1+x)=560(1+x)2,∴560+560(1+x)+560(1+x)2=1850.故选D.增长率问题,一般用增长后的量=增长前的量×(1+增长率),根据二、三月份平均每月的增长为x,则二月份的产量是560(1+x)吨,三月份的产量是560(1+x)(1+x)= 560(1+x)2,再根据第一季度共生产钢铁1850吨列方程即可.能够根据增长率分别表示出各月的产量,这里注意已知的是一季度的产量,即三个月的产量之和.6. 解:设原来的绿地面积为a,两年平均每年绿地面积的增长率是x.a×(1+x)2=a×(1+44%),解得:x=0.2或x=−2.2,∵x>0,∴x=0.2=20%,故选B.等量关系为:原来的绿地面积×(1+这两年平均每年绿地面积的增长率)2=原来的绿地面积×(1+绿地面积增加的百分数),把相关数值代入即可求解.考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7. 解:设道路的宽为xm,根据题意得:(32−2x)(20−x)=570,故选:A.六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.8. 解:第一次降价后的价格为:25×(1−x);第二次降价后的价格为:25×(1−x)2;∵两次降价后的价格为16元,∴25(1−x)2=16.故选:D.等量关系为:原价×(1−降价的百分率)2=现价,把相关数值代入即可.本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9. 解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2= 16.8万人次,根据等量关系列出方程即可.本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 解:设AC交A′B′于H,∵∠A=45∘,∠D=90∘∴△A′HA是等腰直角三角形设AA′=x,则阴影部分的底长为x,高A′D=2−x∴x⋅(2−x)=1∴x=1即AA′=1cm.故选B.根据平移的性质,结合阴影部分是平行四边形,△AA′H与△HCB′都是等腰直角三角形,则若设AA′=x,则阴影部分的底长为x,高A′D=2−x,根据平行四边形的面积公式即可列出方程求解.解决本题关键是抓住平移后图形的特点,利用方程方法解题.11. 解:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x−6)(x−6)=240解得x1=11,x2=−2(不合题意,舍去)答:这块铁片的宽为11cm.设这块铁片的宽为xcm,则铁片的长为2xcm,剪去一个边长为3cm的小方块后,组成的盒子的底面的长为(2x−6)cm、宽为(x−6)cm,盒子的高为3cm,所以该盒子的容积为3(2x−6)(x−6),又知做成盒子的容积是240cm3,盒子的容积一定,以此为等量关系列出方程,求出符合题意的值即可.本题主要考查的是一元二次方程的应用,关键在于理解清楚题意找出等量关系,列出方程求出符合题意得解.12. 解:设平均每次降价的百分率为x,由题意得,1299×(1−x)2=1299−688.故答案为:1299×(1−x)2=1299−688.设平均每次降价的百分率为x,则可得:原价×(1−x)2=现价,据此列方程即可.本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13. 解:设小道进出口的宽度为x米,依题意得(30−2x)(20−x)=532,整理,得x2−35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.故答案为:1.设小道进出口的宽度为x米,然后利用其种植花草的面积为532平方米列出方程求解即可.本题考查了一元二次方程的应用,解题的关键是根据种植花草的面积为532m2找到正确的等量关系并列出方程.14. 解:设这两次的百分率是x,根据题意列方程得100×(1−x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1−x),第二次降价后的售价是原来的(1−x)2,再根据题意列出方程解答即可.本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15. 解:设经过x秒,△PBQ的面积等于8cm2,当0<x<3秒时,Q点在BC上运动,P在AB上运动,PB=6−x,BQ=2x,所以S△PBQ=12PB⋅BQ=12×2x×(6−x)=8,解得x=2或4,又知x<3,故x=2符合题意,当3<x<6秒时,Q点在CD上运动,P在AB上运动,S△PBQ=12(6−x)×6=8,解得x=103.故答案为:2或103.设经过x秒,△PBQ的面积等于8cm2,分类讨论当0<x<3秒时,Q点在BC上运动,P在AB上运动,求出面积的表达式,求出一个值,当3<x<6秒时,Q点在CD上运动,P在AB上运动,根据条件列出一个一元一次方程,求出一个值.本题主要考查一元二次方程的应用的知识点,解答本题的关键是Q点的运动位置,此题很容易漏掉一种情况,此题难度一般.16. 解:由题意可得,50(1−x)2=32,故答案为:50(1−x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.17. 解:∵与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=32−AD−MN−PQ−BC=32−4x(米),根据题意得:x(32−4x)=60,解得:x=3或x=5,当x=3时,AB=32−4x=20>18(舍去);当x=5时,AB=32−4x=12(米),∴AB的长为12米.故答案为:12.由与墙头垂直的边AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB 的长;根据题意可得方程x(32−4x)=60,解此方程即可求得x的值,又由AB=32−x(米),即可求得AB的值,注意EF是一面长18米的墙,即AB<18米.考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.18. 解:设每年的增长率为x,根据题意得10(1+x)2=12.1,故答案为:10(1+x)2=12.1.如果设每年的增长率为x,则可以根据“住房面积由现在的人均约为10m2提高到12.1m2”作为相等关系得到方程10(1+x)2=12.1.本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)= a(1±x)2.增长用“+”,下降用“−”.19. 解:设2月,3月的平均增长率为x,根据题意得:4(1+x)2(1−36%)=4,解得:x=25%或x=−2.25(舍去)故答案为:25%.根据“原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%”可列出关于x的一元二次方程,解方程即可得出结论;本题考查了一元二次方程的应用,解题的关键是能够根据增长率问题列出方程,难度不大.20. 解:设平均每次降价的百分率为x,根据题意列方程得100×(1−x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.故答案为:10%.设平均每次降价的百分率为x,那么第一次降价后的售价是原来的(1−x),那么第二次降价后的售价是原来的(1−x)2,根据题意列方程解答即可.本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.21. (1)首先求出每天可销售商品数量,然后可求出日盈利;(2)设商场日盈利达到8000元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.本题考查了一元二次方程的实际应用,根据每件商品的盈利×销售的件数=商场的日盈利,列出方程是关键.22. (1)设经过x秒钟,可使得四边形APQC的面积是31平方厘米,根据面积为31列出方程,求出方程的解即可得到结果;(2)根据题意列出S关于x的函数关系式,利用函数的性质来求最值.此题考查了一元二次方程的应用、二次函数的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23. (1)设出AD的长,表示出AB的长,利用长方形面积公式列方程解答,再据墙的最大可用长度为11米即可;(2)利用(1)中的方法列出方程解答,利用根的判别式进行判定即可.此题的关键是利用长方形的面积计算公式列方程解答问题,注意结合图形.24. (1)根据“利润=(售价−成本)×销售量”列出方程求解可得;(2)根据(1)中的相等关系列出二次函数解析式,再转化为顶点式,利用二次函数图象的性质进行解答.本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程.25. (1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.26. (1)分别表示出线段PB和线段BQ的长,然后根据面积为8列出方程求得时间即可;(2)根据面积为10列出方程,判定方程是否有解即可.本题考查了一元二次方程的应用,三角形的面积,能够表示出线段PB和QB的长是解答本题的关键.。

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章 实际问题与一元二次方程》同步练习题及答案(人教版)

九年级数学上册《第二十一章实际问题与一元二次方程》同步练习题及答案(人教版)姓名班级学号一、单选题1.已知△ABC是等腰三角形,BC=8,AB,AC的长是关于x的一元二次方程x2-10x+k=0的两根,则()A.k=16 B.k=25C.k=-16或k=-25 D.k=16或k=252.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%3.奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A.4元B.6元C.4元或6元D.5元4.2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为()A.10% B.15% C.20% D.25%5.毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为()A.5人B.6人C.7人D.8人6.一个两位数,它的十位数字比个位数字大3,且十位数字与个位数字的积是28,求这个两位数.设这个两位数的个位数字为x,则可列方程()A.x2+3x−28=0B.x2−3x−28=0C.x2+3x+28=0D.x2−3x+28=07.如图,要设计一幅宽20cm、长30cm的图案,其中有两横两竖的彩条即图中的阴影部分,横竖彩条的,则竖彩条宽度为()宽度比为2:1.如果要使阴影所占面积是图案面积的1975A.1 cm B.2 cm C.19 cm D.1 cm或19 cm8.欧几里得的《几何原本》中记载了用图解法求解一元二次方程的方法,小南读了后,想到一个可以求,BC=a,以A为圆心,作AE=AB,解方程x2-bx+a2=0的图解方法:如图,在矩形ABCD(AB>BC)中,AB= b2交DC于点E,则该方程的其中一个正根是( )A.BE的长B.CE的长C.AB的长D.AD的长二、填空题9.方程√5−x=3的根是10.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是.11.在一次同学聚会上,每两个人之间都互相赠送了一份礼物,若一共送出了380份礼物,则参加聚会的同学的人数是.12.某小组有若干人,新年大家互相发一条微信视福,已知全组共发微信56条,则这个小组的人数为人.13.某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件.若商场平均每天要赢利1200元,则每件衬衫应降价.三、解答题14.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?15.花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆.为扩大销量,增加利润,该店决定适当降价.据调查,每盆兰花每降价1元,每天可多售出2盆. 要使得每天利润达到1200元,则每盆兰花售价应定为多少元?16.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是91,每个支干长出多少小分支?17.宜城市某楼盘准备以每平方米4000元的均价对外销售,由于国务院“新国五条”出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?18.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?19.如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:依据规律在第6个图中,黑色瓷砖多少块,白色瓷砖有多少块;(2)某新学校教室要装修,每间教室面积为68m2,准备定制边长为0.5米的正方形白色瓷砖和长为0.5米、宽为0.25米的长方形黑色瓷砖来铺地面.按照此图案方式进行装修,瓷砖无须切割,恰好完成铺设.已知白色瓷砖每块20元,黑色瓷砖每块10元,请问每间教室瓷砖共需要多少元?参考答案1.D2.B3.B4.A5.B6.A7.A8.B9.x=﹣410.25%11.2012.813.10元或20元14.解:设邀请x个球队参加比赛依题意得1+2+3+…+x-1=21即x(x−1)=212∴x2-x-42=0∴x=7或x=-6(不合题意,舍去).答:应邀请7个球队参加比赛.15.解:设每盆兰花售价定为x元,可以达到1200元的利润,则据题意得, (x-100)[20+2(140-x)]=1200,解得x=120或x=130,因为为扩大销量,增加利润,所以x=130(舍去)答:要使刚刚利润达到1200元,每盆兰花售价为120元16.解:设每个支干长出的小分支的数目是x个根据题意列方程得:x2+x+1=91解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;答:每支支干长出9个小分支.17.解:(1)设平均每次下调的百分率是x,依题意得,4000(1﹣x)2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)所以,平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元方案②实际花费=100×3240﹣100×80=316000元∵317520>316000∴方案②更优惠18.(1)2x;50﹣x(2)解:由题意得:(50﹣x)(30+2x)=2100(0≤x<50)化简得:x2﹣35x+300=0,即(x﹣15)(x﹣20)=0解得:x1=15,x2=20∵该商场为了尽快减少库存∴降的越多,越吸引顾客∴选x=20答:每件商品降价20元,商场日盈利可达2100元19.解:(1)通过观察图形可知,当n=1时,黑色瓷砖有8块,白瓷砖2块;当n=2时,黑色瓷砖有12块,白瓷砖6块;当n=3时,黑色瓷砖有16块,用白瓷砖12块;则在第n个图形中,黑色瓷砖的块数可用含n的代数式表示为4(n+1),白瓷砖的块数可用含n的代数式表示为n(n+1)当n=6时,黑色瓷砖的块数有4×(6+1)=28块,白色瓷砖有6×(6+1)=42块;故答案为:28,42;(2)设白色瓷砖的行数为n,根据题意,得:0.52×n(n+1)+0.5×0.25×4(n+1)=68解得n1=15,n2=﹣18(不合题意,舍去)白色瓷砖块数为n(n+1)=240黑色瓷砖块数为4(n+1)=64所以每间教室瓷砖共需要:20×240+10×64=5440元.答:每间教室瓷砖共需要5440元.。

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练(含答案)

人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练(含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程 同步训练一、单选题1.某商店将进货价格为20元的商品按单价36元售出时,能卖出200个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨x 元时,获得的利润为1200元,则下列关系式正确的是( ) A .()()1620051200x x +-=B .()()1620051200x x ++=C .()()1620051200x x -+=D .()()1620051200x x --= 2.某县2020年人均可支配收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( ) A .()22.71 2.36x +=B .()22.361 2.7x += C .()22.71 2.36x -= D .()22.361 2.7x -= 3.在“双减政策”的推动下,某校学生课后作业时长有了明显的减少.去年上半年平均每周作业时长为a 小时,经过去年下半年和今年上半年两次调整后,现在平均每周作业时长为b 小时,设每半年平均每周作业时长的下降率为x ,则可列方程为( ) A .()1a x b -=B .()21a x b -= C .()1b x a += D .()21a x b += 4.某种药品的原来价格是每盒220元,准备进行两次降价,若每次降价的百分率都为x ,且第二次降价后每盒价格为168元,则可列方程( )A .()()222012201x x -=-B .()2201168x x -=C .()22201168x -=D .()2202201x x x =-5.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共相互赠送标本72件,若全组有x 名同学,则根据题意列出方程是( )A .()1722x x -=⨯B .()172x x +=C .()2172x x +=D .()172x x -= 6.某超市经销一种水果,每千克盈利10元,每天可售出500千克,经市场调查发现,在进价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现该超市要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价( )元A .5元B .5元或10元C .10元或15元D .15元7.活动选在一块长40米、宽28米的矩形空地上,如图,空地被划分出6个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为128平方米,小路的宽应为多少米?设小路宽为x 米,则可列方程为( )A .()()402281286x x --=⨯B .()()40228128x x --=C .()()402821286x x --=⨯D .()()40282128x x --=8.小李去参加聚会,每两人之间都互相赠送礼物,最终参加聚会的所有人的礼物总数共20件,则参加聚会的人数为( )A .4人B .5人C .6人D .7人二、填空题9.某商品原售价为60元,4月份下降了20%,从5月份起售价开始增长,6月份售价为75元,设5,6月份每个月的平均增长率为x ,则x 的值为________.10.某商品原价100元,经过连续两次涨价,现价为225元,则这个平均价格增长率为______.11.参加足球联赛的两支球队之间都要进行两场比赛,总共比赛110场,则共有________支球队.12.如图,某单位准备在院内一块长30m 、宽20m 的长方形花园中修两条纵向平行和一条横向弯折的小道,剩余的部分种植花草.如图,要使种植花草的面积为2532m ,则小道进出口的宽度为______m .13.某工厂一月份的产值是100万元,预计三月份的产值要达到121万元,如果每月产值的增长率相同,设这个增长率为x ,那么根据题意可列方程为___________.14.某年级举行篮球比赛,每一支球队都和其他球队进行了一场比赛,已知共举行了21场比赛,那么共有________支球队参加了比赛.15.2022年世界女子冰壶锦标赛有若干支队伍参加了单循环比赛(每两支队伍之间进行一场比赛),共进行了55场,则参赛的队伍有___________支.16.已知一人得了流感,经过两轮传染后,患病总人数为121人,设平均每人传染了x 个人,则列出关于x的方程为______.三、解答题17.要建一个面积为2250m的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用围栏围成.(1)若围栏的总长为45m,墙足够长,则与墙平行的围栏长为多少m?(2)若围栏的总长为60m,墙长为15m,则与墙垂直的围栏长为多少m?18.某校九年级一班的一个数学综合实践小组去超市调查某种商品“双十一”期间的销售情况,下面是调查后小阳与其他两位同学交流的情况:小阳:据调查,该商品的进价为11元/件;小佳:该商品定价为20元时,每天可售400件;小欣:在定价为20元的基础上,每涨价1元,每天少售20件.根据他们的对话,若销售的商品每天能获利3800元时,为尽快减少库存,应该怎样定价更合理?19.新华商场销售某种彩电,每台进价为3500元,调查发现,当销售价为3900元时,平均每天能售出8台,而当销售价每降低75元,平均每天能多卖6台.(1)若每台彩电降价x元,则每天彩电的销量为多少?(请用含有x的式子表示)(2)商场要想使这种彩电的销售利润平均每天达到5000元,则每台彩电应降价多少元?a.20.现有可建筑60m围墙的材料,准备依靠原有旧墙围成如图所示的仓库,墙长为ma ,能否围成总面积为225m的仓库?若能,求AB的长为多少?(1)若50(2)能否围成总面积为2400m的仓库?请说说你的理由.参考答案:。

人教版九年级上册数学实际问题与一元二次方程(销售问题)课时训练(含答案)

人教版九年级上册数学实际问题与一元二次方程(销售问题)课时训练(含答案)

人教版九年级上册数学21.3实际问题与一元二次方程(销售问题)课时训练一、单选题1.某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系,每盆植入3株时,平均单株盈利10元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少1元,要使每盆的盈利为40元,需要每盆增加几株花苗?设每盆增加株花苗,下面列出的方程中符合题意的是( )A .B .C .D .2.某商店销售某种商品,平均每天可售出20件,每件盈利40元.经调查发现,商品销售单价每降1元,平均每天可多售出2件.在每件盈利不少于25元的前提下,要获利1200元利润,每件商品应降价( )A .10元B .20元C .10元或20元D .13元3.电影《满江红》在2023年春节档上映,深受观众喜爱.某电影院每日开放若干个能容纳80位观众的放映厅排片《满江红》,票价统一订为60元.经调查发现,当一天排片3个放映厅时,每个厅均能坐满.在此基础上,每增加1个厅,每个厅将减少10位观众.若该电影院拟一日票房收入为18000元,设需要增加开放x 个放映厅,根据题意可列出方程为( )A .B .C .D .4.将进货价格为38元的商品按单价45元售出时,能卖出300个.已知该商品单价每上涨1元,其销售量就减少5个.设这种商品的售价上涨元时,获得的利润为2300元,则下列关系式正确的是( )A .B .C .D .5.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,则日销售量减少20千克,如果超市要保证每天盈利6000元,则每千克应该涨价( )x ()()31040x x ++=()()31040x x +-=()()31040x x -+=()()31040x x ++=()()603801018000x x -+=()()603801018000x x +-=()()6031101018000x x +-=()()603501018000x x -+=x ()()3830052300x x --=()()730052300x x ++=()()730052300x x --=()()730052300x x +-=A .15元或20元B .10元或15元C .10元或20元D .5元或10元6.某服装店营业员在卖T 恤衫时发现,当T 恤以每件元销售时,每天销售是件,若单价每降低1元,每天就可以多售出4件,已知该体恤衫进价是每件元,设每件T 恤降低元,如果服装店一天能赢利元,可列方程为( )A .B .C .D .7.中秋节又称月亮节,团圆节等,是中华民族的传统节日,我国各地都有吃月饼的习俗.某超市以元每盒的价格购进一批月饼,根据市场调查,售价定为每盒元,每天可售出盒;若售价每降低1元,则可多售出盒,问此种月饼每盆售价降低多少元时,超市每天售出此种月饼的利润可达到元?若设每盆月饼售价降低x 元,则可列方程为( )A .B .C .D .8.上海世博会的某纪念商品原价168元,连续两次降价后售价128元,下列所列的方程中正确的是( )A .B .C .D .二、填空题802040x 1000()()402041000x x -+=()()80201000x x -+=()()40201000x x -+=()()802041000x x -+=4064200205700(64)(20020)5700x x -+=(6440)(20020)5700x --+=(40)(20020)5700x x -+=(6440)(20020)5700x x --+=%a ()28%168112a +=()218%68112a -=()16812128%a -=()21681%128a -=三、解答题17.2023年杭州亚运会吉祥物一开售,就深受大家的喜欢.某商店销售亚运会吉祥物,在销售过程中发现,当每件获利125元时,每天可出售50件,为了扩大销售量增加利润,该商店决定采取适当的降价措施,经市场调查发现,如果每件吉祥物降价5元,平均可多售出1件.(1)若每件吉祥物降价20元,商家平均每天能盈利多少元?(2)每件吉祥物降价多少元时,能尽量让利于顾客并且让商家平均每天盈利5980元?18.为了推动长沙旅游业跨越发展,某旅行社推出“湖南博物院岳麓书院+橘子洲”一日游活动团队旅游收费标准:如果人数不超过人,人均费用为元;如果超过人,每增加人,人均费用降低元,但人均费用不得低于元.(1)当旅游人数为人时,人均费用为元,求的取值范围;(2)若某团队其支付旅游费用元,求该团队有多少人.A 202802018200a 200a 588819.某特产专卖店销售一种核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后经市场调查发现,单价每降低1元,平均每天的销售量可增加10千克.(1)专卖店销售这种核桃若想要平均每天获利2240元,且销售量尽可能大,则每千克核桃应降价多少元?(2)当定价多少元时,该店销售核桃获得利润最大,最大利润是多少?20.据统计冰墩墩公仔在某电商平台3月份的销售量是10万件,5月份的销售量是14.4万件.(1)该平台3月份到5月份的月平均增长率都相同,求月平均增长率是多少?(2)经市场调查发现,某一间店铺冰墩墩公仔的进价为每件60元,若售价为80元,每天能销售20件,售价每降价1元,每天可多售出5件.为了推广宣传,商家决定降价促销,同时尽量减少库存,若使销售该公仔每天获利700元,则售价应降低多少元?参考答案:1.B2.A3.B4.D5.D6.A7.D8.D9.1010.1011.19012.13.14.115.2016.17.(1)商家平均每天盈利5670元;(2)每件吉祥物降价10元.18.(1)(2)人19.(1)每千克核桃应降价6元;(2)当定价55元时,该店销售核桃获得利润最大,最大利润是2250元;20.(1)(2)元()()12180102000x x +-=()22891256x -=()()503001016000x x -+=30a ≥2320%10。

人教版九年级数学上册第21章一元二次方程单元测试卷(含答案)

人教版九年级数学上册第21章一元二次方程单元测试卷(含答案)

人教版九年级数学上册第21章一元二次方程单元测试卷(含答案)一、选择题 (每题3分,共30分)1.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( ) A .2m =±B .m =2C .m= -2D .2m ≠±2.一元二次方程()224260m x mx m --+-=有两个相等的实数根,则m 等于( )A. -6B. 1C. 2D. -6或1 3.对于任意实数x ,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定 4.已知代数式3x -与23x x -+的值互为相反数,则x 的值是( )A .-1或3B .1或-3C .1或3D .-1和-3 5.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14且a ≠0 D .a >–14且a ≠0 6.方程x 2+ax +1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .3 7.已知m 方程210x x --=的一个根,则代数式2m m -的值等于( )A.-1B.0C.1D.28.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( ) A.9cm 2B.68cm 2C.8cm 2D.64cm 29.县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产x %,则第三季度化肥增产的吨数为( )A 、 2(1)a x +B 、2(1)a x +%C 、2(1%)x +D 、2(%)a a x +10. 一个多边形有9条对角线,则这个多边形有多少条边( )A 、6B 、7C 、8D 、9二、填空题 (每题3分,共30分)11.若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .12.一元二次方程(x +1)(3x -2)=10的一般形式是 . 13.方程23x x =的解是____14.已知两个连续奇数的积是15,则这两个数是______ 15.已知4)2)(1(2222=-+-+y x y x ,则22x y +的值等于 .16.已知2320x x --=,那么代数式32(1)11x x x --+-的值为 .17.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 . 18.k = 时,二次三项式x 2-2(k +1)x +k +7是一个x 的完全平方式.19.当k <1时,方程2(k +1)x 2+4kx +2k -1=0的根的情况为: .20.已知方程x 2-b x + 22 = 0的一根为b = ,另一根为= .三、解答题21.解方程(每小题5分,共20分)① 2430x x --= ② 2(3)2(3)0x x x -+-=(3) 2(1)4x -= (4) 3x 2+5(2x+1)=022.(本题10分)有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.23.(本题10分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(本题10分)一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽.25.(本题10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2003年底的绿地面积为 公顷,比2002年底增加了 公顷;在2001年,2002年,2003年这三个中,绿地面积最多的是 年;(2)为满足城市发展的需要,计划到2005年底使城区绿地面积达到72.6公顷,试求这两年(2003~2005)绿地面积的年平均增长率.答案:一、选择题1.B 2.D 3.B 4.A 5.B 6.C 7.C 8.D 9.B ;10.A ;11.m ≠3 12.23120x x +-= 13.3,021==x x 14.3和5或—3和—5 15.4 16.2 17.10 18.-3或2; 19.有两个不相等的实数根;20.10,5 +3; 21.①1227,27x x =+=-;②121,3x x ==; (3).解:开平方,得12x -=±, 即1212x x -=-=-或, 所以123,1x x ==-.(4).解:移项,得 23(5)2(5)0x x -+-=,(5)[3(5)2]0,x x --+=即(5)(313)0,x x --= 503130,x x -=-=或12135,3x x ==. 22.解:设鸡场的一边长为x 米,则另一边长为(35—2x ),列方程,得 (352)150,x x -=解得1210,7.5x x ==,当x =10时,35—2x =15<18,符合题意; 当x =7.5时,35—2x =20>18,不符合题意,舍去. 答:鸡场的长为15米,宽为10米.23.解:设每件童装应降价x 元,则(40)20812004x x ⎛⎫-+⨯= ⎪⎝⎭,解得1220,10x x ==.因为要尽快减少库存,所以x =20. 答:每件童装应降价20元. 24.台布的长为8cm ,宽为6cm ;25.60,4,2003,2005~2006年的年平均增长率为10%.人教版九年级数学上册第21章一元二次方程单元测试卷(含解析)一、单选题(每小题3分,共30分) 1.下列方程中,是一元二次方程的为( ) A .20ax bx c ++= B .230x x +=C .2110x x+=D .()2210x x x +--= 2.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为() A .−2B .2C .−4D .43.把一元二次方程223x x =-化为一般形式,若二次项系数为1,则一次项系数及常数项分别为() A .2,3B .2,3-C .2,3-D .2,3--4.关于x 的一元二次方程2x 2+4x ﹣c =0有两个不相等的实数根,则实数c 可能的取值为( ) A .﹣5B .﹣2C .0D .﹣85.在解方程22410x x ++=时,对方程进行配方,文本框①中是嘉嘉的方法,文本框②中是琪琪的方法,则()A .两人都正确B .嘉嘉正确,琪琪不正确C .嘉嘉不正确,琪琪正确D .两人都不正确6.已知一元二次方程22510x x -+=的两个根为1x ,2x ,下列结论正确的是() A .1x ,2x 都是正数 B .121x x ⋅= C .1x ,2x 都是有理数D .1252x x +=-7.已知1x =是一元二次方程()22210m x mx m --+=的一个根,则m 的值是() A .12或1- B .12-C .12或1 D .128.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x ,根据题意可列方程( )A .82(1+x )2=82(1+x )+20B .82(1+x )2=82(1+x )C .82(1+x )2=82+20D .82(1+x )=82+209.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( ) A .5个B .6个C .7个D .8个10.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是() A .a b c ==B .a b =C .b c =D .a c =二、填空题(每小题3分,共30分)11.已知一元二次方程的一个根是﹣3,则这个方程可以是________(填上你认为正确的一个方程即可)12.若关于x 的一元二次方程2220x mx m --+=的二次项系数、一次项系数和常数项的和为0,则m 的值是_______.13.方程(21)(53)(8)0x x x --+=可以化为三个一次方程,它们分别是________,________,____________.14.关于x 的方程()2228(2)10a a x a x --++-=,当a __________时为一元一次方程;当a ________时为一元二次方程.15.若关于x 的方程x 2+mx -3=0有一根是1,则它的另一根为________.16.三角形的两边长分别为3和6,第三边的长是方程2x -6x +8=0的解,则此三角形的第三边长是_____17.某商品原价为180元,连续两次提价%x 后售价为300元,依题意可列方程:____ 18.若()()215x y x y +++=,则x y +=________.19.如果a 是一元二次方程2350x x --=的一个根,那么代数式283a a -+=_______.20.已知x =y =则225x xy y -+的值为__________.三、解答题(共60分)21.(16分)用合适的方法解下列方程: (1)2860x x --=;(2)22(3)8x -=;(3)24630x x --=;(4)2(23)5(23)x x -=-.22.(6分)先化简:再求值(1﹣11a +)÷221aa -,其中a 是一元二次方程x 2﹣2x ﹣2=0的正实数根.23.(6分)已知关于x 的一元二次方程()22210x m x m +-+=.(1)用含有m 的式子表示判别式∆=________;(2)当m 在什么范围内取值时,方程有两个不相等的实数根;(3)若该方程有两个不相等的实数根1x ,2x ,问当m 取何值时221214x x +=.24.(6分)如图,在菱形ABCD 中,,AC BD 交于点O ,8cm AC ,6cm BD =,动点M 从点A 出发沿AC 以2cm /s 的速度匀速运动到点C ,动点N 从点B 出发沿BO 以1cm/s 的速度匀速运动到点O ,若点,M N 同时出发,问出发后几秒时,MCN ∆的面积为22cm ?25.(8分)“绿水青山就是金山银山”,为进一步发展美丽乡村建设,自2016年以来,某县加大了美丽乡村环境整治的经费投入,2015年该县投人环境整治经费9亿元,2018年投入环境整治经费12.96亿元.假设该县这两年投入环境整治经费的年平均增长率相同.(1)求这两年该县投入环境整治经费的年平均增长率;(2)若该县环境整治经费的投入还将保持相同的年平均增长率,请你预测2019年该县投入环境整治的经费为多少亿元?26.(8分)随着旅游旺季的到来,某旅行社为吸引市民组团取旅游,推出了如下收费标准:某单位组织员工旅游,共支付给该旅行社费用27000元,请问该单位这次共有多少员工取旅游?27.(10分)某市正大力发展绿色农产品,有一种有机水果A特别受欢迎,某超市以市场价格10元/千克在该市收购了6000千克A水果,立即将其冷藏,请根据下列信息解决问题:①水果A的市场价格每天每千克上涨0.1元;②平均每天有10千克的该水果损坏,不能出售;③每天的冷藏费用为300元;④该水果最多保存110天.(1)若将这批A水果存放x天后一次性出售,则x天后这批水果的销售单价为_____元;可以出售的完好水果还有_____千克;(2)将这批A水果存放多少天后一次性出售所得利润为9600元?参考答案1.B【解析】根据一元二次方程的概念逐一进行判断即可得.解:A. 2ax bx c 0++=,当a =0时,不是一元二次方程,故不符合题意;B. 2x 3x 0+=,是一元二次方程,符合题意;C. 2110x x+=,不是整式方程,故不符合题意; D. ()2x 2x x 10+--=,整理得:2+x =0,不是一元二次方程,故不符合题意,故选B.2.B【解析】根据一元二次方程的解的定义,把x =1代入方程得关于k 的一次方程1-3+k =0,然后解一次方程即可.解:把x =1代入方程得1+k -3=0,解得k =2.故选:B .3.D【解析】先将223x x =-变形为2230x x --=,再根据一次项系数及常数项的定义即可得到答案.解:根据题意可将方程变形为2230x x --=,则一次项系数为2-,常数项为3-.故选D .4.C【解析】利用一元二次方程根的判别式(△=b 2﹣4ac )可以判断方程的根的情况,有两个不相等的实根,即△>0.解:依题意,关于x 的一元二次方程,有两个不相等的实数根,即△=b 2﹣4ac =42+8c >0,得c >﹣2根据选项,只有C 选项符合,故选:C .5.A【解析】利用配方法把含未知数的项写成完全平方式,然后利用直接开平方法解方程. 解:嘉嘉是把方程两边都乘以2,把二次项系数化为平方数,再配方,正确;琪琪是把方程两边都除以2,把二次项系数化为1,再配方,正确;∴两人的做法都正确.故选A .6.A【解析】由根与系数的关系可得出x 1+x 2=52、x 1x 2=12,进而可得出x 1、x 2都是正数,再进行判断.解:∵一元二次方程2x 2-5x +1=0的两个根为x 1、x 2,∴x 1+x 2=52,x 1x 2=12, ∴x 1、x 2都是正数.故选:A .7.B【解析】把x =1代入方程(m 2 -1)x 2 -mx +m 2 =0,得出关于m 的方程,求出方程的解即可.解:把x =1代入方程(m 2 -1)x 2 -mx +m 2 =0得:(m 2 -1)-m +m 2 =0,即2m 2 -m -1=0,(2m +1)(m -1)=0,解得:m =- 12或1,当m =1时,原方程不是二次方程,所以舍去.故选B .8.A【解析】根据题意找出等量关系:20=+四月份的营业额三月份的营业额,列出方程即可.解:由二月份到四月份每个月的月营业额增长率都相同,二月份的营业额为82万元,若设增长率为x ,则三月份的营业额为82(1)x +,四月份的营业额为282(1)x +,四月份的营业额比三月份的营业额多20万元,则282(1)82(1)20x x +=++,故选:A9.B【解析】每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:飞机场数×(飞机场数-1)=15×2,把相关数值代入求正数解即可. 解:设这个航空公司共有x 个飞机场,依题意得1x(x 1)152-=, 解得16x =,25x =-(不符合题意,舍去),所以这个航空公司共有6个飞机场.故选B .10.D【解析】根据已知得出方程20(a 0)++=≠ax bx c 有x =-1,再判断即可.解:把x =−1代入方程20(a 0)++=≠ax bx c 得出a −b +c =0,∴b =a +c ,∵方程有两个相等的实数根,∴△=24b ac -=22()()4=0a c ac a c --=+, ∴a =c ,故选D .11.x 2+3x =0【解析】方程一个解为−3,假设另一个解为0,则方程可为x (x +3)=0,然后把方程化为一般式即可.解:一元二次方程的一个根是−3,则这个方程可以是x (x +3)=0,即x 2+3x =0. 故答案为x 2+3x =0.12.1【解析】二次项系数、一次项系数、常数项分别是1,-2,-m +2.它们的和是0,即得到1220m m --+=解方程求出m 即可.解:由题意可得1220m m --+=,解得1m =.故答案为:1.13.2x -1=0. 5x -3=0. x +8=0.【解析】如果三个因数的积等于0,那么三个因数中每一个因数都可能等于0.由此可写出三个方程.解:∵(21)(53)(8)0x x x --+=∴2x -1=0或5x -3=0或x +8=0.∴三个方程是2x -1=0或5x -3=0或x +8=0.14.a =4 a ≠4且a ≠-2.【解析】分别根据一元二次方程及一元一次方程的定义求解即可.解:(1) 由于一元一次方程的定义可知:a 2-2a -8=0且a +2≠0,解得:a =4(2)由一元二次方程的定义可知:a 2-2a -8≠0,解得a ≠4且a ≠-2.故答案为:4;a ≠4且a ≠-2,15.-3【解析】设方程x 2+mx -3=0的两根为x 1、x 2,根据根与系数的关系可得出x 1•x 2=﹣3,结合x 1=1即可求出x 2,此题得解.解:设方程x 2+mx -3=0的两根为x 1、x 2,则:x 1•x 2=﹣3.∵x 1=1,∴x 2=﹣3.故答案为:﹣3.16.4【解析】求出方程的解,有两种情况:x =2时,看看是否符合三角形三边关系定理;x =4时,看看是否符合三角形三边关系定理;求出即可.解:x 2-6x +8=0,(x -2)(x -4)=0,x -2=0,x -4=0,x 1=2,x 2=4,当x =2时,2+3<6,不符合三角形的三边关系定理,所以x =2舍去,当x =4时,符合三角形的三边关系定理,此三角形的第三边长是4,故答案为:4.17.2180(1%)300x +=【解析】本题可先用x %表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x %的方程.解:当商品第一次提价x %时,其售价为180+180x %=180(1+x %);当商品第二次提价x %后,其售价为180(1+x %)+180(1+x %)x %=180(1+x %)2. ∴2180(1%)300x +=.故答案为:2180(1%)300x +=.18.3或5-【解析】首先将x y +看成一个整体,转化方程,再利用十字相乘法即可得解.解:令t x y =+,则方程可化为()215t t += 22150t t +-=()()350t t -+=解得3t =或5t =-即答案为3或5-.19.3【解析】根据一元二次方程的解的定义得到a 2-3a =5,再把8-a 2+3a 变形为8-(a 2-3a ),然后利用整体代入的方法计算即可.解:把x =a 代入x 2-3x -5=0得a 2-3a -5=0,所以a 2-3a =5,所以8-a 2+3a =8-(a 2-3a )=8-5=3.故答案为:3.20.5【解析】由于x +y =xy =1方便运算,故可考虑将代数式化为含(x +y )和xy 的项,再整体代入(x +y )和xy 的值,进行代数式的求值运算.解:∵x =y =∴x +y =xy =1,∵225x xy y -+22(2)7x xy y xy =++-=2()7x y xy +-,∴原式=271-⨯=5,故答案为:5.21.(1)14x =,24x =;(2)15=x ,21x =;(3)1x =,2x =;(4)132x =,24x =. 【解析】(1)方程整理后,利用配方法求出解即可;(2)利用直接开平方法求出解即可;(3)用公式法求解即可;(4)方程整理后,利用因式分解法求出解即可.解:(1)配方,得28161660x x -+--=,2(4)22x -=,两边开平方,得4x -=即4x -=4x -=,∴14x =,24x =.(2)方程两边同除以2,得2(3)4x -=,两边开平方,得32x -=±,∴15=x ,21x =.(3)这里4,6,3a b c ==-=-,∵224(6)44(3)840b ac -=--⨯⨯-=>,∴x ===,即134x +=,234x -=. (4)原方程可变形为2(23)5(23)0x x ---=,(23)[(23)5]0x x ---=,230x -=或280x -=, ∴132x =,24x =.22.2【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程的正实数根得到a 的值,代入计算即可求出结果. 解:原式=11(1)(1)(1)11222a a a a a a a a a +-+---==+, 把x =a 代入方程得:a 2﹣2a ﹣2=0,即a 2﹣2a +1=3,整理得:(a ﹣1)2=3,即a ﹣1=解得:a =a =1,23.(1)4-8m ;(2)12m <;(3)-1.【解析】(1)将方程的各项系数直接代入根的判别式即可求解;(2)由于无论m 取何值时,方程总有两个不相等的实数根,所以证明判别式是正数即可;(3)利用根与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可求解.解:(1)一元二次方程x 2+2(m -1)x +m 2=0中,a =1,b =2(m -1),c =m 2,∴△=b 2-4ac =[2(m -1)]2-4×1×m 2=48m -(2)方程有两个不相等的实数根,480m ∴->,12m ∴<. (3)()22210x m x m +-+=,()1221x x m ∴+=--,212x x m ⋅=,()22221212122284x x x x x x m m ∴+=+-=-+,221214x x +=, 228414m m ∴-+=,11m ∴=-,25m =(舍),故m =-1.24.出发后2s 时,MCN ∆的面积为22cm .【解析】根据点M 、N 运动过程中与O 点的位置关系,设出发后xs 时MCN ∆的面积为22cm ,则3x <.根据三角形面积公式列方程求解即可.解:设出发后 s x 时,MCN ∆的面积为22cm ,则3x <. 根据题意,得(82)(3)22x x --=, 解得12x =,25x =(舍去).答:出发后2s 时,MCN ∆的面积为22cm .25.(1)这两年该县投入环境整治经费的年平均增长率为20%;(2)2018年该县投入环境整治的经费为15.552亿元.【解析】(1)设这两年该县投入环境整治经费的年平均增长率为x ,根据2015年该县投入环境整治经费9亿元,2017年投入环境整治经费12.96亿元列出方程,再求解即可;(2)根据2017年该县投入环境整治经费和每年的增长率,直接得出2018年该县投入环境整治经费为12.96×(1+0.2),再进行计算即可.解:(1)设这两年该县投入环境整治经费的年平均增长率为x ,根据题意得,29(1)12.96x +=,解得10.220%x ==,2 2.2x =-(不合题意,舍去).答:这两年该县投入环境整治经费的年平均增长率为20%.(2)因为2017年投入环境整治的经费为12.96亿元,且年平均增长率为20%,所以2018年该县投入环境整治的经费为12.96(10.2)15.552⨯+=(亿元).答:2018年该县投入环境整治的经费为15.552亿元.26.单位这次共有30名员工去旅游【解析】由题意易知该单位旅游人数一定超过25人,然后设共有x 名员工去旅游,依据题意列出方程解方程,得到两个x 的解,再通过人均旅游不低于700,对x 的解进行检验即可得到答案解:设该单位这次共有x 名员工去旅游 2510002500027000⨯-<∴旅游的员工人数一定超过25人根据题意得()1000202527000x x ⎡⎤--=⎣⎦整理得,27513500x x -+=()()45300x x --=解得1245,30x x ==当45x =时,()110002025600700,45x x ---<∴=不合题意应舍去当30x =时,()110002025900700,30x x --->∴=符合题意答:该单位这次共有30名员工去旅游.27.(1)(100.1)x +;(600010)x -;(2)这批A 水果存放80夫后一次性出售所得利润为9600元.【解析】(1)根据销售价=成本价+每天每千克上涨0.1元填空;完好水果的质量=总质量-损坏的水果的质量;(2)按照等量关系“利润=销售总金额-收购成本-各种费用”列出方程求解即可. 解:(1) 10+0.1x ;6000-10x .故答案是:10+0.1x ;6000-10x ;(2)设存放x 天后一次性出售所得利润为9600元,根据题意得,(100.1)(600010)1060003009600x x x +--⨯-=,解得80x =或120x =.x,∵110∴这批A水果存放80天后一次性出售所得利润为9600元.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(1)一、选择题(每题4分,满分32分)1.已知3是关于x 的方程012342=+-ax x 的一个解,则a 2的值是( ) A.11 B.12 C.13 D.142.用配方法解方程2210x x +-=时,配方结果正确的是( )A .2(2)2x +=B .2(1)2x +=C .2(2)3x +=D .2(1)3x += 3.一元二次方程0122=--x x 的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程为( )A.()140012002002=++xB. ()()1400120012002002=++++x x C. ()140012002=+x D. ()()1400120012002=+++x x 5.关于x 的方程()01452=---x x a 有实数根,则a 满足( ) A. a ≥1 B. a >1且a ≠5 C. a ≥1且a ≠5 D. a ≠56.若31-是方程022=+-c x x 的一个根,则c 的值为( )A .2-B .234- C.33- D .31+7.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-8. 关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( )(A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.二、填空题(每题4分,满分32分)9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.已知实数x 满足4x 2-4x+l=O ,则代数式2x+x21的值为________. 11.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________12.已知23-是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .13.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b --的值是 .14、在Rt △ABC 中, ∠C =90°,斜边c=5,两直角边的长a 、b 是关于x 的一元二次方程x 2-mx +2m -2=0的两个根 ,则Rt △ABC 中较小锐角的正弦值_________15、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________16、若关于x 的一元二次方程2(1)410k x x -++=有实数根,则k 的取值范围是 .三、解答题(满分56分)17. 解方程(1) 2430x x --= (2) 2(3)2(3)0x x x -+-=(3) 2(1)4x -= (4) 3x 2+5(2x+1)=018. 求证:代数式3x 2-6x+9的值恒为正数。

人教版数学九年级上册同步练习:21.3 实际问题与一元二次方程 附答案

人教版数学九年级上册同步练习:21.3 实际问题与一元二次方程  附答案

2020年秋季人教版数学九年级上册同步练习21.3 实际问题与一元二次方程一.传播问题1.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程()A.1+x=225B.1+x2=225C.(1+x)2=225D.1+(1+x2)=2252.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()A.14B.15C.16D.253.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.74.有一人患了流感,假如平均一个人传染了x个人,经过两轮感染后共有121人患了流感,依题意可列方程为.5.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了个人.6.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?二.握手问题1.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1260B.2x(x+1)=1260C.x(x﹣1)=1260D.x(x﹣1)=1260×22.某单位要组织篮球邀请赛,每两队之间都要赛一场且只赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,根据题意,可列方程()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=153.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个4.元旦期间,九年(1)班数学研究小组的同学互送新年贺卡,如果研究小组有x名学生,共送出132张贺卡,那么可列出方程为.5.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.三.增长问题1.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%2.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=63.某校坚持对学生进行近视眼的防治,近视学生人数逐年减少.据统计,今年的近视学生人数是前年近视学生人数的75%,那么这两年平均每年近视学生人数降低的百分率是多少?设平均每年降低的百分率为x,根据题意列方程得()A.1﹣x2=75%B.(1+x)2=75%C.1﹣2x=75%D.(1﹣x)2=75% 4.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元.设平均每次下调的百分率为x,则可列方程为.5.某市继续加大对教育经费的投入,2018年投入2500万元,2020年预计投入3600万元,则该市投入教育经费的年平均增长率为.6.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?四.利润问题1.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x元,则可列方程为()A.(40+x)(600﹣10x)=10000 B.(40+x)(600+10x)=10000C.x[600﹣10(x﹣40)]=10000D.x[600+10(x﹣40)]=100002.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满:当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.设房价定为x元,宾馆当天利润为8640元.则可列方程()A.(180+x﹣20)(50﹣)=8640B.(x+180)(50﹣)﹣50×20=8640 C.x(50﹣)﹣50×20=8640D.(x﹣20)(50﹣)=86403.某商场在销售一种糖果时发现,如果以20元/kg的单价销售,则每天可售出100kg,如果销售单价每增加0.5元,则每天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x元/kg,依题意可列方程为()A.(20+x)(100﹣2x)=1800B.C.D.x[100﹣2(x﹣20)]=18004.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件衬衫每降价1元,商场平均每天可多销出2件.若商场每天要盈利1200元,设每件衬衫应降价x 元.请你帮助商场算一算,满足x的方程是..5.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.6.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.五.面积问题1.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6002.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=323.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另三边用总长为55米的栅栏围成,若设榣栏AB的长为x米,则下列各方程中,符合题意的是()A.x(55﹣x)=375B.x(55﹣2x)=375C.x(55﹣2x)=375D.x(55﹣x)=3754.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为.5.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成m.6.学校有一块长14米,宽10米的矩形空地,准备将其规划,设计图案如图,阴影应为绿化区(四块绿化区为全等的矩形),空白区为路面,且四周出口一样宽广且宽度不小于2米,不大于5米,路面造价为每平方米200元,绿化区为每平方米150元,设绿化区的长边长为x米.(1)用x表示绿化区短边的长为米,x的取值范围为.(2)学校计划投资25000元用于此项工程建设,求绿化区的长边长.参考答案一.传播问题1.解:设1人平均感染x人,依题意可列方程:(1+x)2=225.故选:C.2.解:设平均每天一人传染了x人,根据题意得:1+x+(1+x)×x=225,(1+x)2=225,解得:x1=14,x2=﹣16(舍去).答:平均每天一人传染了14人.故选:A.3.解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.4.解:依题意,得:1+x+x(1+x)=121.故答案为:1+x+x(1+x)=121.5.解:设每轮传染中平均一个人传染了x个人,根据题意,得(1+x)2=1691+x=±13x1=12,x2=﹣14(舍去).答:每轮传染中平均一个人传染了12个人.故答案为:12.6.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.二.握手问题1.解:依题意,得:x(x﹣1)=1260.故选:C.2.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选:D.3.解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.4.解:设研究小组有x名学生,可列出方程为:x(x﹣1)=132.故答案为:x(x﹣1)=132.5.解:设共有x家公司参加了这次会议,根据题意,得x(x﹣1)=28整理,得x2﹣x﹣56=0解得x1=8,x2=﹣7(不合题意,舍去)答:共有8家公司参加了这次会议.故答案是:8.三.增长问题1.解:设全市5G用户数年平均增长率为x,则2020年底全市5G用户数为2(1+x)万户,2021年底全市5G用户数为2(1+x)2万户,依题意,得:2+2(1+x)+2(1+x)2=8.72,整理,得:x2+3x﹣1.36=0,解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去).故选:C.2.解:依题意,得:1.5×4(1+x)2=17.34,即6(1+x)2=17.34.故选:A.3.解:依题意,得:(1﹣x)2=75%.故选:D.4.解:设平均每次降价的百分率是x,根据题意列方程得,6500(1﹣x)2=5265.故答案为:6500(1﹣x)2=5265.5.解:设该市投入教育经费的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.6.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.四.利润问题1.解:售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯,依题意,得:(40+x)(600﹣10x)=10000,故选:A.2.解:设房价定为x元,由题意得:(x﹣20)(50﹣)=8640.故选:D.3.解:由题意可得,x(100﹣)=1800,故选:C.4.解:设每件衬衫应降价x元,根据题意得出:(20+2x)(40﹣x)=1200故答案为:(20+2x)(40﹣x)=1200.5.解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=32,∵在降价幅度不超过10元的情况下,∴x=32不合题意舍去,答:每件服装应降价4元.故答案是:4.6.解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;小红:设每件皮衣定价为y元,则平均每天的销售量为(30+×10)件,依题意,得:(y﹣750)(30+)=12000.故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+)=12000.(2)选择小明的的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,整理,得:x2﹣200x+7500=0,解得:x1=50,x2=150,∴1100﹣x=1050或950.答:每件皮衣定价为1050元或950元.选择小红的设法,则(y﹣750)(30+)=12000,整理,得:y2﹣2000y+997500=0,解得:y1=1050,y2=950.答:每件皮衣定价为1050元或950元.五.面积问题1.解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.2.解:设剪去的小正方形边长是xcm,则做成的纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32.故选:D.3.解:设榣栏AB的长为x米,则AD=BC=米,根据题意可得,x(55﹣x)=375,故选:A.4.解:设宽为x m,则长为(16﹣2x)m.由题意,得x(16﹣2x)=30,故答案为:x(16﹣2x)=30.5.解:设通道的宽应设计成xm,则种植花草的部分可合成长(34﹣2x)m,宽(22﹣x)m 的矩形,依题意,得:(34﹣2x)(22﹣x)=100×6,整理,得:x2﹣39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.6.解:(1)路面宽为(14﹣2x)米,则绿化区短边的长为[10﹣(14﹣2x)]÷2=(x﹣2)米,依题意得2≤14﹣2x≤5,解得≤x≤6;(2)设绿化区的长边长为x米.由题意列方程得150×4x(x﹣2)+200[14×10﹣4x(x﹣2)]=25000,整理得x2﹣2x﹣15=0,解得x1=5,x2=﹣3(不合题意,舍去).答:绿化区的长边长为5米.故答案为:(x﹣2),≤x≤6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与一元二次方程附答案
一、填空题
1.实际问题中常见的基本等量关系。

(1)工作效率=_______;(2)路程=_______.
2.某工厂1993年的年产量为a(a>0),如果每年递增10%,则1994年年产量是______,1995年年产量是_________,这三年的总产量是____________.
3.某商品连续两次降价10%后的价格为a元,该商品的原价为____________.
二、选择题
4.两个连续奇数中,设较大一个为x,那么另一个为( ).
A.x+1 B.x+2 C.2x+1 D.x-2
5.某厂一月份生产产品a件,二月份比一月份增加2倍,三月份是二月份的2倍,则三个月的产品总件数是( ).
A.5a B.7a C.9a D.10a
三、解答题
6.三个连续奇数的平方和为251,求这三个数.
2 ,斜边上的中线长1,求这个直角三角形的三边长.
7.直角三角形周长为6
8.某工厂一月份产量是5万元,三月份的产值是11.25万元,求二、三月份的月平均增长率.
9.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.
10.如下图甲,在一幅矩形地毯的四周镶有宽度相同的花边,如下图乙,地毯中央的矩形图案长6m、宽3m,整个地毯的面积是40m2,求花边的宽.
综合、运用、诊断
一、填空题
11.某县为发展教育事业,加强了对教育经费的投入,2007年投入3000万元,预计2009年投入5000万元.设教育经费的年平均增长率为x,则列出的方程为____________.12.一种药品经过两次降价,药价从原来的每盒60元降至现在的48.6元,则平均每次降价的百分率是____________.
13.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图
所示,如果要使整个挂图的面积是1800cm2,设金色纸边的宽为x cm,那么x满足的方程为_______________.
二、解答题
14.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.
(1)该公司2006年盈利多少万元?
(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?
15.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少米时,蔬菜种植区域的面积是288m2?
16.某人将2000元人民币按一年定期存入银行,到期后支取1000元用作购物,剩下的1000元及所得利息又全部按一年定期存入银行.若银行存款的利息不变,到期后得本金和利息共1320元.求这种存款方式的年利率(问题中不考虑利息税).
17.某商场销售一批衬衫,现在平均每天可售出20件,每件盈利40元,为扩大销售量,增加盈利,减少库存,商场决定采用降价措施,经调查发现,如果每件衬衫的售价降低1元,那么商场平均每天可多售出2件.商场若要平均每天盈利1200元,每件衬衫应降价多少元?
18.已知:如图,甲、乙两人分别从正方形场地ABCD的顶点C,B两点同时出发,甲由C 向D运动,乙由B向C运动,甲的速度为1km/min,乙的速度为2km/min,若正方形
场地的周长为40km ,问多少分钟后,两人首次相距?km 102
19.(1)据2005年中国环境状况公报,我国由水蚀和风蚀造成的水土流失面积达356万km 2,
其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万km 2.问水蚀与风蚀造成的水土流失面积各多少万平方千米?
(2)某省重视治理水土流失问题,2005年治理了水土流失面积400km 2,该省逐年加大治理力度,计划2006年、2007年每年治理水土流失面积都比前一年增长一个相同的百分数,到2007年年底,使这三年治理的水土流失面积达到1324km 2.
求该省2006年、2007年治理水土流失面积每年增长的百分数.
参考答案
1.(1)工用时间工作总量
(2)速度×时间.
2.1.1a ,1.21a ,3.31a . 3.a 81100
元. 4.D . 5.D .
6.三个数7,9,11或-11,-9,-7. 7.三边长为.2,22
6,226+-
8.50%. 9.2cm . 10.1米. 11.3000(1+x )2=5000.
12.10%. 13.(50+2x )(30+2x )=1800. 14.(1)1800;(2)2592.
15.长28cm ,宽14cm . 16.10%. 17.10元或20元. 18.2分钟.
19.(1)水蚀和风蚀造成的水土流失面积分别为165万km 2和191万km 2;
(2)平均每年增长的百分数为10%.。

相关文档
最新文档